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A reduced-order model of squeeze-film damping for 
deformable micromechanical structures including large 

displacement effects 
 

Abstract: we present a reduced-order model of the squeezed-film damping phenomenon 

which is valid for flexible structures, large displacements (with respect to the gap) and small 

pressure variations (with respect to the ambient pressure). This reduced-order model is 

obtained by transforming the Reynolds equation into a form more amenable to modal 

projection techniques. Our approach is validated by comparison to simulated and 

experimental data. Moreover, we show that in several practical cases the “small pressure” 

hypothesis is not limitative, even when the gap becomes very small. 

I Introduction 
Correct modelling of damping is essential to capture the dynamic behaviour of a MEMS 

device. At ambient or moderately low pressure, the major dissipation phenomenon is usually 

fluid damping: squeeze-film damping when the micromechanical structure moves 

perpendicular to the substrate, slide-film damping when it moves parallel to the substrate and 

viscous drag when it is far from the substrate. In the present paper, we focus our attention on 

squeeze-film damping which models the behaviour of a fluid in small gaps between a fixed 

surface and a structure moving perpendicular to this surface. The lateral dimensions of the 

surfaces are large compared to the gap, the system is considered isothermal and the effects of 

inertia are small compared to those of viscosity. Squeeze film damping is then governed by 

the Reynolds equation: 
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where ( )tyxG ,,  is the distance between the moving and the fixed surface, ( )tyxP ,,  is the 

pressure, and µ is the effective viscosity of the fluid [1]. For small excitation frequencies or 

amplitudes the squeezed film behaves as a linear damper. For larger amplitudes or 

frequencies, the gas has no time to flow away and the pressure builds up creating a stiffening 

effect coupled to a nonlinear damping. The boundary conditions for (1) are usually chosen as 

trivial: “zero pressure variation” or “zero pressure gradient”, although some authors have 

considered less ideal, frequency-dependent and aspect-ratio dependent boundary conditions 

[2-3]. A complete review on this equation and its different regimes can be found in [4].  

Coupling the Reynolds equation to the equation governing the mechanical behaviour of the 

micromechanical structure leads to a nonlinear system of partial differential equations 

(PDEs). This system has no analytical solution and must be simplified with some 

assumptions. The most commonly made assumptions are the following: 

- uniform displacements, i.e. 0=
∂
∂=

∂
∂

y

G

x

G
 (for example, [5]). 

- steady-state sinusoidal excitation, i.e. ( )tGG e ωsin=  [6-7]. 

- small displacements, i.e. gGG += 0  and 0Gg << , where 0G  is the nominal gap of the 

structure at rest or close to a static equilibrium [8-9]. 

- small pressure variations, i.e. pPP += 0  and 0Pp << , where 0P  is the ambient pressure. 

These hypotheses prove to be useful in a variety of applications, if only for gaining insight of 

nonlinear damping phenomena. However, in many cases, it is difficult to justify their use: for 

example, it is clear to see that none of the first three hypotheses holds when trying to estimate 

the switching time of a micro-switch. Most micro-switches do not undergo uniform 



displacements, nor can these displacements be considered small, and the behaviour of a 

micro-switch is fundamentally transient.  

To date, the most notable attempts to tackle the problem of reduced-order modelling (ROM) 

of squeeze-film damping with large, non-uniform displacements have been made by Younis et 

al. [10-12], Mehner et al. [6,13], Yang et al. [14-15], Hung and Senturia [16] and Rewienski 

and White [17-18]. In [10-12], the authors propose to solve the nonlinear Euler-Bernoulli 

beam equation to determine the static deformation of a microplate under a voltage bias. The 

von Karman plate equations and the compressible Reynolds equation are then linearized close 

to this operating point and a perturbation method is used to calculate the pressure deviation. In 

[6,13], the authors use a modal projection method to calculate modal frequency-dependent 

damping and stiffening coefficients close to a determined operating point. To extend this 

approach to large displacements, Mehner [6] gives an analytical expression of these 

coefficients as a function of mechanical modal coordinates established by fitting of simulation 

data for different initial deformations. These approaches are all based on several steady-state 

sinusoidal calculations [10-12] or simulations [6,13], which increase the time for setting up 

the reduced-order model. The most general approaches may well be those developed in [14-

18]: the authors rely on fully-coupled, nonlinear transient simulations of the complete system 

(usually a micro-switch) to establish a reduced-order model of the micromechanical structure. 

