
ADABOOST PARALLELIZATION ON PC CLUSTERS WITH VIRTUAL
SHARED MEMORY FOR FAST FEATURE SELECTION

Virginie Galtier, Olivier Pietquin and Stéphane Vialle

SUPELEC - IMS Research Group
2 rue Edouard Belin, 57070 Metz, France
firstname.lastname@supelec.fr

ABSTRACT

Feature selection is a key issue in many machine learning appli-
cations and the need to test lots of candidate features is real while
computational time required to do so is often huge. In this paper,
we introduce a parallel version of the well-known AdaBoost al-
gorithm to speed up and size up feature selection for binary clas-
sification tasks using large training datasets and a wide range of
elementary features.

This parallelization is done without any modification to the
AdaBoost algorithm and designed for PC clusters using Java and
the JavaSpace distributed framework. JavaSpace is a memory
sharing paradigm implemented on top of a virtual shared mem-
ory, that appears both efficient and easy-to-use. Results and per-
formances on a face detection system trained with the proposed
parallel AdaBoost are presented.

1. MOTIVATIONS AND OBJECTIVES

A key issue in the fields of machine learning and pattern recogni-
tion is the choice of highly discriminant features keeping the fea-
ture space small enough to be processed in a reasonable amount
of time. The AdaBoost algorithm [3] is a sequential iterative
algorithm that allows selecting the optimal combination of ele-
mentary features among a large set of candidates for a two-class
separation problem. It has proven its efficiency for building state-
of-the-art real-time object detection systems [9]. The fundamen-
tal idea underlying AdaBoost is to build a strong classifier which
decision is a linear combination of multiple weak classifiers (or
base learners) decisions, that is building an accurate decision-
making system based on a set of easily computable tests. A
weak classifier is usually an elementary learner quickly trained
to have performance slightly above 50% on a training dataset.
When used for feature selection, the AdaBoost algorithm picks
up one weak classifier from a large set of those at each round.
To ensure the optimality of the weak classifier combination, the
training examples are assigned weights that change from round
to round. The previously misclassified examples are assigned
higher weights and the training error of each weak classifier at
a given round is computed as the sum of the weights associated
with the examples it misclassifies. The weak classifier provid-
ing the lowest weighted error is selected and a new weight dis-
tribution over examples is computed for the next turn. The se-
lected weak classifiers are therefore more and more focussed on
the misclassified examples. The complete Adaboost algorithm is
described in Table 1.

Our objective is to speed up and size up the AdaBoost algo-
rithm without introducing any modification, in order to help sig-
nal processing and machine learning researchers to train classi-
fication systems on very large datasets and to test a wide range
of candidate features. To achieve high speed up and size up with
parallel computers available for many researchers, a classical so-

Given a training set {(xi, yi)}
where i = 1, ...,N , xi ∈ X and yi ∈ {−1, +1}
Initialize t = 1, example distrib. Dt(i) = 1/n ∀i and E = 1
while E > ξ do

Train weak classifiers using Dt

Get weak hypothesis ht : X → {−1, +1}
Compute weak class. weighted er. εt =

P
ht(xi)�=yi

Dt(i)

Choose αt = 1
2

ln(1−εt

εt
)

Update Dt+1(i) = Dt(i) exp(−αtyiht(xi))P
t

Dt+1

Compute strong hypotheses H(xi) = sign(
P

t αtht(xi))
Compute strong classifier error E =

P
H(xi)�=yi

1
N

t + +
Output the final hypothesis H(x) = sign(

P
t αtht(x))

Table 1. AdaBoost Algorithm.

lution consists in using PC clusters, or Grid of PC clusters (some
PC clusters localized on different sites).

Previous works on distributed AdaBoost algorithms on gen-
eral purpose computers have focussed on designing some modi-
fied versions to run independent computations on different com-
puters and to merge the different results at the end of each round
with limited communications [6, 7]. This is particularly helpful
in the case of physically distributed resources (such as databases)
but the aim is not the gain in time. Some of these strategies
achieved good performances running less rounds. They are in-
teresting optimizations of the AdaBoost algorithm depending on
the kind of application tracked and classifier used, and indepen-
dently of a sequential or parallel implementation. But we claim
it is important to distribute the original AdaBoost algorithm: (1)
in order to be able to speed up and size up any kind of boosting
applications, (2) to run quickly the reference algorithm when de-
signing an optimized version requiring some long comparisons.
Moreover, when designing modified distributed versions of Ad-
aBoost to process multi-site databases, with a fine result merging
policy, each database processing can remain long. Then, to par-
allelize each local boosting algorithm without introducing more
change in the algorithm is mandatory to achieve both a low level
of errors and reduced execution times.

