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Bootstrap Methods for a Measurement
Estimation Problem

José I. De la Rosa, Member, IEEE, and Gilles A. Fleury

Abstract—In this paper, a new approach for the statistical
characterization of a measurand is presented. A description of
how different bootstrap techniques can be applied in practice to
estimate successfully a measurand probability density function
(pdf) is given. When the direct observation of a quantity of in-
terest is practically impossible such as in nondestructive testing,
it is necessary to estimate such quantity, which is also called
measurand. The statistical characterization of any estimator is
important, because all the uncertainty features can be accessible
to qualify such estimator. On the other hand, most of the time,
the large-scale repetition of an experiment is not economically
feasible, so that the Monte Carlo methods cannot be used directly
for uncertainty characterization. Bootstrap methods have proved
to be a potentially useful alternative. Moreover, a biased bootstrap
recent technique, with which robust parameter estimates are ob-
tained, is used. This technique is extended to be used in measurand
estimation. An extended nested bootstrap improvement for the
measurand pdf estimation is also presented. These techniques
are applied to a realistic multidimensional measurand-estimation
problem of groove dimensioning using remote field eddy cur-
rent inspection. Measurand uncertainty characterization using the
bootstrap techniques generally gives an accurate pdf estimation.

Index Terms—Bootstrap, indirect measurement, Monte Carlo
simulation, nonlinear regression, probability density function
(pdf) estimation.

NOTATIONS AND ACRONYMS

a, a, A Scalar, vector, and matrix.
a�, A� Transposed vector and matrix.
yi, y Vector of observations (data).
xi, x Experimental protocol or instrumental para-

meters.
f(x,θ), f(·) Model function parameterized by x and θ.
θ Unknown parameter vector.
g(θ), g(·) Measurand and parameter functional relation-

ship.
Gk(θ), Gk(·) Bijective relation between measurand and pa-

rameters.
℘(θ) Parameter distribution.
℘(m), ℘(m) Measurand distribution.
℘(e) Errors or noise distribution.
θ̂, θ̄ Parameter estimator and real parameters.
p Dimensions of vector θ.
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n Dimensions of vectors y, x, and e.
êi, ê Residuals vector.
℘̂e, ℘̂(e) Residuals empiric distribution.
e∗i , e∗ Bootstrap residuals vector.
y∗i , y∗ Bootstrap fictive data.

θ̂
∗

Bootstrap parameter estimators.
m̂∗, m̂∗ Bootstrap measurand estimator.
℘(m̂∗), ℘(m̂∗) Bootstrap measurand distribution.
℘(θ̂

∗
) Bootstrap parameter distribution.

hi, wi Vectors of weights used by the external and
the biased bootstraps.

ξ(ε) Breakdown function.
γ(wi) Data dispersion measure.
∆H(·) Hellinger’s distance.
B Number of simulations (iterations) for the

bootstrap.
B1, B2 Number of simulations for the internal and the

external bootstraps.
BBQ Biased bootstrap with quadratic norm func-

tion.
BBH Biased bootstrap with a Huber-like norm

function.
BOOT Bootstrap procedure.
NLS Nonlinear least squares estimation.
pdf Probability density function.
PMC Primitive Monte Carlo.
RFEC Remote field eddy current.

I. INTRODUCTION

IN MANY industrial applications, direct access to a measur-
and (m) is not possible. Yet, as an estimation of the measur-

and is needed, the process must be treated as an inverse problem
[1]. The characterization of the whole statistical knowledge
about this quantity of interest m (quantity to be measured) is
naturally given by the pdf ℘(m). Most of the time, the large-
scale repetition of an experiment is not economically feasible.
Therefore, Monte Carlo methods cannot be used. Bootstrap
methods have proven to be a potentially useful alternative in
accessing ℘(m). Moreover, it is well known in practice that
every observation in a data set does not play the same role
in determining estimates, tests, or other statistics. This is due,
for example, to a certain failure in the data acquisition or
transmission processes. Such data are called outliers. When
outliers are present in the data, a robust nonlinear regression
strategy called biased bootstrap [2], [3] could be used for
parameter and measurement estimation. The aim of this paper is
then to appraise the measurand pdf using bootstrap techniques
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and to compare the results between different possible bootstrap
schemes that have been implemented in [4] and [5]. In such
a problem, difficulties are typically encountered when the size
of the random sample is too small, and so asymptotic methods
do not apply, or, more generally, when the distribution of the
statistic of interest cannot be analytically expressed.

