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Performance Analysis of Covariance Matrix

Estimates in Impulsive Noise
Frédéric Pascal, Philippe Forster , Jean-Philippe Ovarlez and Pascal Larzabal

Abstract

This paper deals with covariance matrix estimates in impulsive noise environments. Physical models

based on compound noise modeling (SIRV, Compound Gaussian Processes) allow to correctly describe

reality (e.g., range power variations or clutter transitions areas in radar problems). However, these

models depend on several unknown parameters (covariance matrix, statistical distribution of the texture,

disturbance parameters) which have to be estimated. Based on these noise models, this paper presents

a complete analysis of the main covariance matrix estimates used in the literature: four estimates are

studied, the well-known Sample Covariance Matrix�M SCM and a normalized version�MN , the Fixed

Point (FP) estimate�MF P , and a theoretical benchmark�MT F P . Among these estimates, the only one

of practical interest in impulsive noise is the FP. The three others, which could be used in a Gaussian

context, are, in this paper, only of academic interest,i.e., for comparison with the FP. A statistical study

of these estimates is performed through bias analysis, consistency, and asymptotic distribution. This study

allows to compare the performance of the estimates and to establish simple relationships between them.

Finally, theoretical results are emphasized by several simulations corresponding to real situations.

Index Terms

SIRV, covariance matrix estimates, statistical performance analysis, bias, consistency, asymptotic

distribution, non-Gaussian noise.
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I. I NTRODUCTION

It is often assumed that signals, interferences or noises are Gaussian stochastic processes. Indeed,

this assumption makes sense in many applications. Among them, we can cite: sources localization in

passive sonar where signals and noises are generally assumed to be Gaussian, radar detection where

thermal noise and clutter are often modeled as Gaussian processes and digital communications where the

Gaussian hypothesis is widely used for interferences and noises.

In these contexts, Gaussian models have been thoroughly investigated in the framework of Statistical

Estimation and Detection Theory [1], [2], [3]. They have led to attractive algorithms. For instance, we

can cite the stochastic Maximum Likelihood method for sources localization in array processing [4], [5],

and the matchedÞlter in radar detection [6], [7] and in digital communications [8].

However, such widespread techniques are sub-optimal when the noise process is a non-Gaussian

stochastic process [9]. Therefore, non-Gaussian noise modeling has gained many interest in the last

decades and currently leads to active researches in the literature. High order moment methods [10] have

initiated this research activity and particleÞltering methods [11] are now intensively investigated. In radar

applications, experimental clutter measurements, performed by MIT [12], showed that these data are not

correctly described by Gaussian statistical models. More generally, numerous non-Gaussian models have

been developed in several engineeringÞelds. For example, we can cite the K-distribution already used

in the area of radar detection [13], [14]. Moreover, let us note that the Weibull distribution is a widely

spread model in biostatistics and in radar detection [15].

One of the most general and elegant impulsive noise model is provided by the so-calledSpherically

Invariant Random Vectors(SIRV). Indeed, these processes encompass a large number of non-Gaussian

distributions, included, of course, Gaussian processes and also, the aforementioned distributions. SIRV

and their variants have been used in various problems such as: bandlimited speech signals [16], radar

clutter echoes [17], [18], and wireless radio fading propagation problems [19], [20]. Moreover, SIRVs

are also connected to other interesting processes such as the ”heavy-tailed” processes, which have been

used to model impulse radio noises as well as processes used inÞnancial engineering models [21].

A SIRV is a compound process. It is the product of a Gaussian random process with the square root

of a non-negative random scalar variable (called thetexturein the radar context). Thus, the SIRV is fully
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characterized by the texture (representing an unknown power) and the unknown covariance matrix of the

zero-mean Gaussian vector. One of the major challenging difÞculties in SIRV modeling, is to estimate

these two unknown quantities [22], [23], [24]. These problems have been investigated in [25] for the

texture estimation while [26] and [27] have proposed different estimates for the covariance matrix. The

knowledge of the estimates statistical properties is essential to use them in different contexts.

This paper deals with three covariance matrix estimates: the well-known Sample Covariance Matrix

(SCM) [28], the Theoretical Fixed Point (TFP), both studied for academic purposes, and the Fixed Point

(FP) which may easily be implemented in practice [29]. These three estimates arise as the solutions of

Maximum Likelihood (ML) or Approximate Maximum Likelihood (AML) problems. The main contribu-

tion of this paper is to derive and to compare their statistical properties: bias, consistency, second order

moment and asymptotical distribution.

The paper is organized as follows. In Section II, a background on the SIRV covariance matrix estimates

is given. Sections III, IV and V present the main results of this paper,i.e., performance analysis of the

estimates in terms of bias, consistency, covariance matrices, and asymptotic distribution. For clarity, long

proofs are reported in Appendices. Finally, Section VI gives some simulation results conÞrming the

theoretical analysis.

