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ABSTRACT

This paper deals with the problem of adaptive reconstruc-
tion and identification of AR processes with randomly miss-
ing observations. A new real time algorithm is proposed. It
uses combined pseudo-linear RLS algorithm and Kalman
filter. It offers an unbiased estimation of the AR parameters
and an optimal reconstruction error in the least mean square
sense. In addition, thanks to the pseudo-linear RLS identi-
fication, this algorithm can be used for the identification of
non stationary AR signals. Moreover, simplifications of the
algorithm reduces the calculation time, thus this algorithm
can be used in real time applications.

1. INTRODUCTION

In many practical situations, periodically sampled signals
with missing observations may be encountered. This is the
case, for example, of errors in transmission, or of temporary
unavailability of measurement. It is also the case, in coding
of audio signals or images, for compression purposes.

Several methods have already been developed for the
processing of AR signals with missing data. They are gen-
erally of two types:

• Off line methods that use all available data. They
are developped for spectral estimation such as in [1],
for identification purposes such as in [2, 3, 4], or for
reconstruction such as in [5]. In [3], Jones used a
Kalman filter to calculate the exact likelihood func-
tion for unequally spaced data. Model’s parameters,
that most fits the data, are then estimated by a non
linear optimization. Isaksson [2], proposed an EM
algorithm equivalent to a maximum likelihood algo-
rithm but much faster. In [5], the estimates of the un-
known samples are obtained by minimizing the sum
of squares of the residual errors, it involves estimates
of the autoregressive parameters. In [4], the identi-

fication of ARX models from incomplete data using
least squares is studied.

• On line adaptive methods such as in [6, 7, 8, 9, 10].
In [8], an LMS-like algorithm for simultaneous re-
construction and identification is developed. In [9],
the pseudo-linear RLS algorithm, an adaptation of the
RLS algorithm to the case of signals with missing
data, is derived. However these two algorithms con-
verge toward biased parameters. In [10], we proposed
an LMS-like algorithm based on the incomplete past
predictor [11] for simultaneous optimal identification
and reconstruction of AR processes subject to miss-
ing data. However, this algorithm is quite time con-
suming. In [6], the problem of recursive estimation
of the output in missing-data situations is addressed.
In [7], Isaksson derives a recursive EM algorithm for
the identification of AR processes subject to missing
data, based on the offline version of the one described
in [2]. However, at each time, the inversion of a ma-
trix is required to update the parameters. Therefore,
it suffers from a high computational complexity.

In many applications, such as digital communications
or systems tracking, on line processing is necessary. We are
interested here in on line adaptive reconstruction and identi-
fication of autoregressive signals that can be non stationnary
with randomly missing observations. The loss of samples
process follows a Bernoulli law independent of the signal.
In the following, we begin by presenting the RLS identifica-
tion algorithm [12] and its adaptation to the case of missing
observations [9, 6]. In a second part, the prediction of AR
processes with missing observations using state space rep-
resentation and Kalman filtering is discussed. A new adap-
tive algorithm for simultaneous reconstruction and identi-
fication, using combined RLS-like algorithm and Kalman
filter, is proposed in the third part. This algorithm is sim-
plified in order to become very fast. Finally, an example



illustrates the performances of the new recursive algorithm.
It is compared to the previously proposed LMS-like algo-
rithm based on the incomplete past predictor [10], and to
the pseudo-linear RLS algorithm.

2. PRELIMINARIES

Let {xn} be an AR process of orderL with parametersak.
It satisfies the following difference equation:

xn = a1xn−1 + . . . + aLxn−L + εn. (1)

Where{εn} is the innovation process, a white noise of vari-
anceσ2. The loss process is modeled by an i.i.d binary
random variable{cn}, cn = 1 if xn is available, otherwise
cn = 0. The probability to measurexn is:

P{cn = 1} = p = 1 − q. (2)

Let {zn} be the reconstruction of the process{xn} subject
to missing data. It is defined as:

zn =

{

xn if xn is available, i.e.,cn = 1
x̂n otherwise,

(3)

wherex̂n is the prediction ofxn. In order to identify, in
real time, the AR process subject to missing observations,
we propose to use the pseudo-linear RLS identification al-
gorithm.

3. PSEUDO-LINEAR RLS ALGORITHM

The RLS algorithm [12] presents the advantages of the sim-
plicity, the fast convergence and the fast adaptivity in the
case of non stationary processes. It is applied to linear sys-
tems in terms of the parameters. For an AR process, the
RLS identification algorithm equations can be written:

Ψn+1 = xn = [xn . . . xn−L+1]
>

, (4a)

x̂n+1 = Ψ>
n+1ân, (4b)

γn+1 =
GnΨn+1

λ + Ψ>
n+1GnΨn+1

, (4c)

ân+1 = ân + γn+1(xn+1 − x̂n+1), (4d)

Gn+1 =
1

λ
(Id − γn+1Ψ

>
n+1)Gn (4e)

whereân+1 are the estimated parameters at timen + 1, Id

the identity matrix andλ ≤ 1 is a forgetting factor that helps
to the fast adaptivity of the parameter estimation in the case
of non stationary signals.