These approaches are very general and they can even be successfully applied to the fully 

nonlinear Reynolds equation (1). However, they have a high computational cost (because of 

the nonlinear/multiphysics/transient simulation they require) and their accuracy depends, to 

some degree, on the choice of the training trajectory.  

In the present paper, we establish a semi-analytical reduced-order model of the Reynolds 

equation which is valid for large, non-uniform displacements and transient excitation of an 

arbitrarily-shaped micromechanical structure, but is limited to small pressure variations. This 

small pressure hypothesis is also made in the models developed by Younis et al.: however, the 

approaches developed in [10-12] are based on the assumption of large static deflections 

(under a bias voltage) and small dynamic deflections caused by a sinusoidal forcing. As a 

consequence, they are ideal for studying MEMS resonators but they cannot be used to 

investigate transient phenomena involving large dynamic deflections, such as the switching 

time of RF switches, for example, and, more generally, devices operating close to their pull-in 

point. The lack of a simple model for such common devices motivates the present work.  

Note that assuming small pressure variations with respect to unity is not exactly the same as 

assuming incompressible flow (in which case, 0/ Pp  is assumed small compared to 0/Gg  

[4]). As a rule of thumb, one may restrain the validity of this approximation to moderately 

large squeeze numbers. Air rarefaction effects, such as slip-flow, may act in the opposite 

direction, as shown in [24], and increase the domain of validity of the small pressure 

hypothesis. The same goes for structures with holes, which, for a given excitation, undergo 

smaller pressure changes than structures without holes. For large-displacement, high-

frequency excitation and/or very low ambient pressure, the present model should not be used. 

The guiding idea of our work is to notice that the time-varying nature of the spatial 

differential operator of (1) makes modal projection methods unusable, because there exists no 

complete unchanging set of eigenfunctions on which to project the equation. In part II of the 

paper, we show how (1) can be transformed into a more tractable PDE through a change of 

variables: the main property of this resulting PDE is that its spatial differential operator does 

not depend on time and it is therefore amenable to modal projection techniques. We also show 

how the boundary conditions of the Reynolds equation are modified through the proposed 

change of variables and discuss the validity of the small pressure hypothesis. The results 

obtained with the reduced-order model and with a finite-difference model are compared. In 

part III, we show how this model of squeeze-film damping can be coupled to the model 



governing the (electro-) mechanical behaviour of a micromechanical structure, such as a 

microswitch. We compare the resulting ROM to those obtained with other approaches, 

qualitatively as well as quantitatively, and discuss the effect of slip-flow and compressibility 

on the switching times of the device.  

II A reduced-order model of squeeze-film damping based 
on modal projection 
In this section, for the sake of simplicity, we assume that the effective viscosity of the fluid is 

constant and uniform: the case of a non-uniform effective viscosity, as in [14-18], is treated in 

section III-2. 

1 Transformation of the Reynolds equation 
Assuming small pressure variations with respect to the ambient pressure, the nonlinear 

Reynolds equation can be written: 
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with pPP += 0 . As we have pointed out in the introduction, the spatial differential operator 

appearing in (2) depends on time. Thus, unless G  is separable in time and space, i.e. 

