
HAL Id: hal-00327081
https://centralesupelec.hal.science/hal-00327081

Submitted on 7 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Sparse Nonlinear Bayesian Online Kernel Regression
Matthieu Geist, Olivier Pietquin, Gabriel Fricout

To cite this version:
Matthieu Geist, Olivier Pietquin, Gabriel Fricout. A Sparse Nonlinear Bayesian Online Kernel Re-
gression. AdvComp 2008, Oct 2008, Valencia, Spain. pp.199-204, �10.1109/ADVCOMP.2008.7�. �hal-
00327081�

https://centralesupelec.hal.science/hal-00327081
https://hal.archives-ouvertes.fr

A Sparse Nonlinear Bayesian Online Kernel Regression

Matthieu Geist1,2, Olivier Pietquin1 and Gabriel Fricout2
1SUPELEC, IMS Research Group, Metz, France

2ArcelorMittal Research, MCE Department, Maizières-lès-Metz, France

Abstract

In a large number of applications, engineers have to es-
timate values of an unknown function given some observed
samples. This task is referred to as function approximation
or as generalization. One way to solve the problem is to
regress a family of parameterized functions so as to make it
fit at best the observed samples. Yet, usually batch methods
are used and parameterization is habitually linear. More-
over, very few approaches try to quantify uncertainty re-
duction occurring when acquiring more samples (thus more
information), which can be quite useful depending on the
application. In this paper we propose a sparse nonlinear
bayesian online kernel regression. Sparsity is achieved in a
preprocessing step by using a dictionary method. The non-
linear bayesian kernel regression can therefore be consid-
ered as achieved online by a Sigma Point Kalman Filter.
First experiments on a cardinal sine regression show that
our approach is promising.

1 Introduction

In a large number of applications, engineers have to es-
timate values of an unknown function given some observed
samples. For example, in order to obtain a map of a wire-
less network coverage in a building, one solution would be
to simulate the wave propagation in the building according
to Maxwell’s equations, which would be intractable in prac-
tice. An other solution is to measure the electromagnetic
field magnitude in some specific locations, and to interpo-
late between theses observations in order to build a field
map covering the whole building. This task is referred to
as function approximation or as generalization. One way
to solve the problem is to regress a family of parameter-
ized functions so as to make it fit at best the observed sam-
ples. Lots of existing regression methods can be found in
the literature for a wide range of function families. Artifi-
cial Neural Networks (ANN) [1] or Kernel Machines [6, 9]
are popular methods. Yet, usually batch methods are used
(gradient descent for ANN or Support Vector Regression for

Kernel Machines); that is all the observed samples have to
be known before regression is done. A new observed sam-
ple requires running again the regression algorithm using all
the samples.

Online regression describes a set of methods able to in-
crementally improve the regression results as new samples
are observed by recursively updating previously computed
parameters. There exists online regression algorithm us-
ing ANN or Kernel Machines, yet the uncertainty reduction
occurring when acquiring more samples (thus more infor-
mation) is usually not quantified, as well as with the batch
methods.

Bayesian methods are such recursive techniques able to
quantify uncertainty about the computed parameters. They
have already been applied to ANN [5, 8] and to some ex-
tent to Kernel machines [2, 10]. In this paper we propose
a method based on the Bayesian filtering framework [3]
for recursively regressing a non-linear function from noisy
samples. In this framework a hidden state (here the regres-
sion parameter vector) is recursively estimated from obser-
vations (here the samples), while maintaining a probability
distribution over parameters (uncertainty estimation).

The next section exposes more formally the basics of this
framework. A practical solution is described in sections 3,
4 and 5. Then first results are given, showing the method is
quite efficient and illustrating the uncertainty quantification.

2 Problem Statement

We address the problem of nonlinear function approxi-
mation. The aim here is to approximate a nonlinear func-
tion f(x), x ∈ X , where X is a compact set of Rn, from
noisy samples

(yk = f(xk) + vk, xk)k (1)

where k is the time index and vk is the observation random
noise, by a function f̂(x; θ) parameterized by the vector θ.