In the case of missing observations, the regression vec-
tor (4a) cannot be constructed with only available samples.
Missing data are replaced by their predictions, i.e.,Ψ̂n+1 =

zn = [zn . . . zn−L+1]
>. This leads to a pseudo-linear algo-

rithm where the regression vector depends on the model’s
parameters.

Moreover, the prediction error cannot be calculated at
the instants where the data are missing. The quadratic cost
function to minimize is now the mean of the reconstruction
error at the instants where the data is available. It can be
written as:

J = (x − x̂)>Q>Q(x − x̂), (5)

wherex andx̂ areN -vectors containing respectively the sig-
nal and its prediction, andQ is anNxN diagonal matrix,

with Q =







c1 0
. . .

0 cN






.

The prediction errors at the times of missing data, i.e.cn =
0, are not taken into account in the quadratic cost function
thanks to the weighting matrixQ.

Neglecting the dependence in the parameters of the re-
gression vector, the pseudo-linear RLS identification algo-
rithm is given by [9]:

Ψ̂n+1 = zn = [zn . . . zn−L+1]
>

, (6a)

x̂n+1 = f(ân, zn), (6b)

γn+1 =
cn+1GnΨ̂n+1

λ + Ψ̂>
n+1GnΨ̂n+1

, (6c)

ân+1 = ân + γn+1(xn+1 − Ψ̂>
n+1ân), (6d)

Gn+1 =
1

λ
(Id − γn+1Ψ̂

>
n+1)Gn (6e)

wheref represents the samples prediction method as a func-
tion of the model parameters and the past available and pre-
dicted samples.

Albertos et al. [6] were interested in the identification
and output prediction of SISO linear systems in the case of
dual-rate scarce sampling. To predict a sample, they used,
in (4b), the regression vector completed by the prediction of
the missing data (6a). The predicted sample is then,x̂n+1 =
Ψ̂>

n+1ân. This prediction approach was also used in [1, 2,
5, 8]. It leads to biased estimates using the least squares
estimation. The bias was calculated by Wallin et al. [4].
Indeed, they studied the problem of identification of ARX
models with missing observations using the least squares.
They showed that least squares estimate of the parameters
using any prediction of the data is unbiased if the following
holds:

E{Ψ̂>V } = 0. (7)

whereΨ̂ is the matrix formed by all the regressorsΨ̂n and
V = z − Ψ̂a is the equation error. Thus, for unbiased esti-
mation of the parameters, a suitable predictor must be used.
An optimal predictor in the least mean squares sense verifies
(7).



Bondon [11] proposed an expression for the optimal pre-
dictor of an AR process with incomplete past, however this
predictor is not recursive. Other prediction approaches use
state space representation of the signal and a Kalman filter
for recursive prediction [2, 6]. In [2], a state space represen-
tation with stochastic disturbances in the observation is pro-
posed. In [6], the effect of unmeasured outputs is modelled
by a disturbance of infinite variance on the observation. The
drawback of this approach is the computational complexity.
In addition, the model used is not appropriate to an AR pro-
cess. In [13], a Kalman filter for the state estimation of jump
linear systems where the discrete transitions are modeled as
a Markov chain is presented. In the following, a particular
form of the previous Kalman filter is presented, it is used
for the case of recursive optimal prediction of AR processes
subject to random missing observations.

4. PREDICTION USING A KALMAN FILTER

4.1. State-space representation

Let the observation process{yk} be defined as:

yn = cnxn =

{

xn if xn is available,
0 otherwise,

(8)

Thus,yn can be regarded as the measurement ofxn subject
to missing data.

For the AR process{xn} with missing observations pre-
sented in section 2, we propose the following state space
representation:

{

xn+1 = A xn + εn [1 0 . . . 0]
>

yn+1 = c>n+1 xn+1

(9)

whereA =











a1 . . . . . . aL

1 0 0
. . .

...
0 1 0











is aLxL matrix and

xn =







xn

...
xn−L+1






, cn =











cn

0
...
0











areL-vectors.

4.2. Kalman Filter

The predicted and filtered estimate will be denoted byx̂n+1|n

andx̂n+1|n+1, respectively.Pn+1|n andPn+1|n+1 are the a
priori and a posteriori prediction error covariance matrix,
respectively.Kn+1 is the Kalman filter gain.

The Kalman filter equations can be found in, e.g. [12].
In our case, there is no disturbance in the observation, the
Kalman filter equations resume to:

Pn+1|n = APn|nA> + Rε, (10)

where,Rε = σ2
ε [1 0 . . . 0]

>
[1 0 . . . 0].