II. PROBLEM FORMULATION

In this section, we introduce the SIRV noise model under study and the associated covariance matrix

estimates. In the following,H denotes the conjugate transpose operator,� denotes the transpose operator,

E stands for the statistical mean of a random variable, and Tr(M) is the trace of the matrixM.

A. Statistical Framework

Let us recap some SIRV theory results. A SIRV is a complex compound Gaussian process with random

power. More precisely, a SIRVc [30], [31] is the product between the square root of a positive random

variable� and am-dimensional independent zero-mean complex Gaussian vectorx

c =
�

� x .

For identiÞability considerations, the covariance matrixM = E
�
xxH

�
is normalized according to Tr(M) =

m (see [26]) and called, in the sequel, normalization#1 .

November 5, 2007 DRAFT



SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 4

The SIRV Probability Density Function (PDF) expression is

p(c) =
1

� m |M|

� + �

0

1

� m exp
�

Š
cH MŠ 1 c

�

�
q(� ) d� ,

whereq is the texture PDF.

Notice that, when� is Dirac distributed,i.e., q(� ) = � (� Š � 0), the resulting SIRV is a zero-mean

Gaussian vector with covariance matrix� 0 M while when� is Gamma distributed, the resulting SIRV is

the well known K-distribution. However, the closed-form expression of the texture PDFq is not always

available (e.g., Weibull SIRV). Thus, in problems whereM is unknown and has to be estimated from

SIRV realizations, it would be of interest to have a covariance matrix structure estimate independent of

the texture.

B. Covariance Matrix Structure Estimation

The covariance matrix has to be normalized to identify the SIRV noise model. Consequently, it is

reasonable to think that the same normalization has to be applied to its estimate. However, as it will

be shown later, the appropriate normalization for performance analysis is Tr(M Š 1 �M) = m and will be

called normalization#2 for any estimate�M of M:
�
�

	

Normalization #1: Tr(M) = m ,

Normalization #2: Tr(M Š 1 �M) = m or, equivalently, Tr(M Š 1/ 2 �MM Š 1/ 2) = m .
(1)

WhenM is unknown, it could be objected that normalization#2 is only of theoretical interest while

only normalization#1 can be applied in practice. In most applications, however,�M is exploited in such

a way that any scale factor on�M has no inßuence on theÞnal result. (e.g., in radar detection, the detector

could be a likelihood ratio, homogeneous in terms of�M [26]). This would also be the case in general

estimation problems where estimated parameters only depend on the structure of the covariance matrix.

Hence, the normalization, chosen for any studied case, is of little importance.

In this framework, the three estimates will be built fromN independent realizations ofc denoted

c1 =
�

� 1 x1, . . . , cN =
�

� N xN and called secondary data.

First, if we had access to theN independent realizationsx1, . . . , xN of the underlying Gaussian vector

x, the ML estimate would lead to the Sample Covariance Matrix (SCM) which is Wishart distributed
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[33] and deÞned by

�MSCM =
1

N

N


k=1

xkxH
k . (2)

But, in practice, we only have access to theN independent realizations of a SIRV,c1, . . . , cN and it is

impossible to isolate the Gaussian processx. However, it is used as a benchmark for comparison with the

other estimates. Moreover,�MSCM performance analysis will lead to an interpretation of the theoretical

expressions obtained for the other estimates.

To fulÞll normalization#2 , �MN will be deÞned by

�MN =
m

Tr(MŠ 1 �MSCM )
�MSCM , (3)

Eq. (3) can also be written

�MN =
m

N


i =1

xH
i MŠ 1xi

N


k=1

xkxH
k . (4)

Estimates (2) and (3) have only a theoretical interest since thexk ’s are not available. Practical estimates

are functions of theck ’s and ”good” ones should not depend on the� k ’s.

A Þrst candidate is the Normalized Sample Covariance Matrix (NSCM) [34] given by

�MNSCM =
m

N

N


k=1

ckcH
k

cH
k ck

,

which can be rewritten only in terms ofxk ’s

�MNSCM =
m

N

N


k=1

xkxH
k

xH
k xk

,

As the statistical performance of this estimate have been extensively studied in [35], only its statistical

analysis results will be presented in order to compare all available estimates. Moreover, although this

”heuristic” estimate respects normalization#1 , it exhibits several severe drawbacks.

A second candidate, provided by the ML theory [26], [27], is the FP estimate�MF P of M, deÞned as

a Þxed point of functionf N,M

f N,M :

�
����

���	

D Š� D

A Š�
m

N

N


k=1

ckcH
k

cH
k AŠ 1ck

(5)
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whereD = { A � M m (C)| AH = A , A positive deÞnite} with M m (C) = { m× m matrices with elements

in C} .