Classical approaches are kernel-based regression meth-

The Second International Conference on Advanced Engineering Computing and Applications in Sciences

978-0-7695-3369-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ADVCOMP.2008.7

199

ods and the function of interest is approximated by

f̂(x; θ) =
p∑

i=1

αiK(x, xi), (2)

with θ = (αi)
p
i=1 and where K is a kernel, that is a contin-

uous, symmetric and positive semi-definite function. These
methods rely on the Mercer theorem [9] which states that
each Kernel is a dot product in a so-called feature space.
More precisely, for any Kernel K, it exists a mapping
ϕ : X → F such that

∀x, y ∈ X , K(x, y) = 〈ϕ(x), ϕ(y)〉 (3)

For example, the Gaussian kernel

Kσ(x, y) = exp
(
−‖x− y‖2

2σ2

)
(4)

is associated with a mapping from X to an infinite dimen-
sional space. Thus, any linear regression algorithm which
only uses dot products can be cast by this Kernel Trick into
a nonlinear one by implicitly mapping the original space X
to an higher dimensional one. The proposed approach can
be summarized as follows.

In most approaches, the kernel has to be chosen before-
hand. The regression is done on the weights αi, but not
on the kernel parameters (mean and deviation for Gaussian
kernels), which casts this problem into a nonlinear regres-
sion one. Moreover, these methods are usually determinis-
tic, and thus do not give uncertainty information about the
quality of the parameter estimation. But this can be quite
useful, depending on the application. Following [11] we
use a state-space representation of this parameter estimation
problem:

θk+1 = θk + nk (5)

yk = f̂(xk; θk) + vk

where nk is an artificial process noise. We aim to use
bayesian filtering to obtain sequentially the posterior con-
ditional probability distribution p(θk|y1:k).

Here we will focus on Gaussian kernels, but this ap-
proach can be straightforwardly extended to other kernels.
As a preprocessing step, we put a prior on our kernel width
(id est σ) and use a dictionary method [4] to compute an
approximate basis of ϕ(X). This gives a good sparse and
observation noise independent initialisation for our kernel
centers and number. We then use a Sigma Point Kalman
Filter (SPKF) [8] to sequentially estimate the parameters,
and our uncertainty on generalization.

3 Dictionary

A first problem is to choose the number p of kernel func-
tions and the prior kernel centers. A variety of methods can

be contemplated, the simplest one being to choose equally
spaced kernel fonctions. However the method described be-
low rests on the mathematical signification of kernels and
basic algebra, and is thus well motivated.

As said in section 2, the kernel trick corresponds to a
dot product in a feature space F , associated with a mapping
ϕ. By observing that although F is a (very) higher dimen-
sional space, ϕ(X) can be a quite smaller embedding, the
objective is to find a set of p points in X such that

ϕ(X) ' Span {ϕ(x̃1), . . . , ϕ(x̃p)} (6)

This procedure is iterative. Suppose that samples
x1, x2, . . . are sequentially observed. At time k, a dictio-
nary

Dk−1 = (x̃j)
mk−1
j=1 ⊂ (xj)k−1

j=1 (7)

of mk−1 elements is available where by construction fea-
ture vectors ϕ(x̃j) are approximately linearly independent
in F . A sample xk is then uniformly sampled from X , and
is added to the dictionary if ϕ(xk) is linearly independent
on Dk−1. To test this, weights a = (a1, . . . , amk−1)

T have
to be computed so as to verify

δk = min
a

∥∥∥∥∥∥
mk−1∑
j=1

ajϕ(x̃j)− ϕ(xk)

∥∥∥∥∥∥
2

(8)

Formally, if δk = 0 then the feature vectors are linearly de-
pendent, otherwise not. Practically an approximate depen-
dence is allowed, and δk will be compared to a predefined
threshold ν determining the quality of the approximation
(and consequently the sparsity of the dictionary). Thus the
feature vectors will be considered as approximately linearly
dependent if δk ≤ ν.

By using the kernel trick and the bilinearity of dot prod-
ucts, equation (8) can be rewritten as

δk = min
a∈Rmk−1

{
aT K̃k−1a− 2aT k̃k−1(xt) + K(xk, xk)

}
(9)

where (
K̃k−1

)
i,j

= K(x̃i, x̃j) (10)

is a mk−1 ×mk−1 matrix and(
k̃k−1(x)

)
i
= K(x, x̃i) (11)

is a mk−1 × 1 vector. If δk > ν, xk = x̃mk
is added to the

dictionary, otherwise not. Equation (9) admits the analytical
solution

ak = K̃−1
k−1k̃k−1(xk) (12)

Moreover it exists a computationally efficient algorithm
which uses the partitioned matrix inversion formula to con-
struct this dictionary. The dictionary method is briefly
sketched in Alg. 1, nevertheless see [4] for details.

