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Abstract— A probabilistic approach is proposed to manage
uncertainty when dealing with estimation in dynamical models.
The approach utilizes a linear integral transformation and relies
on McShane’s theory of stochastic differential equations. The
starting point is a knowledge-based model where the estimation
problem is set. The approach is quite general, it is explained
here by the light of an engineering application.

I. I NTRODUCTION

The starting point in the resolution of an estimation
problem is the modeling: mathematical description of the
problem. When the model comes from physics, it is said
knowledge-based model, as opposed to black-box model. A
model consists of a set of relations between some quantities
among them appears the one to be estimated. The term
“dynamical” in the title refers to the evolution in time of
some quantities, and means that the model comprises at
least one dynamical relation. In some model, the quantities
that when fixed cause the others to be uniquely determined
are called “model’s data” such as the imposed conditions on
the solution of an ordinary or partial differential equation,
observations, controls, parameters, etc. Often some of the
model’s data are unknown, this is expressed by the term
“uncertainty”. Prior information about some unknown can
be inquired. It will consist of statistics that approximate
some of its moments, if it is random or of some set where
it takes its values if it is deterministic. So the estimation
method has to come face to face with the propagation of the
information from the unknown model’s data to the quantity
to be estimated. The management of uncertainty within
dynamical models implies stochastic processes calculus;
McShane’s theory is used in this instance [1].

The application here is about the robust design for a
microaccelerometer, as regards to the uncertainties in the
fabrication process: manufacturing tolerances and errors.
Actually the effect of manufacturing tolerances and errors
in a microelectromechanical system (MEMS) is more
significant than in a macro-scaled one; a robust design
of a MEMS passes through the study of such an effect.
Here we assume that uncertainty in the fabrication process
concerns only the thicknessh of supporting beams in
the microaccelerometer. The latter is also constituted of a
vibrating plate, and electrodes for driving and sensing. It
is assumed that the vibrating plate oscillates only in one
direction, thex-axis. When an acceleration is applied the
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beams which are about they-axis flex; their deformation is
denotedd(t,y), 0 ≤ y ≤ l, where l is the beam length. It
is well known that the acceleration, which is the quantity
to be measured by the accelerometer, is proportional to the
plate displacementd(t, l). So the former is to be estimated
whenh varies in a given interval.
The model for this estimation problem is the following
nonhomogeneous linear partial differential equation with
homogeneous linear imposed conditions.

ρh
∂ 2d
∂ t2 (t,y)+ µ

∂d
∂ t

(t,y)+
γh3

12(1−ν2)

∂ 4d
∂y4 (t,y) = f (t,y)

(1)

d(0,y) =
∂d
∂ t

(0,y) = 0 (2)

d(t,0) =
∂d
∂y

(t,0) = 0 (3)

∂d
∂y

(t, l) =
∂ 3d
∂y3 (t, l) = 0 (4)

ρ, µ, γ, and ν are respectively the material density of the
plate, the air viscosity, Young’s modulus of elasticity and
Poisson’s ratio.f (t,y) is a forcing function such that

f (t,y) = λ sign

(

∂d
∂ t

(t,y)

)

, (5)

whereλ is a positive real. When we modelh by a random
variable of a given probability density on a given interval,
d(t, l) becomes a random process. In this instance, estimation
should concern its probability density.
The paper is organized as follows. Section 2 is the modeling
of the estimation problem by a stochastic differential equa-
tion (SDE). Section 3 is the density estimation, of Monte-
Carlo type using a demarginalization technique. Section 4
concludes the paper.

II. M ODELING

Consider the linear integral transformation

D(t) =
∫ l

0
K(y)d(t,y)dy. (6)

The relevant integral (6) is assumed to exist as well as a
convergent inversion formula. The functionK(y) is called
the kernel; it is to be constructed in the following. To apply
the transformation on (1), we have to calculate

∫ l

0
K(y)O(d)(t,y)dy



whereO(d)(t,y) = ∂4d
∂y4 (t,y). Partial integration gives

∫ l

0
K(y)O(d)(t,y)dy =

[

K
∂ 3d
∂y3 −K′ ∂ 2d

∂y2 +

K′′ ∂d
∂y

−K(3)d

]y=l

y=0
+

∫ l

0
K(4)(y)d(t,y)dy

Regarding the imposed conditions ond(t,y) in (3-4), if K(y)
has the following imposed conditions