The notationf N,M stresses the dependency onN and on the covariance matrixM involved in theck’s.

As shown in [36], equation�M = f N,M ( �M) has a solution of the form� M, where� is an arbitrary

scaling factor. In this paper, the only solution�MF P satisfying normalization#2 is called the Fixed Point

estimate. In other words,�MF P is the unique solution of

�MF P = f N,M ( �MF P ) =
m

N

N


k=1

ck cH
k

cH
k

�M
Š 1
F P ck

=
m

N

N


k=1

xk xH
k

xH
k

�M
Š 1
F P xk

, (6)

such that �MF P respects normalization #2.

Notice that �MF P , as �MNSCM , does not depend on the texture� as emphasized in Eq. (6).

Remark II.1

The FP is the ML estimate when the texture� is assumed to be an unknown deterministic parameter, and

is an Approximate Maximum Likelihood (AML) when� is assumed to be a positive random variable [26],

[27].

Finally, an analysis of another texture-independent estimate�MT F P of M is performed, where

�MT F P =
m

N

N


k=1

ck cH
k

cH
k MŠ 1 ck

=
m

N

N


k=1

xk xH
k

xH
k MŠ 1 xk

. (7)

In this paper, it is called the Theoretical Fixed Point (TFP) estimate. This estimate is only of theoretical

interest since it depends on the unknown covariance matrixM. It is closely related to the FP estimate (6)

and it will be shown that its statistical performance have strong connections with those of�MF P . Notice

that �MT F P satisÞes normalization#2 : Tr(M Š 1 �MT F P ) = m . So, the TFP estimate will be considered

as the benchmark for�MF P .

In this context of covariance matrix estimation in impulsive noise, the statistical properties of the

three proposed estimates,�MN , �MT F P and �MF P will be established in this paper, while existing results

concerning�MSCM and �MNSCM will be reminded.
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III. B IAS ANALYSIS

This section provides an analysis of the biasB denoted by

B ( �M) = E
�

�M


Š M ,

for each estimate�M introduced previously.

The SCM �MSCM has been studied in literature and is unbiased. Now,�MN bias will be analysed next.

Its unbiasedness is presented in the following theorem

Theorem III.1 (Unbiasedness of �MN )

�MN is an unbiased estimate ofM .

Proof: To prove thatE
�

�MN


= M, the focus is put on

E
�

�MN


= m

N


k=1

E

�

�
�
�
�
�
�

xkxH
k

N


i =1

xH
i MŠ 1xi

�

�
�
�
�
�
�

. (8)

For this purpose, let us whiten thexk’s in Eq. (8), according toyk = MŠ 1/ 2 xk

E
�

�MN


= m M1/ 2

�

�
�
�
�
�
�

N


k=1

E

�

�
�
�
�
�
�

ykyH
k

N


i =1

yH
i yi

�

�
�
�
�
�
�

�

�
�
�
�
�
�

M1/ 2 . (9)

For k = 1 , . . . , N , Ak are given by

Ak =
ykyH

k

N


i =1

yH
i yi

. (10)

Sinceyk � CN (0, I ) for any k, the j th element ofyk denoted byy(j )
k can be written as

y(j )
k =

�
(1/ 2) � 2(j )

k exp(i� (j )
k ) ,

where for1 � k � N and1 � j � m , � 2(j )
k � � 2(2) and � (j )

k � U ([0, 2� ]) , where� 2(2) denotes the

Chi-squared distribution with 2 degrees of freedom andU([0, 2� ]) , the uniform distribution on interval

[0, 2� ] , and� 2(j )
k and� (j )

k are independent.
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Thus, by replacing theyk ’s in Eq. (10), elementpq of matrix Ak is

A(pq)
k =

�
� 2(p)

k � 2(q)
k

N


i =1

m


r =1

� 2(r )
i

exp(i (� (p)
k Š � (q)

k )) .

SinceE
�
exp(i� (p)

k )


= 0 , for any(k, p), the non diagonal elements ofE [Ak] are null. Then, diagonal

elementpp is

E
�
A(pp)

k


= E

�

�
�
�
�
�
�

� 2(p)
k

N


i =1

m


r =1

� 2(r )
i

�

�
�
�
�
�
�

= E

�

�
�
�
�
�
�
�

� 2(p)
k

� 2(p)
k +

N


i =1
i �= k

m


r =1
r �= p

� 2(r )
i

�

�
�
�
�
�
�
�

,

where
� 2(p)

k

� 2(p)
k +

N


i =1
i �= k

m


r =1
r �= p

� 2(r )
i

is a Beta of theÞrst kind distributed random variable with parameters 2

and 2Nm Š 2. Moreover, the statistical mean of a� (2, 2Nm Š 2) is
2

2 + 2Nm Š 2
=

1

Nm
, thus

E
�
A(pp)

k


=

1

Nm
for k = 1 , . . . , N and forp = 1 , . . . , m andE [Ak] = (1 /Nm ) I . Using these results

in Eq. (9) leads to

E
�

�MN


= m M1/ 2

�
N


k=1

(1/Nm ) I

�

M1/ 2 ,

proving that �MN is unbiased

E
�

�MN


= M ,

The analysis of�MNSCM bias is provided in two cases. In the most general case, theorem III.2 gives a

closed form expression of�MNSCM bias. Then theorem III.3 proves the unbiasedness of�MNSCM when

M = I , whereI is the identity matrix.