( ) ( )yxtG ,Γ= γ , it appears difficult to find an unvarying basis of eigenmodes on which to 

project (2). We propose to transform (2) by introducing a “squeeze function” ϕ , through the 
following change of variables

1
: 

2/3−= Gp ϕ .  (3) 

The motivation for this change of variables is that it transforms (2) to a form where the spatial 

differential operator does not depend on time, and for which it is possible to find a fixed basis 

of eigenmodes. Using (3), and dividing by 2/3G , (2) can be rewritten as: 
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Using integration by parts, the right-hand side of (4) can be further transformed to: 
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Since we assume small pressure variations with respect to 0P , the second term on the right-

hand side of (5) reduces to: 
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and, thus, the transformed Reynolds equation becomes: 
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The spatial differential operator appearing in (7) is the Laplacian, the eigenmodes of which 

form a complete orthonormal basis that can be used to represent all the solutions of f=∆ϕ  

[19]. Analytical expressions of these modes are available for a variety of geometries [20].  

Now let us look at how trivial boundary conditions are transformed by (3). It is clear that:  

00 =⇔= ϕp . (8) 

                                                 
1
 A similar change of variables can also be found when accounting for slip-flow, as will be shown in section III. 



Thus for an open boundary, the boundary condition remains unchanged. Let us now look at 

how the “no flux” boundary condition translates in terms of squeeze functions: letting n
r
 be 

the outward unit normal at the closed boundaries of the domain, we have: 
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In most actual cases, the micromechanical structure is clamped at the closed boundaries. 

Therefore, the second term on the right-hand side of (9) vanishes and we have: 
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In the following sub-section, we show how a reduced-order model can be constructed from 

(7), (8) and (10). 

2 Construction of a reduced-order model 
In order to apply a modal projection technique to (7), one looks for a solution of the following 

form: 
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with  
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and where kϕ  satisfies the same boundary conditions as ϕ . For example, in the case of a 
cantilever beam, defined by ( ) [ ] [ ]WLyx ,0,0, ×∈ , supposing the beam is clamped at 0=x  and 

free at its other edges, the boundary conditions for kϕ  are:  
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and, separating the variables in (12), one obtains:  
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For complex geometries, the mode shapes may be found using FEM analysis, for example. 

Replacing ϕ  in (7) by its expression (11) yields: 
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and projecting on the l
th
 mode gives: 
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where klδ  stands for the Kronecker delta and the scalar product is defined by: 

∫∫
Ω

= fgdxdygf , (17) 

where Ω  is the (two-dimensional) domain occupied by the air gap. This scalar product and 

the eigenmodes do not depend on time, which is why one may factor the time derivative on 

the right hand-side. One may rewrite (16) in matrix form: 

( ) HsfAs +=
dt

d

dt

d
,  (18) 

with 

ll Gf ϕµ 2/124 −= ,  (19) 
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Because of the completeness argument mentioned in subsection II-1, the solution of the 

system of ordinary differential equations (18) defines squeeze coordinates in such a way that 
( )Nϕ  converges to the solution of (7), as N  goes to infinity. Small values of N  will usually 

give a sufficiently good approximation of the solution of the original problem, as we will 

show in subsections II-3 and III-2.  

Before proceeding to the coupling of (18) to the equations describing the dynamics of the 

micromechanical structure, we will validate our approach by comparing its results with those 

of a finite difference code.  

3 Validation of the proposed reduced-order model 
In order to validate (18-21), we have built a finite-difference model of (2), based on a 

backward-Euler approximation. We also use this approximation scheme for (18). Since A , H  

and f  do not depend on the squeeze coordinates, the backward-Euler approximation yields 

the following recurrence equation: 

( ) ( )nnnnnnn t ffsAHAs −+∆−= +−+++ 11111 ,  (22) 

where t∆  is the chosen time-step and the notation n
X  stands for ( )tn∆X . In Fig. 1, we show a 

comparison of the results obtained with the two models for different values of the squeeze-

number. We choose the following numerical values: L =310×10
-6
 m, W =40×10

-6
 m, 

0G =2.3×10
-6
 m, µ =1.82×10-5 Pa.s, 0P =10

5
 Pa. The excitation is of the form: 

( ) ( ) ( )( )txWGtxG ωαα cos1, 0 −= , (23) 