Bootstrap techniques were introduced by Efron [6] and have
been mainly developed for the estimation of confidence in-
tervals where few data are available [7]–[9]. Zoubir has used
bootstrap techniques in a wide range of signal processing
applications and he shows their potentially usefulness in [10].
The problem of uncertainty characterization of a measurand has
been treated in a nonlinear Gaussian framework in [11] and
[12]. However, multidimensional estimation problems are very
difficult to deal with, since increasingly complex differentials
and integrals have to be solved numerically. Furthermore, when
the error distribution is unknown (i.e., noise) in a given appli-
cation, it is still more difficult to solve the estimation problem.
This complex problem of measurand pdf estimation with such
more realistic assumptions has been approached in papers [4],
[5], [13], obtaining promising results. In the case of the paper
by Brahim-Belhouari et al. [13], the error limit bounds must be
known, and the proposed method is deterministic.

The measurand uncertainty characterization using bootstrap
techniques can be generally driven by the pdf estimation (sto-
chastic method) in a nonlinear framework with unknown noise
distribution (knowledge of limit bounds is not necessary) and
with limited observed data. Section II presents the general for-
mulation of the problem of measurand estimation. The biased
bootstrap procedure for robust parameter estimation and its
extension for measurand estimation are described in Section III,
jointly with classical nonparametric bootstrap techniques. We
also show how to improve uncertainty characterization when
using the latter technique. A complex measurand-estimation
problem of groove dimensioning using RFEC inspection is
described in Section IV. Finally, some concluding remarks are
given in Section V.

II. PROBLEM STATEMENT

In many applications, unknown quantities m have to be
estimated from a vector of observed values y (e.g., the direct
observation of a quantity of interest is practically impossible).
This may be encountered in several domains such as nonde-
structive testing or so-called indirect measurement. It is due to
the impossibility of using transducers to measure m directly
for any reason of harsh environment, long distance, etc. A
measurand m can be defined as the best way to take advantage
of the information given by the observed data y. The first step
of a measurand-estimation procedure consists in modeling the
physical phenomenon under study. Therefore, building a model
becomes a goal on its own. Indirect measurement systems can
be formalized by two equations [1].

1) The observation equation is given by the classical non-
linear regression model:

yi = f(xi,θ) + ei, i = 1, . . . , n (1)

where {xi} is an experimental design vector, assuming
that f(·) is a known model structure with unknown pa-
rameter vector θ (dimension p). Some fitting technique
to estimate θ can be used, e.g., nonlinear least squares,
maximum likelihood, M estimator [14], etc.

2) The measurement equation (which is a nonlinear
function of θ)

m� = g�(θ), � = 1, . . . , r, with m = {m�}r
�=1. (2)

The measurand is usually defined by a functional of the para-
metric model m = G(f) (i.e., derivation, integration, interpo-
lation, extrapolation, etc.). This relation is then transformed
into a function of the parameters θ such as in (2). It is sup-
posed that the measurand(s) depends on at least one of the
parameters (∀�,∃k such that ∂g�/∂θk 	= 0). The final goal is
therefore to obtain an accurate statistical characterization of the
quantity(ies) of interest m (measurands).

III. BOOTSTRAP IN NONLINEAR REGRESSION AND

MEASURAND ESTIMATION

The first goal is then to determine the sampling distrib-
ution ℘̂

θ̂
of θ̂. Efron [6], Freedman [15], Hinkley [9], and

Wu [16] introduce and discuss many of the properties of
the bootstrap method in classical regression analysis. When
only reduced assumptions are made concerning the pdf of
the errors ei (for example, assumptions could be that the
error random variables belong to an independent identically
distributed (i.i.d.) sequence of unknown law), bootstrap tech-
niques can help to approximate the error pdf. These tech-
niques are based on resampling a vector of a few observed
residuals (see Section III-B), then a Monte Carlo procedure
gives an estimation of the parameter pdf, and finally the pdf
of the measurand can be approximated by its empirical equiv-
alent. The first step for estimating the empirical density of
the errors ℘̂e(·) is working with residuals. The residuals are
computed for all observed data yi using the proposed model
f(·). Then, a fitting technique is used to obtain an estimation
of θ. Since the real density ℘e(·) is unknown, it is recom-
mended to use a robust parameter and measurand estimation.
Robust nonlinear regression deals with outlier accommoda-
tion. In order to accommodate points with large residuals,
a biased bootstrap [3] technique that assures robustness has
been used.