2. STRATEGIC CHOICES

This project results from a collaboration between researchers in
signal processing and parallel computing, in order to design and
implement an efficient parallel AdaBoost algorithm. However,
future applications using this framework, with various kind of
classifiers, will be developed by users: e.g. signal processing
researchers, without assistance from expert of parallel program-
ming. So, we opted for an efficient and easy-to-use parallel pro-
gramming framework: the JavaSpace[2], a virtual shared mem-
ory on clusters and Grids, associated with the Java programming

1651-4244-1236-6/07/$25.00 © 2007 IEEE

2007 IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27 November 2007, Dubai, United Arab Emirates

language. Our first experiments of JavaSpace (JS) exhibited very
good performances and scalability on hundreds of processors in
a large cluster or in a multi-site Grid[4, 5], and an ease-to-use
parallel programming paradigm.

JavaSpace is a Jini service enabling programs to exchange ob-
jects through a virtual shared memory. It is an evolution from
a work done nearly two decades ago at Yale University with the
Linda system but benefiting from Jini and Java object-oriented
paradigm and portability. Several commercial implementations
proposing various associated tools and demonstrating different
performances exist. The JavaSpace API proposes three main
methods: write to put an object into the JavaSpace, and read
and take to retrieve a copy of an object or the object itself from
the JavaSpace. These methods operate according to two modes:
blocking or non blocking. Object retrieval is done by matching a
template (associate lookup): a program might indicate the class
of the desired object, and optionally the value for some of the
object’s attributes. This API is both simple yet rich enough to
enable fast and easy development of a large range of distributed
applications, in particular those with frequent and not totally reg-
ular communication requirements.

Finally, sequential and intensive computations (run on each
processor) can be implemented in Java too, or in C/C++ and in-
terfaced with the Java high level part of the application using JNI.
For now, all our experiments have been implemented with Java.

3. SOFTWARE ARCHITECTURE

Our final aim is to use AdaBoost for feature selection, that is
training a large number of similar weak classifiers with different
input feature vectors so as to select the most discriminant features
round after round. We therefore need to run independent train-
ing processes on the same dataset and subsequently compare the
weighted error of each learner. The software architecture must
be as generic as possible so any kind of base learner can be used
(even heterogenous learner sets should be possible). In addition,
we argue that the Java language is within the reach of most of
developers and scientists. This way, researchers willing to test
new learning algorithms or new features could just ”plug” their
java code in the parallel AdaBoost application skeleton presented
here.

To do so, one needs to provide a class which extends
our WeakClassifier class and to implement the meth-
ods train(Vector<Example> examples) and
detect(Example example). One must also provide
a class which extends our Example class. Eventually, the
Master and Worker classes contain sections which create the
examples list and the initial list of weak classifiers. A generic
parallel version of the algorithm presented in Table 1 has been
implemented this way, separating the application-dependent
code from the general AdaBoost code.

4. PARALLELIZATION STRATEGIES

The proposed parallel algorithm is based on a master-workers
pattern (one master and P workers). The P worker processes
have to be deployed on P different processors, or cores. In ad-
dition, the master process makes some computations in parallel
of the workers, and they all concurrently write, read and take ob-
jects in the JavaSpace. So, the master process and the JavaSpace
services are installed on individual proper processors.

Figure 1 details the parallel and distributed AdaBoost algo-
rithm proposed in this paper. The left part introduces the Master
code and the right part introduces the code of a worker node. The
central part of figure 1 illustrates the data stored and accessed in
the JavaSpace (i.e: the virtual shared memory server). At the

early beginning, each process discovers the JavaSpace (using a
look up service). Then the master writes in the JavaSpace the
path to the dataset used to train and test the classifiers, and dis-
tributes the total amount of jobs on the P worker processes: i.e.
writes in the JavaSpace the P intervals of classifier index that the
P nodes have to retrieve and to process. Each interval is written
in the JavaSpace, and each worker process takes from the JavaS-
pace one of these interval bounds. Currently, all cluster nodes
are assumed homogeneous and all tasks have the same size. In
a future version the master process will insure load balancing on
heterogeneous clusters, setting on the most powerful nodes more
classifiers to train or some CPU-consuming classifiers (for ex-
ample, writing in the JavaSpace some interval bounds associated
to node IDs or to specific node features, in order for each node
to retrieve a suited task). The workers end this initialization step
building and setting their classifiers and then enter the computa-
tion loop of the AdaBoost algorithm.

During one round, each worker trains its weak classifiers on
the entire training dataset, identifies its best base learner and
writes it in the JavaSpace with its weighted error. The master
process waits to retrieves these P best candidates, compares their
respective weighted errors and selects the overall best classifier
(competitive policy). Then, the master process writes the current
best classifier, and retrieves from the JavaSpace the best one at
the previous round (cleaning up the JavaSpace). Each worker
reads this new best classifier, updates its example weights (to fo-
cuss on misclassified examples) and enters the next round, train-
ing its classifiers again, according to the new examples weight
distribution. In parallel, the master process adds the new base
learner to the strong classifier aggregate, evaluates this strong
classifier on the training set, tests if the targeted error is reached,
and decides whether to stop the distributed program or to carry
on with the next round.