with ω =3×10
5
 rad.s
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so that ( ) 12/ =LW . Coefficient α  varies between 0 and 1. The boundary conditions are chosen 

as open on all sides ( 0=p ). A 50×40 mesh is used for the finite difference scheme, whereas 6 

modes are used for the reduced-order model. 400 time-steps are used to discretize one period 

of the excitation. Fig. 1 shows that there is a very good agreement between the two models, 

even for large values of α . Note that when α =0.8, the maximum pressure is about 3×10
4
 Pa, 

which is out of the domain of validity of both models, even though the squeeze number for 

the chosen parameters is of the order of 10 (and the Reynolds number is of the order of 0.1). 

This goes to show that the squeeze number is mostly relevant for the study of squeeze film 

under small uniform displacements: in the case of large, non-uniform displacements, it is 

much more difficult to define a characteristic length and a characteristic gap. In annex A, a 

more complete study of the domain of validity of the small pressure approximation is given. 

It appears, from simulating the system for different sets of parameters, that the number of 

modes necessary to capture the behaviour of the squeeze film depends mostly on four factors: 

the regularity of ( )xW , the aspect ratio of the micromechanical structure, the squeeze number 

and the amplitude of the excitation. In the most favourable conditions, 1 or 2 modes are 

enough. We show in annex B that other choices of basis functions do not lead to such a 

compact representation of the solution of the original problem. 
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Fig. 1- Comparison of the finite difference model (dots) with the reduced-order model 

(continuous line). The results correspond, from left to right, to α =0.4, α =0.6 and α =0.8. 

The curves represent the value of the force per unit length at the middle of the bridge, i.e. 

( ) ( )∫=
W

dytyLptLf
0

,,2/,2/ , versus ( )tLG ,2/α . 

III Coupled simulation of deformable structures 
For a structure under electrostatic actuation, one may usually write:  

( ) flue ppxMxxK +=+ && , (25) 

x  being the mechanical (modal) coordinates, ( )xK  the possibly nonlinear stiffness matrix, M  

the mass matrix, and ep  (respectively flup ) the projection of the electrostatic (respectively 

fluidic) pressure on the mechanical modes. Letting ( )yxl ,ξ  be the l
th
 mechanical mode, we 

have: 
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Thus, (25) may be rewritten as: 
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One may introduce some modified squeeze coordinates s~  in order to make (27) more 

tractable: 

fAss −=~ .  (28) 

Equation (25) is then equivalent to: 
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is the state of the coupled system. The solution to evolution equation (29) can then be 

approximated using a numerical technique. We consider in the rest of the paper that the 

dimension of u  is NM +2 , where M  is the number of mechanical modal coordinates and N  

is the number of squeeze coordinates.  

1 Practical considerations 
Before moving to the validation of this reduced-order model, we make a few comments 

concerning its practical implementation. First of all, notice that the evolution matrix G  does 

not depend on the complete system state but only on the mechanical modal coordinates, and 

that the same goes for g . This is as opposed to the reduced-order models based on the 

nonlinear Reynolds equation, where the evolution matrix depends not only on x  but also on 

the pressure modal coordinates and, in some cases, on x& . The practical importance of this 

remark is clear when one estimates the cost of the numerical integration of (29): at each time-

step, the state-dependent coefficients of G  and g  must be evaluated at least once, depending 

on the complexity of the numerical integration scheme. This means that, at each time-step, all 

the quantities appearing in (19-21) and (26) must be calculated and the corresponding two-

dimensional integrals must also be computed. This issue is addressed in [17-18], where a 

piecewise-linear approach to the reduced-order modelling of MEMS is proposed. A similar 

technique may be used in the present case, i.e. instead of solving (29), one can try to find an 

approximation û  of the solution which verifies: 

( ) ( )xguxG
u

ˆˆˆˆ
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dt

d
, (31) 

where Ĝ  and ĝ  are piecewise-linear approximations of G  and g . One should then evaluate 

G  and g  for a chosen set of values of x  and find the corresponding piecewise-linear 

interpolation in the M -dimensional space of mechanical modal coordinates. Now, if G  and g  

also depended on x&  and on the squeeze coordinates, they would exist in a ( )NM +2 -

dimensional space and, consequently, their piecewise-linear approximations would be costlier 

to establish and to store.  