A. Biased Bootstrap Parameter Estimator

A biased bootstrap empirical method proposed in [3] is used
for robust parameter estimation. Such a method identifies and
downweights those data values that exert undue influence on
a statistical estimator. The selected weights arise as resampling
probabilities in a version of the weighted bootstrap and lead to a
biased version of the uniform bootstrap. This approach does not
need density estimation or the specification of a parametric fam-
ily of distributions. The biased bootstrap requires two inputs: a
distance measure between the uniform and the biased bootstrap
distributions and some constraints. The distance measure used
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(e.g., power divergence), is described in [3] and is given by
Dρ = ξ, where ξ is given by the following breakdown function:

ξ(ε) =
{

[ρ(1 − ρ)]−1 {1 − (1 − ε)1−ρ
}
, if ρ 	= 1

− log(1 − ε), if ρ = 1
(3)

where ρ is the exponent of the power divergence, and ε is
the initial breakdown point. It seems reasonable to choose
an initial breakdown point ε in the range 0 < ε < 1/2. In
practice, Hall and Presnell [3] suggest taking ε ∈ (0.01, 0.15),
and ρ varies in the range 0 < ρ ≤ 1, including the Hellinger
and Kullback–Leibler distances. The constraints are given by
the measures of location and dispersion. The multivariate
location estimation for a given bivariate sample {Xi, Yi} is
obtained using

θ̂ = arg min
θ

n∑
i=1

wiϕ(ei) (4)

where the wi are positive weights and ϕ(ei) can be the
quadratic norm function (BBQ)

ϕ1(ei) = (yi − f(xi,θ))2 (5)

or, to assure completely the robustness, the Huber-like norm
can be used, as described in [12], and is given by the following
equation (BBH)

ϕ2(ei) =
∆2

2

(√
1 +

4ϕ1(ei)
∆2

− 1

)
(6)

where ∆ > 0 and is a constant value. The measure of dispersion
is given by

γ(wi) = inf
θ

n∑
i=1

wiϕ(ei). (7)

The usual empirical distribution is given by the uniform
bootstrap and considering that all weights have the same mass
in all data points wunif = (1/n, . . . , 1/n). The initial values
estimated for location and dispersion are given as follows:
θ̂ = θ̂(wunif) and γ̂ = γ̂(wunif). Then, the level of dispersion
is calibrated (e.g., minimized) by the biased weights (e.g.,
downweights) wi. The biased weight function proposed in [3]
is given in the following general form:

wi =
1
n
h[ξ](Xi, Yi|θ̂, τ̂ , λ̂) (8)

where h[ξ](·) depends of the breakdown function ξ, that is

h[ξ](·)=


(
1+(ρ− 1)

[
ρξ − λ̂{ϕ(ei) − τ̂}

])1/(ρ−1)

, if ρ 	=1

exp
(
ξ − λ̂{ϕ(ei) − τ̂}

)
, if ρ=1.

The values given by (θ̂, τ̂ , λ̂) satisfy the following equations:
1) criterion minimization (∂/∂θ)(

∑n
i=1 wiϕ(êi)) = 0;

2) calculation of τ̂ =
∑n

i=1 wiϕ(êi), where 0 < τ̂ ≤ γ̂;
3) λ̂ chosen by the bisection method given that

∑n
i=1wi = 1.

If the distribution of ei is symmetric and unimodal, the true
values of θ are not changed by trimming. In the asymmetric
case, they are altered, although they remain well defined as
solutions of θ ∈ Θ ⊂ R

p.

B. Parameter pdf Estimation

The conventional uniform bootstrap methods can be used to
approximate the distribution of the biased estimator. The simple
residuals êi are therefore obtained by using the following
expression:

êi = yi − f(xi, θ̂). (9)

The sample probability distribution of residuals ℘̂e, is then
approximated by a punctual statistical mass of 1/n for each
realization of êi.