Theorem III.2 ( �MNSCM bias when M has distinct eigenvalues)

Assuming thatM has distinct eigenvalues,�MNSCM bias is given by

B ( �MNSCM ) = U (diag(E c)) UH Š M ,

where
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€ the operator diag reshapes am-vector v = ( vj )1� j � m into am× m diagonal matrixV = ( Vij )1� i,j � m

with elementsVii = vi ,

€ U is the orthogonal matrix of them eigenvectors ofM,

€ E = ( Eij )1� i,j � m with Eij =
log (� j /� i )

� j /� i Š 1
Š

� i

� j
if i �= j andEij = 0 if i = j , where� i is thei th

eigenvalue ofM,

€ c = ( cj )1� j � m with cj = m
�

k�= j

1

1 Š � k /� j
.

Proof: see [35].

Theorem III.3 (Unbiasedness of �MNSCM when M = I)

�MNSCM is an unbiased estimate ofI

Proof: With the same reasoning as in theorem III.1’s proof, it is shown thatE
�

�MNSCM


is a

diagonal matrix with elements

A(kk ) = mE

�

� � 2(k) /
m


j =1

� 2(j )

�

� = mE

�

�
� � 2(k) /

�

�
� � 2(k) +

m


j =1
j �= k

� 2(j )

�

�
�

�

�
� ,

where� 2(k) /

�

�
� � 2(k) +

m


j =1
j �= k

� 2(j )

�

�
� is a Beta of theÞrst kind distributed random variable with parameters

2 and2m Š 2. Since the statistical mean of a� (2, 2m Š 2) is
2

2 + 2m Š 2
=

1

m
, A(kk ) = 1 , which

completes the proof.

Theorem III.4 (Unbiasedness of �MF P )

�MF P is an unbiased estimate ofM

Proof: For clarity, in this section�MF P will be denoted�M. TheÞrst part of the proof is the whitening

of the data. By applying the following change of variable,yk = MŠ 1/ 2 xk to Eq. (6), one has

�MF P =
m

N

N


k=1

M1/ 2 yk yH
k M1/ 2

yH
k

�T
Š 1

yk

,

where

�T = MŠ 1/ 2 �MF P MŠ 1/ 2 .

Therefore,

�T =
m

N

N


k=1

yk yH
k

yH
k

�T
Š 1

yk

.
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�T is thus the unique FP estimate (up to a scaling factor) of the identity matrix. Its statistics are clearly

independent ofM since theyk ’s areN (0, I ).

Moreover, for any unitary matrixU,

U �T UH =
m

N

N


k=1

zk zH
k

zH
k

�
U �T UH

� Š 1
zk

,

wherezk = U yk are also i.i.d.N (0, I ) . Therefore,U �T UH has the same distribution as�T , so

E
�
�T


= UE

�
�T


UH , for any unitary matrixU .

Since E
�
�T


is different from 0, Lemma A.1, detailed in the Appendix, ensures thatE

�
�T


= � I .

Moreover, since�T = MŠ 1/ 2 �MM Š 1/ 2 , thusE
�

�M


= � M also since Tr(M Š 1 �M) = m, � = 1 .

In conclusion: �M is an unbiased estimate ofM, for any integerN .

Theorem III.5 (Unbiasedness of �MT F P )

�MT F P is an unbiased estimate ofM

Proof: To prove Theorem III.5, changing variablex = M 1/ 2 y, wherey � CN (0, I ) , leads to

E
�

�MT F P


= M1/ 2 E

�

� m
y yH

yH y

�

� M1/ 2 ,

The equality

E

�

� m
y yH

yH y

�

� = I ,

is proven by Theorem III.3.

Thus,E
�

�MT F P


= M, i.e., �MT F P is an unbiased estimate ofM .

IV. CONSISTENCY

An estimate�M of M is consistent if

� 	 > 0, P r (	 �M Š M	 
 	 ) ŠŠŠŠŠ�
N � + �

0,

whereN is the number of secondary datack’s used to estimateM and	 .	 stands for any matrix norm.