Another reason why the structure of the proposed reduced-order model is advantageous 

becomes apparent when one uses an implicit integration scheme for solving (29) or (31). For 

example, the backward-Euler method with time-step t∆  gives: 

( ) ( )( ) ( ) 0uxguxGIur =−∆−∆−= ++++ nnnnn tt 1111 . (32) 

Solving (32) for 1+nu  calls either for a predictor-corrector method or for some Newton-

Raphson iterations. In the latter case, one needs to compute J  the Jacobian of r  at each 

Newton iteration step. The coefficients of the Jacobian matrix are given by: 

l

k
kl

u

r
J

∂
∂

= .  (33) 

The particular structure of the proposed model can then be put to good use, because, x  being 

constant, r  is linear with respect to x&  and s~ . Thus, the part of the Jacobian matrix 

corresponding to the partial derivatives with respect to x&  and s~  can be expressed very simply 

as a function of G . The remaining part can be approximated using finite differences in M -

dimensions. Moreover, if G  and g  are piecewise-linearly approximated, the partial 

derivatives of Ĝ  and ĝ  with respect to x  are constant and known on each sub-domain of the 

M -dimensional space, which makes for an even simpler evaluation of the Jacobian. 



2 Validation of the coupled model 
We validate our approach with the classical test case described in [14-16], which is also used 

as a basis for comparison in [17-18]. The characteristics of the micromachined switch are the 

following: L =610×10
-6
 m, W =40×10

-6
 m, h  (thickness) =2.2×10

-6
 m, 0G =2.3×10

-6
 m, 

µ =1.82×10-5 Pa.s, 0P =1.013×10
5
 Pa, E  (Young’s modulus) =149×10

9
 Pa, S  (residual stress) 

=-3.7×10
6
 Pa, ρ  (density) =2330 kg.m-3

, 0ε  (permittivity of vacuum)=8.854×10
-12
 F.m

-1
. For 

this set of parameters, the assumption that the losses are dominated by squeeze film damping 

can be made: for example, a simple calculation based on the “dish model” developed in [1] 

for drag force damping shows that, for the considered structure, the forces due to squeeze film 

damping are about one thousand times as large as those due to drag force damping, because 

Wh << . Moreover, one can estimate the quality factor of the first vibration mode of the beam 

by assuming small displacement amplitudes and neglecting damping phenomena other than 

squeeze film: this yields a quality factor smaller than unity and shows that squeeze film plays 

an important role in the transient dynamics of the structure. As a consequence, the 

microswitch can be described by the following system of equations:  
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where 22
0 2/ GWVFelec ε−=  is the electrostatic force and ∫=

W

air pdyF
0

 is the fluidic force. Note 

that the Reynolds equation has been linearized with respect to pressure. Moreover, the spatial 

variations of the Knudsen number GK /λ= , where λ =0.064×10-6 m is the mean-free path of 
air at ambient pressure, are taken into account.  

The first equation of (34) is reduced with a Galerkin projection on the first M  eigenmodes of 

the linear spatial differential operator. The second equation is first transformed into a more 

amenable form, as in section II, by defining an “effective squeeze function” ϕ  as: 
( )

( ) ( )
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Provided the “small pressure” hypothesis holds, this change of variables yields the following 

equation:  
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where ψI  is the primitive of the inverse of ( )Gψ , i.e. ∫
−= dGI 1ψψ . When ( )Gψ  is given by 

(35), we have: 
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Note that when another expression is used for the effective viscosity (see, for example, [5]), it 

is still possible to find a change of variables that transforms the Reynolds equation into (36), 

as well as an analytical expression for ψI .  

