Markov Chain Monte Carlo Posterior Density Approximation for a Groove-Dimensioning Purpose - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Instrumentation and Measurement Year : 2006

Markov Chain Monte Carlo Posterior Density Approximation for a Groove-Dimensioning Purpose

Abstract

The purpose of this paper is to present a new approach for measurand uncertainty characterization. The Markov chain Monte Carlo (MCMC) is applied to measurand probability density function (pdf) estimation, which is considered as an inverse problem. The measurement characterization is driven by the pdf estimation in a nonlinear Gaussian framework with unknown variance and with limited observed data. These techniques are applied to a realistic measurand problem of groove dimensioning using remote field eddy current (RFEC) inspection. The application of resampling methods such as bootstrap and the perfect sampling for convergence diagnostics purposes gives large improvements in the accuracy of the MCMC estimates.
Fichier principal
Vignette du fichier
IsmaelTIM2006A_2_.pdf (384.68 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-00260575 , version 1 (05-03-2008)

Identifiers

Cite

José Ismael de La Rosa Vargas, Gilles Fleury, Sonia Esther Osuna, Marie-Eve Davoust. Markov Chain Monte Carlo Posterior Density Approximation for a Groove-Dimensioning Purpose. IEEE Transactions on Instrumentation and Measurement, 2006, Vol. 55 (N°1), pp. 112-122. ⟨10.1109/TIM.2005.861495⟩. ⟨hal-00260575⟩
83 View
292 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More