This parallel algorithm follows a shared memory paradigm,
but totally respects the initial sequential algorithm, and deploys it
on a distributed architecture (ex: PC cluster) using the JavaSpace
virtual shared memory.

5. APPLICATION AND TESTBED

The proposed algorithm has been tested on a standard and widely
used AdaBoost application: the ”Viola-and-Jones” face detector
[9] (Referring to [9], the cascade architecture has not been im-
plemented in this work and the integral images are computed in
an initialization phase). In this application, a set of very simple
features such as Haar filters response, i.e. binary filters requir-
ing only additions on some connexe pixels intensity, are used to
detect faces in real time in an image sequence (typically 24 im-
ages/s). The weak classifier training process therefore consists
in computing the response (a scalar number) of a large number
of such Haar filters (typically more that 130, 000 filters) on a
large dataset (typically more than 10, 000 24x24-pixel images)
and in finding a threshold separating positive and negative exam-
ples according to this response at each round. The weak learner
is therefore a linear separator which input is the response of a
Haar filter. The filter (and its associated threshold) providing the
minimal weighted error is then selected. The algorithm is run so
as to achieve a 5% error rate on the training set (ξ = 0.05).

This particular application generates a lot of intermediate re-
sults that have to be kept in memory or serialized on disk if nec-
essary. Their number grows with the size of both the data set and
the feature set. Some local optimization for the serialization of
those results when required should be done by the weak learner
designer (i.e. the user), since it is highly application dependent.
Yet, this is not in the scope of this paper.

We experimented the boosting application to face detection on
a 32-PC cluster (P-IV, 3GHz, 1GB) interconnected with a Giga-

166

Candidate classifier
from worker 0

Candidate classifier
from worker 0

Candidate classifier
from worker 0

Candidate classifier
from worker 0

Clean up the
JavaSpace

Best classifier
(step #i-1)

take x 1

Looking for the
best classifier

Look up and discover
the JavaSpace

Classifiers range
for one worker

Classifiers range
for a worker

Distribute the
classifiers

write x P take x P

Master Worker 0 Worker P-1JavaSpace service
(on JavaSpace server machine)

Stop message

Return the strong classifier

error < ε

error > ε

Update weights
of input data

and remove the
best classifier if

in range

Look up and discover
the JavaSpace

Read examples
Example pre-processing

Read examples
Example pre-processing

Post stop message
write x 1

Computing
thread on W0

Waiting for stop messageread x P

Exit

write x Ptake x P

Stop watcher
thread on W0

In
it

ia
li

sa
ti

o
n

A
d

aB
o

o
st

 t
ra

in
in

g
 l

o
o

p
E

n
d

Get a worker task

Examples path
(input data path)

write x 1 read x P Read examples pathWorker
initialisation

Post the best
classifier

Best classifier
(step #i)

Inquire of the
best classifierwrite x 1 read x P

Create and initialize
classifiers

Add best classifier
to the strong one and

test the strong classifier

Train classifiers and
identify the best one

Figure 1. Details of the proposed parallel and distributed AdaBoost algorithm

bitEthernet network (two 24-port switches, with double intercon-
nection links). These PC were running under Linux, and we used
the SUN JVM and the SUN JavaSpace (named Outrigger). All
benches were run in exclusive mode (no other applications run-
ning on the cluster), and data files were previously stored on the
cluster PC disks.

6. EXPERIMENTAL PERFORMANCES

Figure 2 show the execution time decrease and the speed up in-
crease of the face detection training, applied to a fixed size prob-
lem (134, 736 elementary classifiers and a 1000 image dataset),
and implemented with a JavaSpace according to the distributed
AdaBoost algorithm introduced in section 4. This paralleliza-
tion uses P worker nodes and 2 other nodes to host the master
process and the JavaSpace services. First, we compare the paral-
lel execution time to a purely sequential version to adopt an end
user point of view, and we observe our parallelization leads to
a great decrease of the execution time up to 28 workers, and to
a speed up very close of the ideal speed up (S(P) = P) con-
sidering the number of worker nodes (P). Second, we compare
our parallelization using a JavaSpace with P worker nodes (and
2 other nodes) to a version using a JavaSpace with only 1 worker
node (and 2 other nodes). This speed up is still very good and
the parallelization seems to scale up to 28 workers. So, we have
investigated this scalability in detail.

Plot 3 illustrates the execution time of one round when both

the problem size and the number of processors increase. This
plot focusses on the scalability of the distributed approach.

