Skip to Main content Skip to Navigation
Journal articles

Atomic scale modeling of the thermodynamic and kinetic properties of dilute alloys driven by forced atomic relocations

Abstract : Sustained external forces acting on a material provide additional mechanisms to evolve the state of the system, and these mechanisms do not necessarily obey the microscopic detailed balance. Therefore, standard methods to compute the thermodynamic and kinetic properties do not apply in such driven systems. The competition between these mechanisms and the standard thermally activated jumps leads to non-equilibrium steady states. We extend the Self-Consistent Mean Field theory to take into account forced atomic relocations (FARs) as a model of these additional kinetic mechanisms. The theory is applied to the atomic-scale modelling of radiation damage. Using a first- shell approximation of the theory, we highlight the violation of Onsager reciprocal relations in driven systems. An implementation of the extended theory into the KineCluE code yields calculations of the effective Onsager coefficients in agreement with Monte Carlo simulations. A systematic parametric study is performed to emphasize the effect of FAR distances and the solute-defect interaction on the diffusion properties. The effect of FAR on the vacancy-solute flux coupling and the solute tracer diffusivity is non-negligible when: (i) the solute-vacancy thermodynamic attraction is large, (ii) the magnitude of the thermal jump frequencies is lower or comparable to the frequencies of FAR, and (iii) the range of interactions between vacancies and solute atoms is close to FAR distances.
Complete list of metadata
Contributor : Contributeur MAP CEA Connect in order to contact the contributor
Submitted on : Friday, August 5, 2022 - 8:30:34 AM
Last modification on : Tuesday, September 13, 2022 - 4:18:23 PM


Files produced by the author(s)



Liangzhao Huang, Thomas Schuler, Maylise Nastar. Atomic scale modeling of the thermodynamic and kinetic properties of dilute alloys driven by forced atomic relocations. Physical Review B, American Physical Society, 2019, 100, pp.224103. ⟨10.1103/PhysRevB.100.224103⟩. ⟨cea-03746199⟩



Record views


Files downloads