200

Algorithm 1: Dictionary computation
inputs : a set of N samples randomly selected from

X , sparsification parameter ν
outputs: a dictionary D
Initialization;
D1 = {x̃1};

Dictionary computation;
for k = 1, 2, . . . N do

Observe sample xk;
Compute approximate dependence:

δk = min
a∈Rmk−1

∥∥∥∥∥∥
mk−1∑
j=1

ajϕ(x̃j)− ϕ(xk)

∥∥∥∥∥∥
2

if δk > ν then
Add xk to the dictionary: Dk = Dk−1 ∪ {xk}

else
Let the dictionary unchanged: Dk = Dk−1

Thus, by choosing a prior on the kernel to be used, and
by applying this algorithm to a set of points (x1, . . . , xN)
randomly sampled from X , a sparse set of good candidates
to the kernel regression problem is obtained. This method is
theorically well founded, easy to implement, computation-
ally efficient and it does not depend on kernels nor space’s
topology. Note that, despite the fact that this algorithm is
naturally online, this dictionary cannot be built (straightfor-
wardly) while estimating the parameters, since the parame-
ters of the chosen kernels (such as mean and deviation for
Gaussian kernels) will be parameterized as well. Observe
that only bounds on X have to be known in order to com-
pute this dictionary, and not the samples used for regression.

4 Sigma Point Kalman Filters

4.1 Bayesian filtering

The problem of Bayesian filtering can be expressed in its
state-space formulation:

sk+1 = fk(sk, nk) (13)
yk = gk(sk, vk)

The objective is to sequentially infer the hidden state sk

given the observations y1:k. The state evolution is driven
by the possibly nonlinear mapping fk and the process noise
nk. The observation yk is a function of the state sk, cor-
rupted by an observation noise vk. If the mappings are lin-
ear and if the noises nk and vk are Gaussian, the optimal

solution is given by the Kalman filter: quantities of inter-
est are random variables, and inference (that is prediction
of these quantities and correction of them given a new ob-
servation) is done online by propagating sufficient statistics
(mean and variance) through linear transformations.

4.2 SPKF Approach

The Sigma Point framework [8] is a nonlinear extension
of Kalman filtering (random noises are still Gaussian). The
basic idea is that it is easier to approximate a probability dis-
tribution than an arbitrary nonlinear function. Recall that
in the Kalman filter framework, basically linear transfor-
mations are applied to sufficient statistics. In the Extended
Kalman Filter (EKF) approach, nonlinear mappings are lin-
earized. In the Sigma Point approach, a set of so-called
sigma points are deterministically computed using the es-
timates of mean and of covariance of the random variable
of interest. These points are representative of the current
distribution. Then, instead of computing a linear (or lin-
earized) mapping of the distribution of interest, one calcu-
lates a nonlinear mapping of these sigma points, and use
them to compute sufficient statistics of interest for predic-
tion and correction equations, that is to approximate the fol-
lowing distributions:

p(Sk|Y1:k−1) =
∫
S

p(Sk|Sk−1)p(Sk−1|Y1:k−1)dSk−1

(14)

p(Sk|Y1:k) =
p(Yk|Sk)p(Sk|Y1:k−1)∫

S p(Yk|Sk)p(Sk|Y1:k−1)dSk
(15)

Note that SPKF and classical Kalman equations are very
similar. The major change is how to compute sufficient
statistics (directly for Kalman, through sigma points for
SPKF). Alg. 2 sketches a SPKF update in the case of addi-
tive noise, based on the state-space formulation, and using
the standard Kalman notations: sk|k−1 denotes a prediction,
sk|k an estimate (or correction), Ps,y a covariance matrix,
n̄k a mean and k is the discrete time index. The reader can
refer to [8] for details.