The next step is to draw the bootstrap samples (resampling
with replacement) e∗i and y∗i , given êi ∼ ℘̂e and θ̂:

y∗i = f(xi, θ̂) + e∗i , e∗i ∼ ℘̂e. (10)

Indeed, θ̂ will be assumed to be the true parameters. Each
realization of ê∗i yields an estimation of θ̂

∗
by the same min-

imization process that gave θ̂, e.g., (4).
Repeating B independent bootstrap replications for θ̂

∗
will

give a random sample θ̂
∗1
, . . . , θ̂

∗B
, which can be used to

estimate the bootstrap distribution of θ̂
∗
, and then the pdf of

θ̂ could be approximated by ℘(θ̂
∗
).

The bootstrap performance and approximation have been
considered in both cases of Gaussian and non-Gaussian “as-
sumptions” by working with residuals. The level of approx-
imation can be improved by incorporating different priors to
the residuals vector, while maintaining symmetric assumptions,
such as the following.

1) Centered residuals: If one of the components of θ is a
translation parameter for the function f(·), then ℘̂e has
zero mean. If not, ℘̂e may still be modified by translation
to achieve zero mean [6], [15]

r̂i = yi − f(xi, θ̂)

r =
1
n

n∑
i=1

r̂i

êi = r̂i − r. (11)

2) Modified residuals: Bootstrapping modified residuals
gives a smoothed (or weighted) version of residuals
that can lead to a consistent estimator (e.g., weighted
bootstrap) [17]

êi =

√
n
q (r̂i − r)√

1 − p
n

. (12)

The procedure of bootstrapping centered residuals can be
modified. In linear regression, the bootstrap sample size
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Fig. 1. Schematic illustration for parameter and measurand bootstrapping.

of êi
∗ is modified (i = 1, . . . , q) so that q < n. However,

in nonlinear regression, the q factor value is modified so
that q < n and satisfying q/n→ 0, but the bootstrap sam-
ple size remains fixed (i = 1, . . . , n). One restriction on q
is that p/q should be reasonably small. For practical uses,
q needs to be specified for a fixed n, and its optimal choice
depends on the parameter vector size. For example, one
could begin with q = n and then decrease this value until
q/n = 0.5 if n is small and q/n→ 0 if n→ ∞.

C. Measurand pdf Estimation

An extended measurand vector is given by m =
[θ1 · · ·m · · · θp]T. It gives the nonlinear mapping m = Gk(θ),
where k indicates the actual position of m in m. Once the
parameter estimate θ̂

∗
is computed, the measurand induced by

the mapping Gk(·) is approximated according to the following
equation:

m̂∗ = g(θ̂
∗
). (13)

The measurand pdf ℘m(m) is then approximated by the
bootstrap measurand pdf ℘m(m̂∗), which is induced by
m̂∗1, . . . , m̂∗B using the different bootstrap replications

θ̂
∗1
, . . . , θ̂

∗B
in the nonlinear mapping Gk(·).The marginal pdf

of the measurands of interest can be obtained after

℘ (m̂∗
�) = ℘

(
g�(θ̂

∗
)
)

=
∫
M

℘(m̂∗)dm̂∗
−� (14)

where dm̂∗
−� = dm̂∗

1 · · · dm̂∗
�−1dm̂

∗
�+1 · · · dm̂∗

r. A schema for
parameter and measurand bootstrapping is shown in Fig. 1,
where the procedure is iterated B times to obtain the empirical
pdf approximates.

D. Nested Bootstrap

In the bootstrap literature, one usually reads that the number
of bootstrap simulation replications B is approximately the
same value as the sample size n. In parametric models with
sufficient regularity, the bootstrap will yield an approximation
of asymptotical statistics that is closer to the true distribution,
at least in terms of orders of probability. By nesting the original
bootstrap within another bootstrap, the approximation error can
be reduced. In other words, the nested bootstrap (e.g., simulated
bootstrap) can be used to improve the bootstrap convergence
and to reduce the time of computations (B → ∞).