K(0) = 0, (7)

K′(0) = K′(l) = 0, (8)

K(3)(l) = 0, (9)

then
∫ l

0
K(y)O(d)(t,y)dy =

∫ l

0
O(K)(y)d(t,y)dy. (10)

If K(y) is chosen so that

O(K)(y) = β4K(y), (11)

whereβ is some real, then (1) transforms into an ordinary
differential equation:

ρhD̈(t)+ µḊ(t)+
β4γh3

12(1−ν2)
D(t) = F(t), (12)

for the unknown integral transformD(t) of d(t,y), where
F(t) =

∫ l
0 K(y) f (t,y)dy. In the following solutions of (11)

for the different possible values ofβ permitting to satisfy
(7-9) are sought. We find the following discrete set forβ ,
and the corresponding solutionsK(y) of (11):

βi =
xi

l
,

Ki(y) = A(cos(βiy)−cosh(βiy))+

Ayi(sin(βiy)−sinh(βiy)),

where (xi,yi) is a point of the plane(x,y) ∈ R2 where
y = tan(x) andy = − tanh(x) intercept, andA is some real.

Now, the functionK(y) may be superimposed to construct
a solution for (1-4), i.e. a solution which matches the given
forcing function, boundary conditions and initial conditions.
In fact, by construction this function does match the given
boundary conditions (3-4); in addition,{Ki(y)}i form an
orthogonal set, convenient for expandingf (t,y) and d(t,y)
in the form

f (t,y) ≈ ∑
i∈I1

fi Ki(y), fi =
(Ki, f )
(Ki,Ki)

, (13)

d(t,y) ≈ ∑
i∈I2

di Ki(y), di =
(Ki,d)

(Ki,Ki)
, (14)

where (u1,u2) =
∫ l

0 u1(y)∗u2(y)dy (* denotes the complex
conjugate). (13) and (14) are approximations tof (t,x) and
d(t,x) respectively, in terms of orthogonal functions, in the
least mean-square error sense. Note that the coefficients of

the expansion are independent of the number of terms in the
sum.
We construct a solution for (1-4) from each trial function
K(y), i.e. considering just one coupleβ , K(y) as follows:

d(t,y) =
(K,d)

(K,K)
K(y); (15)

asK(y) is real,(K,d) =
∫ l

0 K(y)d(t,y)dy = D(t). So

d(t,y) =
D(t)

(K,K)
K(y), (16)

and this constitutes the inverse formula of the integral
transformation (6).
Initial conditions (2) imply thatD(0) = 0, andḊ(0) = 0. In
addition, (16) and (5) imply that

f (t,y) = λ sign(Ḋ(t)K(y)),

and

F(t) = λ sign(Ḋ(t))
∫ l

0
K(y) sign(K(y))dy.

We recall that the quantity of interest is the plate displace-
mentd(t, l)

d(t, l) =
D(t)

(K,K)
K(l),

when the beam thicknessh varies in a given interval.

If we set X1(t) = D(t) and X2(t) = Ḋ(t), we obtain
the following SDE as a model for our estimation problem:

Ẋ1 = X2,

Ẋ2 = −
β4γh2

12ρ(1−ν2)
X1

−
µ
ρh

X2 +
λ

∫ l
0 K(y) sign(K(y))dy

ρh
sign(X2),

X1(0) = 0, X2(0) = 0, (17)

whereh is a random variable of a given probability density.

III. E STIMATION

The objective of this section is to estimate the probability
density functionsp(t,ε) and p(t,υ) relative respectively to
the stochastic processesX1 andX2 in (17), at some timet.
Consider the Euler discretization of the SDE (17) at instants
tn. It is worth noting that discretization instants are not
necessarily equally spaced.

X1
n+1−X1

n = (tn+1− tn)X
2
n ,

(18)

X2
n+1−X2

n = −
β4γh2

12ρ(1−ν2)
(tn+1− tn)X

1
n −

µ
ρh

(tn+1− tn)X
2
n +

λ
∫ l

0 |K(y)|dy
ρh

(tn+1− tn) sign(X2
n ),

(19)

(18) implies that

pX1
n+1|X

1
n ,X2

n
= δ

(

X1
n+1−

(

X1
n +(tn+1− tn)X

2
n

))

.