5 Proposed Algorithm

Recall that we want to sequentially approximate a non-
linear function, as samples (yk, xk) are available, with a set
of kernels. We state this parameter estimation problem in a
state-space problem:

θk+1 = θk + nk (16)

yk = f̂(xk; θk) + vk

201

Algorithm 2: SPKF Update
inputs : s̄k−1|k−1, Pk−1|k−1

outputs: s̄k|k, Pk|k

Sigma-points computation;
Compute deterministically sigma-point set Sk−1|k−1

from s̄k−1|k−1 and Pk−1|k−1;

Prediction Step;
Compute Sk|k−1 from fk(Sk−1|k−1, n̄k) and process
noise covariance;
Compute s̄k|k−1 and Psk|k−1 from Sk|k−1;

Correction Step;
Observe yk;
Yk|k−1 = gk(Sk|k−1, v̄k);
Compute ȳk|k−1, Pyk|k−1 and Psk|k−1,yk|k−1 from
Sk|k−1, Yk|k−1 and observation noise covariance;
Kk = Psk|k−1,yk|k−1P

−1
yk|k−1

;
sk|k = sk|k−1 + Kk(yk − ȳk|k−1);
Psk|k = Psk|k−1 −KkPyk|k−1K

T
k ;

Note that here f does not depend on time, but our approach
should be easily extended to nonstationary function approx-
imation. Here the approximation is of the form

f̂(x; θ) =
p∑

i=1

αiKσi
(x, xi) (17)

where θ = [(αi)
p
i=1, (xi)

p
i=1, (σi)

p
i=1]

T (18)

and Kσi
(x, xi) = exp(−‖x− xi‖2

2σ2
i

) (19)

The problem is to find the optimal number of kernels and a
good initialisation for our parameters.

As a preprocessing step, we use the dictionary (see sec-
tion 3). We first put a prior σ0 on the Gaussian width. We
then sample uniformly N random points from X . Finally,
we use these samples to compute the dictionary. We thus
obtain a set of p points D = {x1, . . . , xp} such that

ϕσ0(X) ' Span {ϕσ0(x1), . . . , ϕσ0(xp)} (20)

where ϕσ0 is the mapping corresponding to the kernel Kσ0 .
Note that even if the sparsification procedure is offline, the
algorithm (the regression part) is online. Moreover, we do
not need any training sample for this preprocessing step,
but only classical prior which is anyway needed for the
bayesian filter (σ0), one parameter ν and bounds for X .
These requirements are generally not restrictive.

We then use a SPKF to estimate our parameters. As for
any bayesian approach we have to put a prior on our param-
eter distribution. We state that

θ0 ∼ N (θ̄0,Σθ0) (21)

where

θ̄0 = [α0, . . . , α0,D, σ0, . . . , σ0]T (22)

Σθ0 = diag([σ2
α0

, . . . , σ2
α0

, σ2
µ0

, . . . , σ2
µ0

, σ2
σ0

, . . . , σ2
σ0

])
(23)

In these expressions, α0 is the prior mean on kernel weights,
D is the dictionary computed in the preprocessing step, σ0

is the prior mean on kernel deviation, and σ2
α0

, σ2
µ0

, σ2
σ0

are respectively the prior variance on kernel weights, cen-
ters and deviations. All these parameters (except the dic-
tionary) have to be set up beforehand. Note that θ̄0 ∈ R3p

and Σθ0 ∈ R3p×3p. We also have to put a prior on noises.
We state that n0 ∼ N (0, Rn0) where Rn0 = σ2

n0
I3p, I3p

being the identity matrix, and that v ∼ N (0, Rv), where
Rv = σ2

vIm, m being the size of observation vector. Thus,
We just have to apply a SPKF Update (which updates the
sufficient statistics of our parameters) at each time step, as
a new training sample (yk, xk) is available.

Note that we use a specific form of SPKF, the so-called
Square-Root Central Difference Kalman Filter (SR-CDKF)
parameter estimation form. This implementation uses the
fact that for this parameter estimation problem, the evolu-
tion equation is linear and the noise is additive. This ap-
proach is computationally cheaper: the complexity per it-
eration is O(|θ|2), where |θ| is the size of our parameter
vector (O(|θ|3) in the general case). See [8] for details.