In order to diminish the stochastic error introduced by the
bootstrap, B must at least be B ≥ n2. In a simulated nested
bootstrap, the number of replications in the inner bootstrap
require B1 ≥ n2, and the number of replications in the outer
bootstrap must satisfy B2 ≥ n3. Thus, the total number of
replications must be n5 to assure that the simulation stochastic
error is not too large. This computational requirement can be
prohibitive even in simple models with moderate sample sizes.
A control variate approach is implemented to improve the boot-
strap pdf convergence and approximation. This approach uses
a leading term in the asymptotic expansion for the statistic of
interest and its expectation to form a function that has the same
expectation but smaller variance than the original statistic. The
number of simulations required in the inner loop of the nested
bootstrap is reduced to B1 ≥ n, and to B2 ≥ n2 for the outer
loop. Thus, the total number of replications required is reduced
to n3. Although the computational requirements involved in the
latter modification can be substantial, the approach proposed
gives a good improvement over the requirements needed for the
standard nested bootstrap. A first approach was introduced in
[18] for semiparametric models, such as nonlinear regression.
This approach seems to give good results when the underlying
distribution of the variables of interest is parametrically spec-
ified. Its extension to the estimation of the measurand m has
been considered in [5].

Some restrictions are given for the assumptions concerning
the error pdf: one needs independence of xi, zero mean (sym-
metry), and uniform variance. When drawing replications from
its empirical distribution e(j)i ∼ ℘̂e, there are complications to
find Fω(β, t) (see the Appendix), but it should be possible to
work out of its expectation function by giving a number of ad-
ditional Monte Carlo replications. More details are given in the
Appendix, where we also extend the application of [18, Th. 2]
to the measurement estimation, since it is also considered as a
semiparametric function.

IV. BOOTSTRAP ESTIMATION WITH A

MEASUREMENT APPLICATION

The measurand-estimation problem presented in [13] and
[19] is considered here, as an example of a real problem. The
RFEC inspection technique is used for dimensioning grooves
that may occur in ferromagnetic conductive pipes. This task
involves the depth and the length estimation of corrosion
grooves, from observations of a pick-up coil signal phase y
at different positions x closest to the defect. A finite-element
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Fig. 2. Schematic illustration of the sensor pipe in the (RFEC) inspection
problem.

calculation was performed in [19] to obtain a parametric model
of the physical phenomenon. The dimensions of the groove
to be estimated are linked to the parametric model through a
polynomial function [see (16)]. The prior knowledge of the
relationship between the groove parameters (length and depth)
and the observed data (detector phase) is needed. We propose
here the use of bootstrap techniques to obtain the statistical
information about parameters and measurand estimates with
the aim to qualify the performance of the different proposed
estimators. Additionally, such techniques can be used to imple-
ment a scheme of model selection (this is not the aim in this
paper, see [12] and [13]). In both cases, we use the modeling
error (e.g., errors between the observed data and the nonlinear
model) whose distribution is unknown.

Fig. 2 illustrates the typical experimental apparatus used for
groove dimensioning. The sensor is pushed inside the pipe
and, along with the coil position x, the phase of the detector
voltage y is acquired. The distance (2L) between the exciter
and the detector coils is chosen so that the far-field condition
is satisfied.

Taking into account the symmetry and the range of the
data, several mathematical functions (e.g., nonlinear models)
have been considered in [13] and [19] to approximate y. The
nonlinear model structure retained in [13] (f2(p = 3)) as the
best model is considered here

f(x,θ) = θ1 (arctan(θ2 (x + θ3 + L))

− arctan (θ2(x − θ3 + L))

+ arctan (θ2(x + θ3 − L))

− arctan (θ2(x − θ3 − L))) (15)

where L is an experimental constant (half-distance between
coils equal to 17.5 mm). The length of vectors x and y is
n = 118. Fig. 3 shows an example of simulated observed
data computed by a finite-element code for given groove
parameters.

The measurement goal is to estimate the size of the defect
[depth (d) and length (l)] from the knowledge of detector
phase. The measurement quantity can be expressed as a
function of the optimal parameters of the model. An algebraic

Fig. 3. Finite element simulated data y versus x (circles) and modeled data
using the parameter mean value obtained with the bootstrap-BBH (· · ·).