Remark IV.1

WhenM has distinct eigenvalues, Theorem III.2 shows that�MNSCM is a biased estimate ofM. Moreover,

this bias does not depend on the numberN of xk ’s. Thus, �MNSCM is not a consistent estimate ofM. In the

sequel, since�MNSCM suffers from the previous drawbacks (bias and non consistent), thus from here on,
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this estimate will not be taken into account whenM has distinct eigenvalues. On the other hand, the NSCM

estimate ofI will be studied as a particular case of the TFP estimate.

Under Gaussian assumptions, the SCM estimate is consistent. This result was established in [28] pp.

80-81.

Theorem IV.1 ( �MN consistency)

�MN is a consistent estimate ofM .

Proof: By whitening thexk ’s in Eq. 4:

�MN = m M1/ 2

�

�
�
�
�
�
�

N


k=1

ykyH
k

N


i =1

yH
i yi

�

�
�
�
�
�
�

M1/ 2 ,

whereyk � CN (0, I ) .

Then, the Weak Law of Large Numbers (WLLN) demonstrates that

1

N

N


k=1

ykyH
k

P rŠŠŠŠŠ�
N � + �

I ,

1

N

N


i =1

yH
i yi

P rŠŠŠŠŠ�
N � + �

E
�
yH y

�
= m .

Finally, basic theorems on stochastic convergence show that

�MN
P rŠŠŠŠŠ�

N � + �
M ,

which means that�MN is a consistent estimate ofM.

Theorem IV.2 ( �MF P consistency)

�MF P is a consistent estimate ofM .

Proof: See Appendix B.

Theorem IV.3 ( �MT F P consistency)

�MT F P is a consistent estimate ofM .

Proof: Theorem III.1 and the WLLN imply that�MT F P is a consistent estimate ofM.
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V. A SYMPTOTIC DISTRIBUTION

A. Notations

In this section, a perturbation analysis will be used to derive the asymptotic distribution of the three

estimates, all denoted�M for clarity. For this purpose,�M is rewritten as

�M = M + � M .

The essential quantities for the analysis are deÞned as follows:

€ � = MŠ 1/ 2 (� M) MŠ 1/ 2 = MŠ 1/ 2 �M M Š 1/ 2 Š I ,

€ � = vec(� ) where� is the vector containing all the elements of� and vec denotes the operator

which reshapes them × n matrix elements into amn column vector.

In the sequel, these quantities will be indexed according to the studied estimate:� SCM , � N , � T F P and

� F P .

The asymptotic distribution of�M is obtained from the distribution of� with the following Proposition:

Proposition V.1

vec( �M) =
�

M1/ 2 � M� / 2
�

� + vec(M),

where� represents the Kronecker product.

Proof: �M = M1/ 2 � M1/ 2 + M . This is proven by the property, vec(EFG) =
 
E � G� !

vec(F) for

any matrixE, F, G , (see [33] p.9).

The aim of this section is to derive the asymptotic distribution of� , i.e., the asymptotic distribution of�

�
Re(� )

Im(� )

�

� , where Re(� ) denotes the real part of the complex vector� and Im(� ) its imaginary part.

It will be shown later that this distribution is Gaussian and therefore is fully characterized by its asymptotic

covariance matrix. This matrix may be derived from the two quantitiesE
�
�� � �

andE
�
�� H �

. However,

in this speciÞc case,� is the vec of an Hermitian matrix soE
�
�� � �

can be obtained fromE
�
�� H �

.
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B. Results

The following original results use the notationsC1 andC2, deÞned by

C1 =
m

m + 1

�

� P Š
1

m
vec(I )vec(I ) �

�

� , (11)

C2 =
m

m + 1

�

� I Š
1

m
vec(I )vec(I ) �

�

� , (12)

whereP is deÞned by, for1 � p, p� � m ,
�
����

���	

Pkl = 1 for k = l = p + m(p Š 1) ,

Pkl = 1 for k = p + m(p� Š 1) andl = p� + m(p Š 1) ,

Pkl = 0 else.

(13)

The covariance matrix of vec( �MSCM ) has been established in [28] and is reminded here below.

Theorem V.1 (vec( �MSCM ) Asymptotic Distribution)

1)
�

N

�

�
Re(� SCM )

Im(� SCM )

�

� dist.ŠŠŠŠŠ�
N � + �

N (0, CSCM ) , where dist.ŠŠŠ� stands for the convergence in distribu-

tion andCSCM denotes the covariance matrix of

�

�
Re(� SCM )

Im(� SCM )

�

� which can be straightforwardly

obtained from:

2) N E
�
� SCM � �

SCM

�
ŠŠŠŠŠ�
N � + �

P whereP is deÞned above ;

3) N E
�
� SCM � H

SCM

�
ŠŠŠŠŠ�
N � + �

I .

Proof: See [33].