Now equation (36) can be reduced with a Galerkin projection on N  eigenmodes of the 

Laplacian operator. In the case of a rectangular switch with fixed ends, these squeeze modes 

are given by: 



( ) ( )













≠
=
















==

otherwise 2

0 if 2

sincos,,

1

21,

1

1

21

k
C

y
W

kx
L

k
LW

C
yxyx

k

k

kkk

ππφϕ
, 1,0 21 ≥≥ kk . (38) 

The resulting nonlinear system of ODEs can then be recast in the same form as (29) and 

solved with a simulation tool.  

We show in Fig. 2 the pull-in time pit  of the device versus the applied voltage. These results, 

obtained with 2 mechanical modes and 3 squeeze modes, fit almost perfectly those of [16]. In 

[16], it is shown that a similar degree of accuracy can be obtained by using the same number 

of POD modes (2 mechanical and 3 pressure POD modes): however, these are obtained at a 

greater cost (simulation time, data storage). Our results also tend to be closer to the 

experimental data for small values of the actuation voltage: this might be due to the fact that 

the POD modes in [16] were generated using simulations with voltages no lower than 9 V, 

although one can assume the shapes of the POD modes change a lot in the critical region close 

to the pull-in voltage ( piV =8.7 V). Since our model and the one in [16] do not take beam-

lengthening into account, the experimental pull-in time is underestimated. 

We show in Fig. 3 the maximal pressure variation recorded in these simulations for 

[ ]pitt ×∈ 9.0,0
2
: this maximum is always obtained for pitt ×= 9.0 . This quantity increases 

with the applied voltage and it is usually small compared to the ambient pressure, thereby 

validating our “small pressure variations” hypothesis. This hypothesis also holds for smaller 

values of 0P , because the amplitude of the pressure variation is directly linked to the value of 

the effective viscosity, which decreases with 0P : for example, when 0P  is set to 10
3
 Pa and the 

actuation voltage spans the same range as in Fig. 2, the maximum pressure variation is 

comprised between 150 Pa and 250 Pa. There is a qualitative difference between the curve 

corresponding to 0P  = 10
3
 Pa and the other two, which probably stems from the fact that, at 

low ambient pressure, the flow is compressible regardless of the voltage.  

For lower values of 0P , the small pressure hypothesis no longer holds but the reduced-order 

model still manages to give accurate pull-in times: this is simply due to the fact that, for very 

low values of 0P , squeeze-film damping no longer plays a major role in the transient 

dynamics of the microswitch. Thus, at extremely low ambient pressures, the switching time is 

correctly predicted, no matter how inaccurate the model may be. This is illustrated in Fig. 4, 

where the pull-in times obtained  for 0P =6×10
-1
 Pa are compared to the experimental and 

simulated results in [14], and to the switching times obtained when assuming airF  =0 in (34).  

The relative importance of fluid forces and electrostatic forces at different values of the 

ambient pressure is also illustrated in Fig. 5: at 0P =1.013×10
5
 Pa, the flow is completely 

incompressible and the electrostatic and the fluidic pressures are comparable. As the ambient 

pressure diminishes, the flow becomes compressible and the electrostatic pressure becomes 

larger than the fluidic pressure. These results are qualitatively comparable to those presented, 

for example, in [21-22] for a nonuniform cantilever microswitch (although, in these 

references, the small pressure hypothesis does not hold). Note that the threshold pressure for 

which the flow becomes compressible is highly dependent on the geometry of the structure. In 

the present case, neglecting compressibility typically leads to relative errors of the order of 

20% on the calculated pull-in times (Fig. 6). 

                                                 
2
 The reason why the interval chosen for recording the maximum pressure variation is limited to 

[ ]pitt ×∈ 9.0,0  is that, when the gap goes to zero, the pressure variation calculated by our model goes to 

infinity. For very small gaps, the electrostatic pressure also goes to infinity and keeps the switch in motion.  