TABLE I
STATISTICS OBTAINED USING THE NLS ESTIMATOR AND BOOTSTRAP

TECHNIQUES FOR θ AND THE MEASURANDS m

form for g is chosen; g can be taken as a bilinear polynomial
function of θ, which may be written as follows:

d̂ = gd(θ) =
∑
k,h

cdkhθkθH +
∑

k

cdkθk

l̂ = gl(θ) =
∑
k,h

clkhθkθH +
∑

k

clkθk. (16)

The coefficients (cdkh, c
d
k) and (clkh, c

l
k) have been computed in

the least squares sense [19] for several real defect dimensions.
Thus, an analytical form for the measurement vector m̂ =
[d̂, l̂]T as a function of θ is obtained for the candidate model.

Table I shows the results obtained for the weighted bootstrap
technique using the NLS estimator to obtain the d̂ and l̂
estimates. The empirical statistical information about these
estimates is also obtained, and the mean value for both
measurands is near the reference value. On the other hand,
Table II presents some statistical results obtained using the
biased bootstrap estimators with BBQ and BBH; especially in
the case when BBH is used, one notes the minimum dispersion
of all measurand populations. The values of reference of the
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TABLE II
STATISTICS OBTAINED BY THE DIFFERENT BOOTSTRAP TECHNIQUES

FOR θ AND THE MEASURANDS m

Fig. 4. Error vector obtained by y − f(x, θ̂NLS).

defects are d = 1.66 mm and l = 4 mm. It can be seen in Fig. 4
that the errors are centered. Of course, there is no evidence that
the distribution is normal, because it is actually unknown (the
residuals are obtained using the first parameter estimates into
the proposed model and the data y).

Fig. 5 illustrates several replications of the modeled data
given by the BBH estimator plus empirical resampled errors.
The circles are the same data as presented in Fig. 3 and it may be
seen that they are inside the statistical domain of the proposed
model. In the case where a noncentered weighted bootstrap1

(Tables I and II) procedure is used for residuals (where the r
element of (12) is removed), the statistical information obtained
by the NLS and BBQ estimators is very similar (both estimators
take into account that the error pdf is centered). Moreover,
the weighted bootstrap (recentered2 Tables I and II) also gives
similar results, but the statistics of the measurements (l and d)

Fig. 5. Simulated data (circles) and some replications of modeled data plus
noise resamples for the scheme BBH (·).

Fig. 6. Histograms obtained from measurand populations with bootstrap-
NLS2, reference values (—), and mean values (· · ·). The axe y indicates the
nonnormalized empirical probability.

are more accurate. For example, the bias between the measur-
and reference values and the mean values is reduced and the
recentering factor admits more robustness in the optimization
procedure. The BBH estimator gives the most concentrated
populations and, therefore, the statistics obtained have the
smallest values in general. The correlation between histograms
obtained from measurand populations with the bootstrap-NLS2

and the bootstrap-BBH can be done by comparing Figs. 6 and
8, where the dotted lines represent the mean value and the solid
lines represent the actual reference values. Finally, one can do
the same comparison with the bootstrap-BBQ2 (see Fig. 7) and
the bootstrap-BBH (see Fig. 8).

For these application data, we cannot notice the outliers
since the data dispersion seems to be regular. Nevertheless,
the robust estimation works well as it has been seen in results
given when the BBH was used in [5] (working with synthetic
data), and results presented in this paper, where the measurand
dispersions are the smallest. On the other hand, the simulation
time is a great issue; for example, for 5000 bootstrap iterations
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Fig. 7. Histograms obtained from measurands populations with bootstrap-
BBQ2, reference values (—), and mean values (· · ·). The axe y indicates the
nonnormalized empirical probability.

Fig. 8. Histograms obtained from measurand populations with bootstrap-
BBH, reference values (—), and mean values (· · ·). The axe y indicates the
nonnormalized empirical probability.

of the BBH scheme for the proposed model used for RFEC
application, the time needed to achieve convergence of simula-
tion was 58.21 min, whereas NLS or BBQ simulation time was
in the interval of 12.07–6.67 min when using an ultra Sparc 5
system (256-MB RAM) and MATLAB version 5.2. In fact, the
level of approximation not only depends on the model f(·), but
also on the polynomial (nonlinear) measurand mapping g(·).