Theorem V.2 (vec( �MN ) Asymptotic Distribution)

1)
�

N

�

�
Re(� N )

Im(� N )

�

� dist.ŠŠŠŠŠ�
N � + �

N (0, CN ) , whereCN denotes the covariance matrix and can be straight-

forwardly obtained from:

2) N E
�
� N � �

N

�
ŠŠŠŠŠ�
N � + �

�

�
m + 1

m

�

� C1 ;
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3) N E
�
� N � H

N

�
ŠŠŠŠŠ�
N � + �

�

�
m + 1

m

�

� C2 .

The two matricesC1 andC2 are deÞned by Eqs. (11) and (12).

Proof: See Appendix C.

Theorem V.3 (vec( �MT F P ) Asymptotic Distribution)

1)
�

N

�

�
Re(� T F P )

Im(� T F P )

�

� dist.ŠŠŠŠŠ�
N � + �

N (0, CT F P ) , whereCT F P denotes the covariance matrix and can

be straightforwardly obtained from:

2) N E
�
� T F P � �

T F P

�
ŠŠŠŠŠ�
N � + �

C1 ;

3) N E
�
� T F P � H

T F P

�
ŠŠŠŠŠ�
N � + �

C2 .

Proof: See Appendix D.

In [37], the following original results on�MF P with the above notations has been partially established.

Theorem V.4 (vec( �MF P ) Asymptotic Distribution)

1)
�

N

�

�
Re(� F P )

Im(� F P )

�

� dist.ŠŠŠŠŠ�
N � + �

N (0, CF P ) , whereCF P denotes the covariance matrix and can be

straightforwardly obtained from:

2) N E
�
� F P � �

F P

�
ŠŠŠŠŠ�
N � + �

�

�
m + 1

m

�

�

2

C1 ;

3) N E
�
� F P � H

F P

�
ŠŠŠŠŠ�
N � + �

�

�
m + 1

m

�

�

2

C2 .

Proof: Proof of theorem V.4 is fully given in Appendix E.

C. Synthesis

All the results on the asymptotic second order moment of�M are recapped in table I:

€ The three estimates�MF P , �MT F P and �MN , share the same asymptotic covariance matrix up to

scaling factors.
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TABLE I

ASYMPTOTIC SECOND ORDER MOMENT

bMF P bM T F P bM SCM bM N

Limit of NE
ˆ
�� �

˜ `
m +1

m

´ 2 C1 C1 P m +1
m C1

Limit of NE
ˆ
�� H

˜ `
m +1

m

´ 2 C2 C2 I m +1
m C2

€ More precisely,

" �
m

m+1

� 2
N � F P ,

�
m

m+1 N � N and
�

N � T F P have the same asymptotic distri-

bution. Therefore�MF P , with N secondary data, has the same asymptotic behavior as�MN , with
m

m+1 N secondary data. Since�MN is the SCM up to a scale factor, we may conclude that, in problems

invariant with respect to a scale factor on the covariance matrix, the FP estimate is asymptotically

equivalent to the SCM with a little less secondary data:m+1
m N data.

VI. SIMULATIONS

In order to enlighten results provided in sections III, IV and V, some simulation results are presented.

Since �MF P and �MT F P are texture independent and�MSCM and �MN are only valid under Gaussian

assumption, simulations are performed with Gaussian noise.

OperatorA is deÞned as the empirical mean of the quantitiesA(i ) obtained fromI Monte Carlo runs.

For each iterationi , a new set ofN secondary datax1, . . . , xN is generated to computeA(i ).

Thus, for example,�M is deÞned by

�M =
1

I

I


i =1

�M(i ) .

A. Bias analysis

The results presented in this section are obtained for complex Gaussian zero-mean data with covariance

matrix M deÞned by

M ij = 
 |i Š j | , for 1 � i, j � m .
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Figure 1 shows the bias of each estimate for different values of
 : 
 = 0 .1, 0.5 and0.9 . The length

of each vectorxk is m = 3 .

For that purpose, a plot ofC( �M, N ) =
#
#
# �M Š M

#
#
# versus the numberN of xk ’s and for any matrix

norm 	 .	 is presented for each estimate.

It can be noticed that, as enlightened by theoretical analysis, the bias of�MN , �MT F P and �MF P is very

close to0 for each value ofN , while the bias of �MNSCM (when the covariance matrixM is different

from I) does not tend to zero with the numberN of xk ’s. Moreover, this simulation underlines the fact

that �MNSCM bias does not depend onN , it is constant for all numberN of xk ’s.

Furthermore, the correlation coefÞcient 
 has of course no inßuence on the unbiased estimates. On

the other hand, for each value of
 , the bias of the NSCM estimate is different and it tends to 0 when


tends to 0 (caseM tends toI).