Finally, the influence of slip-flow effects is illustrated in Fig. 7. These results (obtained with 

three squeeze modes and two mechanical modes) clearly show the importance of accounting 

for slip-flow in the study of pull-in dynamics, as pointed out in [23-24]. More illustrations of 

the role played by rarefaction effects can be found in annex A.  
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Fig. 2 - Pull-in time (s) versus applied voltage (V) for 0P =1.013×10

5
 Pa. Comparison of the 

experimental and simulated results presented in [16] to the simulated results obtained with our 

reduced -order model. The chosen squeeze modes correspond to 1k =0, 1, 2 and 2k =1 in (38). 

For the mechanical part, the first two eigenmodes are used. 
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Fig. 3 - Maximal pressure variation (Pa) versus applied voltage (V) for three different values 

of the ambient pressure.  
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Fig. 4 - Pull-in time (s) versus applied voltage (V) for very low ambient pressure. Comparison 

of the experimental and simulated results presented in [16] to the simulated results obtained 

with our reduced -order model, for 0P =6×10
-1
 Pa. The chosen squeeze modes correspond to 

1k =0, 1, 2 and 2k =1 in (38). For the mechanical part, the first two eigenmodes are used. The 

predicted switching times cannot be distinguished from those obtained when completely 

neglecting damping in (34), i.e. supposing 0=airF . 
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Fig. 5 – displacement of the midpoint of the switch vs. time (s), for 0P =1.013×10

5
 Pa (a), 

0P =1.013×10
4
 Pa (b) and 0P =1.013×10

3
 Pa (c) and V =10 V. The displacement is normalized 

with respect to the gap. In the lower boxes, the corresponding fluidic pressure (continuous 

line) and electrostatic pressure (dashed line), normalized with respect to the ambient pressure, 



are plotted vs. time. The compressibility limit, corresponding to one tenth of the normalized 

displacements, is also plotted (dotted line), as well as the validity limit of our model (dash-

dotted line). 
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Fig. 6 – influence of compressibility on switching times, for 0P =1.013×10
4
 Pa. The pull-in 

times calculated with our reduced-order model are represented for two different values of the 

width of the switch and compared to those obtained when neglecting compressibility. 
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IV Conclusion 
In the present paper, we have presented a reduced-order model of the squeezed-film damping 

phenomenon which is valid for: 

• flexible structures, 

• large displacements (with respect to the gap), 

• small pressure variations (with respect to the ambient pressure). 

This reduced-order model was validated by comparison to simulated and experimental data 

taken from [16]. Moreover, we have shown that in several practical cases the “small pressure” 

hypothesis is not limitative, even when the gap becomes very small.  

In order to construct the reduced-order model, we have proposed a change of variables which 

transforms the Reynolds equation into a more tractable form. This allows us to compute so-

called “squeeze modes”, for which analytical expressions can be found in simple geometries. 

In more complex cases (such as plates with holes, for example), the squeeze modes can be 

found by numerically solving a linear eigenvalue problem. The specificity of this approach, as 

opposed to those presented in [14-18], is that it does not rely on burdensome dynamical 

simulations of the complete system, nor does it require choosing a training trajectory. 

Moreover, the linear eigenvalue problem must be solved only once and the resulting squeeze 

modes are valid regardless of the amplitude of the displacements. Furthermore, we have 

shown that choosing other projection bases may lead to incomplete representations of the 

solution of the Reynolds equation. 

The main advantage of our reduced-order model is the economy with which it can be 

established. It is also quite simple to include the effect of a varying effective viscosity 

coefficient. The practical implementation of our approach is also fairly straightforward and 

economical, as was shown in section III-1. The main drawback of the proposed approach is 

that the squeeze modes lack physical significance, making them more difficult to interpret 

than pressure modes. Another issue lies in the treatment of mixed boundary conditions [3]: 

this sort of boundary condition does not translate well in terms of squeeze functions. This 

problem is the subject of ongoing work.  
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Annex A - Concerning the small pressure hypothesis  
There exists no simple way to express the domain of validity of the small pressure hypothesis 

in the case of large non-uniform displacements of the micromechanical structure. This is 

made clear in Fig. A-1 where the maximum pressure recorded
3
 for a sinusoidal excitation of 

the mechanical structure (as in section II-3) is plotted versus the squeeze number of the flow, 

with α  varying between 0.3 and 0.4. The geometry of the structure is that of section III-2, i.e. 