A last issue is to choose the artificial process noise. For-
mally, since the target function is stationary, there is no pro-
cess noise. However introducing an artificial process noise
can strengthen convergence and robustness properties of the
filter. Choosing this noise is still an open research problem.
We follow [8] and use a Robbins-Monro stochastic approxi-
mation scheme for estimating innovation. That is we set the
process noise covariance as

Rnk
= (1− αRM)Rnk−1 (24)

+ αRMKk(yk − f̂(xk; θ̄k−1))(yk − f̂(xk; θ̄k−1))T KT
k

Here αRM is a forgetting factor set by the user, and Kk

is the Kalman gain obtained during the SR-CDKF update.
The observation noise is chosen constant. We summarize
our approach in Alg.3.

6 Preliminary results

In this section we present the results of our prelimi-
nary experiments, which aim at regressing a cardinal sine
(sinc(x) = sin(x)

x) on X = [−10, 10]. It is an easy prob-
lem, but a common benchmark too.

6.1 Problem statement and settings

At each time step k we observe xk ∼ UX (xk uni-
formly sampled from X) and yk = sinc(xk) + wk where

202

Algorithm 3: Proposed algorithm
inputs : ν, N , α0, σ0, σα0 , σµ0 , σσ0 , σn0 , σv

outputs: θ̄, Σθ

Compute dictionary;
∀i ∈ {1 . . . N}, xi ∼ UX ;
Set X = {x1, . . . , xN} ;
D =Compute-Dictionary (X ,ν,σ0) ;

Initialisation;
Initialise θ̄0, Σθ0 , Rn0 , Rv;

for k = 1, 2, . . . do
Observe (yk, xk);

SR-CDKF update;
[θ̄k,Σθk

,Kk] =SR-CDKF-Update (θ̄k−1,Σθk−1 ,
yk,xk,Rnk−1 ,Rv);

Artificial process noise update;
Rnk

= (1− αRM)Rnk−1 + αRMKk(yk −
f̂(xk, θ̄k−1))(yk − f̂(xk, θ̄k−1))T KT

k ;

wk ∼ N (0, σ2
w). Note that we distinguish the true observa-

tion covariance noise σ2
w and our prior σ2

v . For those exper-
iments we set σw = 0.1. We set the algorithm’s parameters
to N = 100, σ0 = 1.6, ν = 0.1, α0 = 0, σv = 0.5,
αRM = 0.7, and all variances (σ2

α0
, σ2

µ0
, σ2

σ0
, σ2

n0
) to 0.1.

Note that this parameters were not finely tuned (only orders
of magnitude are important).

6.2 Quality of regression

We measure the quality of regression with the RMSE
(Root Mean Square Error), that is

RMSE =
∫

x∈X

(
f(x)− f̂(x; θ)

)2

dx (25)

computed over 200 equally-spaced points. Averaged over
100 runs of our algorithm, we obtain a RMSE of 0.0676 ±
0.0176 for 50 samples, of 0.0452±0.0092 for 100 samples,
and of 0.0397 ± 0.0065 for 200 samples, for an average of
9.6 kernels. This is illustrated on figure 1. We give a typi-
cal result in Fig. 2 (50 observed samples). The dotted line,
solid line and the crosses represent respectively the cardi-
nale sine, the regression and the observations.

The proposed algorithm compares favorably with state-
of-the-art batch and online algorithms. Table 1 shows the
performance of the proposed algorithm and of other meth-
ods (some being online and other batch, some handling un-
certainty information and other not), for which results are
reproduced from [10] (see this paper and references therein
for details about these algorithms). For each method is
given the RMSE as well as the number of kernel functions,

Figure 1. Mean and standard deviation of
RMSE over 100 trainings.

Figure 2. Typical regression. The cardinal
sine is in dashed line, the regression in solid
line and noisy observations are crosses.

and the associated variations, the SVM (Support Vector Ma-
chine) [9] being the baseline. We achieve the best RMSE
with slightly more kernels than other approaches. However
parameters can be tuned in order to address the trade-off
between number of kernels and quality of approximation.
Moreover, recall that our parameters were not finely tuned.