(19) implies that

pX2
n+1|X

1
n ,X2

n
=

1
∣

∣

∣2c1h− c2
h2

∣

∣

∣

ph





h=h(X2
n+1)

, (20)

where ph is the probability density ofh,

c1 = −
β4γ

12ρ(1−ν2)
(tn+1− tn)X

1
n ,

and

c2 = −
µ
ρ

(tn+1− tn)X
2
n +

λ
∫ l

0 |K(y)|dy
ρ

(tn+1− tn) sign(X2
n ).

(20) is the formula of the change of variables, as when
conditioned onX1

n andX2
n , the random variablesX2

n+1 andh
are related by one-to-one transformation

X2
n+1 = c1h2 +

c2

h
+ c3,

where c1, c2 are given above andc3 = X2
n . We assume

a uniform distribution forh on the interval[hinf ,hsup] (it
represents manufacturing tolerances and errors):

ph(h) =
1

hsup−hinf

On the other hand, we have

pX1
n+1,X2

n+1
(ε,υ) = E

(

pX1
n+1,X

2
n+1|X

1
n ,X2

n
(ε,υ)

)

= E
(

pX1
n+1|X

1
n ,X2

n
(ε)pX2
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1
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n
(υ)

)

= E



δ
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h=h(υ)

(21)

whereE is the mathematical expectation. Note thatc1 and
c2 are functions of the random variablesX1

n and X2
n . So

pX1
n+1,X2

n+1
may be approximated by empirical mean of the

expression in (21), with respect to theX1
n and X2

n . Samples
of theses random variables are obtained from (18-19) and
from samples ofh. The densitiespX1

n+1
and pX2

n+1
are then

derived by marginalization.

IV. I LLUSTRATION

In order to illustrate the material of the previous
sections, the following values are assumed:ρ = 2320,
γ = 170e9, ν = 0.25, µ = 1000,λ = −1e6, hinf = 0.8e−6,
hsup = 1.2e − 6, l = 100e − 6 (SI Units). The plate
displacement and velocity for a realization ofh are reported
in the figure 1 and 2 respectively, corresponding to ten
natural periods of the system (a period amounts around
2e − 6 second, it is denotedT0). Figures 3 and 4 show
approximation of pX1(t,ε) and pX2(t,υ), at some fixed
instantt, obtained by classical Monte Carlo technique. 3000
simulations of (18-19) during[0, t] are needed for such
approximation. This is our unique reference to evaluate

precision of our estimation; it is also to be compared with
the latter in terms of simulation cost (time and memory).

According to the notation of section 3, let’s taketn+1 = t
and simulate (18-19) at instantst0 < t1 < ... < tn < t. For
t − tn = T0/10 and just 10 simulations, we obtain the
approximations ofpX1(t) and pX2(t) shown in figures 5
and 6 respectively. For 60 simulations we obtain the result
shown in figures 7 and 8. As suggested, the marginalization
of formula (21) onυ accompanied with empirical mean
formula, give an approximation ofpX1(t). Up to the inverse
of the number of simulations, it is a Dirac series marked on
the figures 5 and 7 by symbol+. By the same reasoning
the approximation ofpX2(t) shown in figures 6 and 8, at
some point of its support is, up to a normalization constant,
the sum of point ordinates relative to every small curve
whose support contains that point (these small curves appear
clearly if we zoom in the plot). Even with such a small
number of simulations of (18-19), and thus highly reduced
time and memory consumption, the result conforms with
the reference and proves to my satisfaction the performance
of the approach.
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Fig. 1. Plate Displacement
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Fig. 2. Plate Velocity

V. CONCLUSION

A probabilistic approach is proposed to manage uncer-
tainty for estimation in dynamical models, when illustrated
on an engineering application. The crucial task within our
approach is the modeling: transformation of the knowledge-
based model, where the estimation problem is set, to a
stochastic differential equation. Then, approximating the
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Fig. 3. Monte Carlo Approximation ofpX1(t)
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Fig. 4. Monte Carlo Approximation ofpX2(t)
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Fig. 5. Approximation ofpX1(t)

probability density of its solution achieves the estimation.
For modeling, an original operational technique is used; the
latter does not apply universally, but is often likely to work.
Density approximation is of Monte-Carlo type and uses a
demarginalization formula. Finally, it is worth noting that the
obtained SDE is linear, but this does not affect the generality
of our approach.
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