L =610×10
-6
 m, W =40×10

-6
 m, 0G =2.3×10

-6
 m. For these parameters, the squeeze number at 

0P =1.013×10
5
 Pa is given by: 

ωµωσ 4

2

0

2

0

105.1
12 −×≈=

G

L

P
. (A-1) 

Fig. A-1 shows that, as expected, the maximum relative pressure increases with α . It also 

shows that the small pressure hypothesis remains valid for squeeze numbers of the order of 

several hundreds (for example, ≤σ 600 for α =0.3), whereas the incompressibility hypothesis 

0Pp α<<  holds in a more restricted domain ( ≤σ 150 for α =0.3). One can also see that, as α  

increases, the domain of validity of the small pressure hypothesis and that of the 

incompressibility hypothesis tend to merge.  

Another interesting remark is that the domain of validity (of both hypotheses) increases when 

the ambient pressure decreases (Fig. A-2), as predicted in [24]: this is the direct consequence 

of rarefaction effects on squeeze-film damping. One can also notice that the cutoff frequency 

increases with the Knudsen number, whereas it decreases with the oscillation amplitude. 
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Fig. A-1 - influence of oscillation amplitude on small pressure hypothesis. As α  increases 

from 0.3 to 0.4, the different curves move in the direction of the arrows. The cutoff frequency 

and the domain of validity decrease with increasing α . 

 

                                                 
3
 These results have been obtained with a finite difference model of the Reynolds equation accounting for 

rarefaction effects, as in (34).  
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Annex B - Concerning the choice of the basis functions 
In Fig. B-1, the results obtained with two other reduced-order models are shown, for the same 

testing conditions as in section II-3. Both reduced-order models are based on Galerkin 

projections of (2) on the eigenmodes of the Laplacian, i.e. we suppose the solution of (2) can 

be approximated by:  

( ) ( ) ( )∑
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kkk pp
2λ−=∆ ,  (B-2) 

and where kp  verifies the boundary conditions. The first model is obtained by projecting (2) 

on these modes in a very straightforward fashion (as in [16], for example). Since the spatial 

differential operator in (2) is self-adjoint, we know it should be possible to find a complete 

basis of modes for this equation if the operator did not depend on time. As it is, there is no 

way to guarantee that the proposed approximation should converge; in fact, the only way to 

make sure of convergence is probably to use modes extracted through numerical simulations 

of (2) for several inputs ( )tyxG ,, , as in [14-18].  

In the second model, (2) is “naively” developed into 
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before the projection. The resulting spatial differential operator is not self-adjoint: as a 

consequence, it is difficult to guarantee that approximations based on the proposed modal 

decomposition should converge. On the other hand, the second-order derivative of the spatial 

differential operator no longer depends on time, which might be beneficial.  

Both approaches yield reduced-order models structurally similar to (18). The simulations 

show that, for small variations of G , the two approaches yield good results, although they are 



not as accurate as the one proposed in section II. When the variations of G  are of the same 

order as the nominal gap, the accuracy of the two approaches proposed in this annex becomes 

very poor (Fig. B-1), no matter how many modes are used. On the other hand, the approach 

based on the transformation to squeeze coordinates remains valid, even for very large 

deflections (Fig. 1).  
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Fig. B-1 - Comparison of the finite difference model (continuous line) with three reduced-

order models. The dots correspond to the reduced-order model presented in section II. The 

circles and the lozenges respectively correspond to the projection of (B-3) and (2) on an 

orthogonal basis verifying the boundary conditions. 

 