6.3 Uncertainty of generalization

Through the sigma point approach, we are also able to
derive a confidence interval over X . This allows to quan-
tify the uncertainty of the regression at any point (and not a
global upper bound as it is often computed in kernel-based
regression methods). A typical confidence interval is illus-
trated on Fig.3. The dotted line, solid line and the crosses
represent respectively the cardinale sine, the confidence in-
terval and the observations. It can be particularly useful
when the regression is used in a control framework, where
this confidence approach can be used to take more cautious
decisions (see [7] for example).

In Fig. 3, the samples used to feed the regressor are sam-

203

Method test error # kernels
Proposed algorithm 0.0385 (-25.8%) 9.6 (-65.7%)
Figueiredo 0.0455 (-12.3%) 7.0 (-75%)
SVM 0.0519 (-0.0%) 28.0 (-0%)
RVM 0.0494 (-4.8%) 6.9 (-75.3%)
VRVM 0.0494 (-4.8%) 7.4 (-73.5%)
MCMC 0.0468 (-9.83%) 6.5 (-76.8%)
Sequential RVM 0.0591 (+13.8%) 4.5 (-83.9%)

Table 1. Comparative results (batch and on-
line results are taken from [10]).

Figure 3. Confidence interval (uniform distri-
bution of samples). The cardinal sine is in
dashed line, the confidence interval in solid
line and noisy observations are crosses.

pled uniformly, and thus the associated confidence interval
has an approximately constant width. However, a regres-
sor which handle uncertainty should do it locally. This is
indeed the case for the proposed algorithm. In Fig. 4, the
distribution of samples is Gaussian. It can be seen that the
confidence interval is much larger where samples are less
frequent (close to the bounds).

7 Future work

We have proposed a bayesian approach to online non-
linear kernel regression with a preprocessing sparsification
procedure. Our method has proven to be effective on a sim-
ple cardinale sine regression problem. This simple exam-
ple demonstrated that the proposed approach compares fa-
vorably with the state-of-the-art methods and it illustrated
how the uncertainty of generalization is quantified. We aim
to extend this framework to an online sparsification proce-
dure, and to the problem where only a noisy known non-
linear mapping of the function of interest is available (here
we directly observe the noisy function of interest). We also
intend to work on the artificial process noise to derive more
efficient exploration of the parameter space.

Figure 4. Confidence interval (normal distri-
bution of samples). The cardinal sine is in
dashed line, the confidence interval in solid
line and noisy observations are crosses.

References

[1] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, New York, NY, USA, 1995.

[2] C. M. Bishop and M. E. Tipping. Bayesian Regression and
Classification. In Advances in Learning Theory: Methods,
Models and Applications, volume 190, pages 267–285. OS
Press, NATO Science Series III: Computer and Systems Sci-
ences, 2003.

[3] Z. Chen. Bayesian Filtering : From Kalman Filters to Parti-
cle Filters, and Beyond. Technical report, Adaptive Systems
Lab, McMaster University, 2003.

[4] Y. Engel. Algorithms and Representations for Reinforcement
Learning. PhD thesis, Hebrew University, April 2005.

[5] L. Feldkamp and G. Puskorius. A signal processing frame-
work based on dynamic neural networks withapplication to
problems in adaptation, filtering, and classification. In Pro-
ceedings of the IEEE, volume 86, pages 2259–2277, 1998.

[6] B. Scholkopf and A. J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, Cambridge, MA, USA, 2001.

[7] A. L. Strehl, L. Li, and M. L. Littman. Incremental model-
based learners with formal learning-time guarantees. In
22nd Conference on Uncertainty in Artificial Intelligence,
pages 485–493, 2006.

[8] R. van der Merwe. Sigma-Point Kalman Filters for Proba-
bilistic Inference in Dynamic State-Space Models. PhD the-
sis, OGI School of Science & Engineering, Oregon Health
& Science University, April 2004.

[9] V. N. Vapnik. Statisical Learning Theory. John Wiley &
Sons, Inc., 1998.

[10] J. Vermaak, S. J. Godsill, and A. Doucet. Sequential
Bayesian Kernel Regression. In Advances in Neural Infor-
mation Processing Systems 16. MIT Press, 2003.

[11] Wan, E. A. and Van Der Merwe, R. . The Unscented Kalman
Filter for nonlinear estimation. In Adaptive Systems for Sig-
nal Processing, Communications, and Control Symposium,
pages 153–158, 2000.

204