Kn+1 =

{

P
n+1|ncn+1

c>
n+1

P
n+1|ncn+1

if xn+1 is available

0 otherwise,
(11)

Pn+1|n+1 = (Id − Kn+1c>n+1)Pn+1|n, (12)

x̂n+1|n+1 = x̂n+1|n + Kn+1(yn+1 − ŷn+1|n), (13)

where,
x̂n+1|n = Ax̂n|n, (14)

and
ŷn+1|n = c>n+1x̂n+1|n. (15)

Due to the state space representation chosen, the previous
Kalman filter can be simplified. Indeed, if, at timen + 1,
xn+1 is available, i.e.,cn+1 = 1, the termPn+1|ncn+1 is
equal to the first column ofPn+1|n and(c>n+1Pn+1|ncn+1)

−1

is a scalar equal to the first term of the matrixPn+1|n. Con-
sequently the Kalman gainKn+1 is calculated by dividing
each element of the first column ofPn+1|n by the first ele-
ment ofPn+1|n, which requiresL multiplications instead of
2L(L + 1) multiplications. In addition, we deduce that the
first element ofKn+1, Kn+1(1), is always equal to1 if the
data is available. Recalling the filter’s equation system (13),
the first equation of it gives that when a sample is available:

x̂n+1|n+1 = x̂n+1|n + Kn+1(1) (yn+1 − ŷn+1)

= yn+1 = xn+1.

An observed sample is then unchanged by the Kalman fil-
ter. Otherwise, ifxn+1 is missing, i.e.,cn+1 = 0, then
Kn+1 = 0 and the prediction error covariance matrix does
not change a posteriori. This is verified by equation (12):
for Kn+1 = 0, we getPn+1|n+1 = Pn+1|n. The predicted
valuex̂n+1|n is not filtered at timen + 1, andx̂n+1|n+1 =
x̂n+1|n. However, this value is corrected in the subsequent
L steps due to the Kalman filtering of the state when a data
is available, corrective terms are added to that prediction. It
can be expressed as:

x̂n+1|n+t = x̂n+1|n +

t
∑

i=1

Kn+i(i)
(

yn+i − ŷn+i|n+i−1

)

.

(16)
Since we are interested in real time reconstruction, the cor-
rected prediction̂xn+1|n+t can not be used for the recon-
struction, it is only used for the prediction of subsequent
samples. Thus{zn}, the reconstruction of the process, is
defined as:

zn =

{

xn if xn is available, i.e.,cn = 1
x̂n|n−1 otherwise,

(17)



5. COMBINED RLS-LIKE ALGORITHM AND
KALMAN FILTER

For a real time identification and optimal reconstruction, we
propose here to use the proposed Kalman filter as a predic-
tor with the pseudo-linear RLS algorithm. These two algo-
rithms are combined. The Kalman filter uses at each itera-
tion the AR parameters, estimated using the pseudo-linear
RLS algorithm, to predict the new state. Hence, at time
n + 1, the first line of the matrixA is replaced bŷa>

n , the
vector of the parameters estimated at timen. The matrix is
then namedAn+1. If a new samplexn+1 is available, the
pseudo-linear RLS algorithm assigns the Kalman filter pre-
dictions,ŷn+1|n andx̂n|n, to x̂n+1 andΨ̂n+1 respectively,
to update the model parameters. The optimal reconstruc-
tion is zn+1 = x̂n+1|n+1. The resulting algorithm can be
resumed, at timen + 1, as follows:

An+1 =











ân,1 . . . . . . ân,L

1 0 0
. . .

...
0 1 0











,

Pn+1|n = An+1Pn|nA>
n+1 + Rε,

x̂n+1|n = An+1x̂n|n

Ψ̂n+1 = x̂n|n

ŷn+1|n = cn+1x̂n+1|n = c>n+1x̂n+1|n

(18)

If xn+1 is available, i.e.cn+1 = 1,

γn+1 =
GnΨ̂n+1

λ + Ψ̂n+1GnΨ̂n+1

, (19a)

Gn+1 =
1

λ
(Id − γn+1Ψ̂

>
n+1)Gn, (19b)

ân+1 = ân + γn(yn+1 − ŷn+1|n), (19c)

Kn+1 = Pn+1|ncn+1(c>n+1Pn+1|ncn+1)
−1, (19d)

Pn+1|n+1 = (Id − Kn+1c>n+1)Pn+1|n, (19e)

x̂n+1|n+1 = x̂n+1|n + Kn+1(yn+1 − ŷn+1|n) (19f)

Else ifxn+1 is absent,cn+1 = 0, the predicted state,x̂n+1|n,
is not filtered by the Kalman filter, and the parameters are
not updated using the RLS-like algorithm,

Kn+1 = 0, (20a)

Pn+1|n+1 = Pn+1|n, (20b)

Gn+1 =
1

λ
Gn, (20c)

γn+1 = 0, (20d)

x̂n+1|n+1 = x̂n+1|n, (20e)

ân+1 = ân. (20f)

This algorithm uses the Kalman filter to reconstruct the
signal in the least mean square sense, the use of that predic-

tor with the pseudo-linear RLS algorithm offers a non bi-
ased parameter estimation and a fast adaptation in the case
of non stationnary AR processes with missing observations.
In addition, it is simple and fast.