B. Consistency analysis

Figure 2 presents results of estimates consistency. For that purpose, a plot ofD ( �M, N ) =
#
#
# �M Š M

#
#
#

versus the numberN of xk ’s is presented for each estimate.

It can be noticed that the above criterionD( �M, N ) tends to0 whenN tends to+ � , for each estimate

and each value of
 . However, there are moreßuctuations when data are strongly correlated (i.e., 
  1).

C. Second order moment analysis

Simulations relating to second order moment have been represented on two different graphics: one on

transpose operator� results and the other for the transpose conjugate operatorH results.

In Þgure 3, the quantityS1( �M, N )

S1( �M, N ) =
#
#
#N �� � Š Q

#
#
# ,

is plotted for the four studied estimates versus the numberN of xk ’s, where� is deÞned in the notations

used in section V and the matrixQ represents the closed form expression ofN E
�
�� � �

for the different

estimates.

Let us recall these results:
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€ for �MF P , Q =

�

�
m + 1

m

�

�

2

C1 ,

€ for �MNSCM , Q = C1 ,

€ for �MSCM , Q = P,

€ for �MN , Q =

�

�
m + 1

m

�

� C1 ,

whereC1 is deÞned by (11) andP by (13).

Figure 3.a validates results on second order moment estimates obtained in section V because the

quantityS1( �M, N ) tends to zero whenN tends to inÞnity for all estimates.

From Figure 3.b, the same conclusion as Figure 3.a is drawn but with the transpose conjugate operator

H , i.e.,

S2( �M, N ) =
#
#
#N �� H Š R

#
#
# ,

where the matrixR represents the closed form expression ofN E
�
�� H �

for the different estimates.

VII. C ONCLUSION

In this paper, the problem of covariance matrix estimation in impulsive noise modeled by Spherically

Invariant Random Vectors was considered. Four estimates,�MSCM , �MN , �MF P and �MT F P have been

studied through a theoretical statistical analysis : bias, consistency, asymptotic distribution and second

order moments. All original results have been illustrated by simulations.

In this impulsive noise context, the Sample Covariance Matrix cannot be used in practice since this

estimate of the Gaussian kernel is based on unavailable data. The same remark holds for the theoretical

Þxed point estimate as it depends on the unknown covariance matrix that needs to be estimated. Finally

the well known Normalized Sample Covariance Matrix is biased and not consistent. Therefore the only

appropriate estimate is the so called Fixed Point estimate, which is unbiased, consistent and has, up to

a scale factor, the same second order moments as the sample covariance matrix of the Gaussian kernel.

Finally, this statistical study will allow a performance analysis of signal processing algorithms based

on these estimates. For instance performance of radar detection algorithms using the Fixed Point estimate

will be investigated in future work.
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APPENDIX A

LEMMA A.1
Lemma A.1

Let A denote a Hermitian matrix and letU stand for any unitary matrix, then

A = UAUH , � U � A = � I , � � R

Proof:

€ If A = � I thenA = UAUH .

€ Now, assume that for a diagonalizable matrixA and for any unitary matrixU, A = UAU H . Let

V be the matrix of the eigenvectors ofA and � the diagonal matrix of the eigenvalues ofA, then

A = V � VH .

If U = VH , one hasVDV H = D . This implies thatA is a diagonal matrix. By taking forU the

permutation matrix which reshapes elements thei th element ofA , Aii into the(i + 1) th elements

Ai +1 ,i +1 , this leads to the conclusion.

APPENDIX B

PROOF OF THEOREMIV.2 (CONSISTENCY OF �MF P )

To show the consistency of�MF P , denoted�M(N ) in the sequel and to show the dependence between

�MF P and the numberN of x�
ks, several properties of the functionf N,M deÞned by (5) will be used.

First, a new functiongN is deÞned by

gN :

�
�

	

D Š� D

A Š� gN = A Š f N,M (A)

whereD = { A � M m (C)| AH = A , A positive deÞnite} with M m (C) = { m× m matrices with elements

in C} , andC, the set of complex scalar.

As �M(N ) is a Þxed point of functionf N,M , it is the unique zero, up to a scaling factor, of the random

function gN . To show the consistency of�M(N ), Theorem 5.9 pp. 46 of [38] will be used. Let us verify

hypothesis of this theorem.

First, the Strong Law of Large Numbers (SLLN) gives

� A � D , gN (A) a.s.ŠŠŠŠŠ�
N � + �

g(A) ,
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where a.s.ŠŠŠŠŠ�
N � + �

stands for the convergence almost surely and

� A � D , g(A) = A Š m E

�

�
xxH

xH AŠ 1x

�

� ,

for x � CN (0, M) .

Then g deÞned by Eq.(??) is rewritten by applying an appropriate change of variable onx. Let y =

AŠ 1/ 2 x , wherey � CN (0, AŠ 1/ 2MA Š 1/ 2) and thus

� A � D , g(A) = A1/ 2

�

� I Š m E

�

�
yyH

yH y

�

�

�

� A1/ 2 .