V. CONCLUSION

The bootstrap measurand estimation offers good approxi-
mation results that are near the measurands of reference. In
particular, the level of accuracy depends on the measurement
mapping. Moreover, this level could be improved using prior
information on the residuals in a correct way. Under Gaussian
and unknown noise assumptions (symmetric or nonsymmetric),

bootstrap gives a good approximation of the measurand pdf.
It works very well in the case of robust estimation under an
unknown error distribution. Bootstrap converges with a small
number of iterations (even if the time of convergence depends
on the optimization problem). The nested bootstrap is used
successfully to significantly reduce the number of iterations,
and the variance is accurately approximated [5]. The only
restrictions lie in the noise pdf symmetry assumptions. It has
been shown that the nested and weighted bootstraps give com-
petitive results. As presented in [19], the model used here is
best adapted for small defects. Modeling noise is then reduced,
thus improving the robustness of the model and the accuracy
of the approximation. A bootstrap selection procedure is not
of importance here, since several procedures were suggested in
[12] and [13]. However, if a selection procedure is required to
compare the suggested ones, the procedure given in [17] could
be applied and extended to the measurand-estimation problem.

APPENDIX

Let β = [θ,m] be an extended parameter vector. The dis-
tribution function of any statistic T (β) of β is given by
Γ(β, T (β)) = Eβ{I(T (β) ≤ t)} [18], and the function of in-
terest is H(T (β), t) = I(T (β)). It is necessary to assume that
T (β) has a limiting behavior with finite sample knowledge of
the leading term, of which an Edgeworth expansion is given
as follows:

T (β) = ω(e1, e2, . . . , en; β) +Op(n−q/2) (17)

where ω(β) = ω(e1, e2, . . . , en; β) is an approximated statistic
of T (β), given the error random sample ei ∼ ℘̂e(θ) from its
known parameterized density, and Fω(β, t) = Eβ{I(ω(β) ≤
t)} known up to the parameters. The statistic Fω(β, t) is pivotal
and does not depend on β when q = 1, Fω(β, t) = Fω(t). The
knowledge of T and H(T (β), t) is used to form a control vari-
ate that eliminates the leading stochastic term in H(T (β), t)
and then simulate the remainder.

Given β and knowledge of ω(β), one generates e
(j)
i ∼

℘̂e(θ), j = 1, . . . , B1, forming T (j)(β) and ω(j)(β) =
ω(e(j)i ; β), and defining

H̃
(
T (j)(β), ω(j)(β), t

)
=I
(
T (j)(β)

)
− I
(
ω(j)(β)

)
+Fω(β, t)

(18)
and the average value over the Monte Carlo is

Γ̃B1(β̂, t)=
1
B1

B1∑
j=1

H̃
(
T (j)(β̂), ω(j)(β̂), t

)
Γ̃B1(β̂, t)= Γ(β0, t) +Op

(
n−1(k+1)/2

)
+Op

(
n−q/2B

−1/2
1

)
.

(19)

It is required that B1 ≥ nk+1−q to ensure that the Monte Carlo
error does not dominate. In the outer bootstrap, B2 replications
are necessary, and the function of interest is given by T̃1(β) =
Γ̃B1(β̂, T (β)), where T̃1(β) = Γ(β, T (β)) +Op(n−(k+1)/2),
and the distribution function is given by Γ̃1 =
Eβ{I(T̃1(β) ≤ t1)}.
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Applying the previous ideas, one defines

H̃1

(
T̃

(l)
1 (β), ω(l)(β), t1

)
=I
(
T̃

(l)
1 (β)

)
−I
(
Fω

(
ω(l)(β)

))
+t1
(20)

and its average over the Monte Carlo is

Γ̃1B2(β̂, t)=
1
B2

B2∑
l=1

H̃1

(
T

(l)
1 (β̂), ω(l)(β̂), t1

)
Γ̃1B2(β̂, t)= Γ̃1(β0, t1)+Op

(
n−1(k+2)/2

)
+Op

(
n−q/2B

−1/2
2

)
.

(21)

In general, it is required that B2 ≥ nk+2−q, and then, for a
common case k = q = 1, B1 ≥ n and B2 ≥ n2, and the total
replications are n3.
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