• When processing a larger problem it is possible to main-
tain the round duration constant, increasing the computa-
tion resources. For example, this parallelization insures the
round execution time can remain close to 100s when train-
ing 134, 736 elementary classifiers per round on a database
growing from 1000 up to 8000 images, using from 3 up to
27 processors.

• Moreover, the required computation resources increases
linearly with the amount of computations resulting of the
increase of data. The algorithm of section 4 shows this
amount of computation grows linearly with the dataset size,
and figure 3 shows the required number of processors in-
creases linearly as well (approximately). So, our paral-
lelization does not introduce significant losses, and leads
to good scalability.

These results help the user to plan his/her experimental setup
without requesting systematically too much computing re-
sources.

7. CONCLUSION AND PERSPECTIVES

This paper presents a distributed framework allowing the use of
the AdaBoost algorithm for feature selection on a wide range of
candidate features. Results are presented on a face detection task

167

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

R
ou

nd
 ti

m
e

(s
)

Number of workers

T-sequential
T-JS 1-worker-node (+ 2 nodes)

T-JS P-worker-nodes (+ 2 nodes)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Sp
ee

d
up

Number of workers

S(P) = P
SU vs sequential

SU vs JS 1-worker

Figure 2. Execution time and speed up of the AdaBoost computation loop

 80

 90

 100

 110

 120

 1000 2000 3000 4000 5000 6000 7000 8000

R
ou

nd
 ti

m
e

(s
)

Dataset size (number of input images)

P=3
P=7 P=10

P=14 P=17 P=20 P=24 P=27

Figure 3. Execution time of one AdaBoost round when increas-
ing the number of processors accordingly to the dataset size

using a linear separator as a base learner and more than 130, 000
Haar filter responses as candidate features. This new distribution
strategy and implementation of the AdaBoost algorithm allows
the speed up of the selection in a large feature space, using a
local database for training. In the near future, we plan to use
this framework with more complex base learners (such as ANN
or SVM) and more numerous candidate feature vectors. Such
experiments are extremely time consuming and can only be en-
visioned thanks to parallel computing. Thus, this parallelization
does not track to process huge databases in production environ-
ment as in [6], but to improve the relevance of information ex-
tracted from existing databases. This is of great help in object
recognition applications, for example, where databases are un-
easy to obtain since they are often manually annotated.

From a pure parallel computing point of view, the next steps
will consist in experimenting our distributed architecture on
larger clusters, and to add some load balancing mechanisms (see
section 4) to run simultaneously on several clusters of Grid’5000
(the French experimental Grid). Moreover, we aim at experi-
menting some variants of the proposed parallel algorithm of sec-
tion 4, that would have no impact on a small cluster but should
improve performances on very large clusters and Grids.

It is likely that a C/C++ based parallel development (using
well known MPI library [8] or UPC language[1]) would lead
to lower execution times. But, development times would in-
crease, especially when non computer science experts will have
to develop and plug their own code in our distributed application
skeleton. So, we opted for Java and the JavaSpace framework,
that seem to be a good compromise between execution perfor-
mances and development time.

Acknowledgment:

Authors want to thank Region Lorraine that has supported a part
of this research.

8. REFERENCES

[1] T. El-Ghazawi and F. Cantonnet. UPC performance and
potential: A NPB experimental study supercomputing. In
SC02: Proceedings of the Super Computing conference, Bal-
timore, USA, 2002.

[2] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Princi-
ples, Patterns, and Practive. Pearson Education, 1999.

[3] Y. Freund and R. E. Schapire. Experiments with a new boost-
ing algorithm. In Proceedings of the International Confer-
ence on Machine Learning, pages 148–156, July 1996.

[4] V. Galtier. Distributing a n-body problem algorithm at large-
scale over a multi-sites grid using javaspace. In Cracow Grid
Workshop’06 (CGW’06), October 2006.

[5] L. Henrio, V. D. Doan, G. Boss, F. Baude, S. Vialle,
V. Galtier, and S.Bezzine. A fault tolerant and multi-
paradigm grid architecture for time constrained problems.
application to option pricing in finance. In e-Science 2006,
Amsterdam, Netherlands, dec 2006. IEEE CS Press.

[6] A. Lazarevic and Z. Obradovic. The distributed boosting
algorithm. In KDD ’01: Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery
and data mining, New York, NY, USA, 2001. ACM Press.

[7] F. Lozano and P. Rangel. Algorithms for parallel boosting.
In ICMLA ’05: Proceedings of the Fourth International Con-
ference on Machine Learning and Applications (ICMLA’05),
Washington, DC, USA, 2005. IEEE Computer Society.

[8] P.S. Pacheco. Parallel programming with MPI. Morgan
Kaufmann, 1997.

[9] P. Viola and M. Jones. Robust real-time object detection. In
Proceedings of the Second International Workshop On Sta-
tistical And Computational Theories Of Vision Modeling,
Learning, Computing, And Sampling, 2001.

168