6. EXAMPLE

In this section, the proposed algorithm, the pseudo-linear
RLS algorithm [9] and the LMS-like algorithm based on the
incomplete past predictor [10] are compared. The test signal
used is a non stationary AR(2) signal generated over5.104

samples. The parameters of the signal are[1.5,−0.7] for the
first 25.103 samples and[1,−0.5] for the last25.103 sam-
ples. The Bernoulli’s probability of sample loss isq = 0.3.
For the two first algorithms, the forgetting factor used is
λ = 0.999. For the LMS-like algorithm,µ = 14.10−5, it is
an empirical value, a higher value may cause a divergence
in the parameters estimation especially for a Monte Carlo of
regenerations of the signal and the loss pattern. The perfor-
mances of these algorithms are summarized in table 1.bi is
the bias existing in the estimation of a parameter andσ2

i is
the variance of an estimated parameter. The MQRE is the
normalized mean quadratic reconstruction error. The nor-
malization is done with respect to the power of the signal.
The CPU is the computation time (in seconds) required to
simulate each one of the algorithms for the above test signal,
using MATLAB on a 3 GHz processor.

Table 1. Comparison of the three algorithms performances
Algorithm b1 b2

Proposed algorithm 0.0006 0.003
Pseudo-linear RLS 0.1811 0.151
LMS-like algoritm 0.0099 0.005

Algorithm σ1 σ2

Proposed algorithm 0.014 0.015
Pseudo-linear RLS 0.018 0.017
LMS-like algoritm 0.035 0.035

Algorithm MQRE CPU
Proposed algorithm 0.066 1.5
Pseudo-linear RLS 0.073 1.3
LMS-like algoritm 0.068 18.8

The figure 1 shows the instantaneous mean value of the
estimated parametera1 with the three algorithms for a Monte
Carlo of 1000 regenerations of the signal and the loss pat-
tern.

Figure 1 and Table 1 show that the proposed algorithm
and the LMS-like algorithm based on the incomplete past
predictor converge, in the mean sense, toward unbiased pa-
rameters which is not the case for the pseudo-linear RLS al-
gorithm. Moreover, referring to figure 1, the proposed algo-
rithm and the pseudo-linear RLS algorithm show the same
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Fig. 1. Estimation ofa1 with the three algorithms.

fast convergence in comparison to the LMS-like algorithm.
The rate of convergence of the LMS-like algorithm depends
on the choice ofµ, indeed, for a higherµ, the convergence
is faster, however, the variance of the estimated parameters
becomes higher, and the algorithm may diverge.

Table 1 shows that the proposed algorithm and the LMS-
like algorithm offers the smallest MQRE in comparison to
the pseudo-linear RLS algorithm. However, the LMS-like
algorithm is computationally expensive in comparison to
the other algorithms and simulations show that the CPU
time increases withq. Indeed, for the prediction using the
incomplete past predictor, the inversion of a matrix is re-
quired at each time, moreover the size of the matrix de-
pends highly on the loss scheme and may become arbitrarily
high for large q. The pseudo-linear algorithm shows the best
computational time, it is slightly faster than the proposedal-
gorithm. Moreover, the proposed algorithm and the pseudo-
linear RLS algorithm show approximatively the same small
variance of the estimated parameters in comparison to the
LMS-like algorithm. This variance increases with the for-
getting factorλ in the case of RLS identification algorithms,
and withµ in the case of LMS identification algorithms.

7. CONCLUSION

A new adaptive algorithm for simultaneous optimal recon-
struction and identification of an AR process with missing
observations is described. It is based on the pseudo-linear
RLS identification algorithm where the predictor used is a
Kalman filter. This algorithm allows, at the same time, an
unbiased estimation of the parameters, and an optimal re-
construction in the least mean square sense. In addition,
due to simplifications, this algorithm is fast. Its complex-
ity is O(L) for a missing sample andO(L3) when a sam-

ple is available and is thus less computationnaly intensive
than the recursive EM algorithm [7] and the LMS-like al-
gorithm based on the incomplete past predictor [10]. More-
over, thanks to RLS identification, this algorithm shows fast
convergence toward the true parameters, which is necessary
for the processing of non stationary signals.
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