By using the same change of variable,gN is rewritten

� A � D , gN (A) = A1/ 2

�

� I Š
m

N

N


k=1

ykyH
k

yH
k yi

�

� A1/ 2 .

Now, it must be shown that for every	 > 0,

(H 1) : sup
A�D

{	 gN (A) Š g(A)	} P rŠŠŠŠŠ�
N � + �

0,

(H 2) : inf
A:� AŠM�	 �

{	 g(A)	} > 0 = g(M) .

Now, for everyA � D

	 gN (A) Š g(A)	 = m 	 A	

#
#
#
#
#
#

1

N

N


k=1

�

�
ykyH

k

yH
k yk

Š E

�

�
yyH

yH y

�

�

�

�

#
#
#
#
#
#

,

and thus, the SLLN, applied to theN i.i.d variablesY k =
ykyH

k

yH
k yk

, with sameÞrst order moment, ensures

(H 1).

Now, to show(H 2), it sufÞces to use the bias of�MNSCM shown by Theorem III.2. Indeed, for every

A � D , with A �= M,

	 g(A)	 > 0. (14)

Eq.(14) is explained by

	 g(A)	 = 	 B ( �N
NSCM, AŠ 1/ 2 MA Š 1/ 2 )	 ,

where �N
NSCM, AŠ 1/ 2MA Š 1/ 2 is the NSCM estimate ofAŠ 1/ 2MA Š 1/ 2 andB ( �N

NSCM, AŠ 1/ 2MA Š 1/ 2 ) the

bias of �N
NSCM, AŠ 1/ 2MA Š 1/ 2 deÞned by Theorem III.2.

Finally, Theorem 5.9 pp. 46 of [38] concludes the proof and�MF P
P rŠŠŠŠŠ�

N � + �
M , which is the deÞnition

of the consistency of�MF P .
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APPENDIX C

PROOF OF THEOREMV.2 (VEC( �MN ) ASYMPTOTIC DISTRIBUTION)

� N = MŠ 1/ 2 �MN MŠ 1/ 2 Š I .

By using the deÞnition of �MN , Eq. (3), one obtains

� N =
m

Tr(� SCM + I)
(� SCM + I) Š I =

1

1 +
Tr(� SCM )

m

(� SCM + I) Š I .

It is supposed thatN is large enough to ensure the validity of theÞrst order expressions, with respect

to � SCM , and thus

� N 

�

� 1 Š
Tr(� SCM )

m

�

� (� SCM + I) Š I ,

and by omitting the second order term,i.e., � SCM

Tr(� SCM )

m
, previous equation becomes

� N  � SCM Š
Tr(� SCM )

m
I .

Now, with the notations presented at the beginning of section V, it comes

� N  � SCM Š
Tr(� SCM )

m
vec(I ) ,

Moreover, from the expression ofC2 in Eq. (12) and by noting that Tr(A) = vec(I ) � vec(A) for any

matrix A, one has

� N 
m + 1

m
C2 � SCM . (15)

Since
�

N � SCM is asymptotically Gaussian, Eq. (15) ensures that the same result holds for
�

N � N .

It just remains to derive the asymptotic behavior of the two quantitiesNE
�
� N � �

N

�
andNE

�
� N � H

N

�
.

These limits follow from the results concerning� SCM stated in table I:
�
��

�	

N E
�
� N � �

N

�
ŠŠŠŠŠ�
N � + �

 m+1
m

!
C1 ,

N E
�
� N � H

N

�
ŠŠŠŠŠ�
N � + �

 m+1
m

!
C2 ,

where matricesC1 andC2 are deÞned by Eqs. (11-12).
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APPENDIX D

PROOF OF THEOREMV.3 (VEC( �MT F P ) ASYMPTOTIC DISTRIBUTION)

After the whitening of thexk ’s, �MT F P deÞned by Eq. (7) becomes

�MT F P = M1/ 2

�

�
m

N

N


k=1

yk yH
k

yH
k yk

�

� M1/ 2 .

whereyk � CN (0, I ) . Now, in terms of� T F P , it comes

� T F P = vec
�

MŠ 1/ 2 �MT F P MŠ 1/ 2 Š I
�

= vec

�

�
m

N

N


k=1

�

�
ykyH

k

yH
k yk

�

� Š I

�

� . (16)

The Central Limit Theorem (CLT) ensures theÞrst point of Theorem V.3

�
N

�

�
Re(� T F P )

Im(� T F P )

�

� dist.ŠŠŠŠŠ�
N � + �

N (0, CT F P ) ,

whereCT F P is the covariance matrix of

�

�
Re(� T F P )

Im(� T F P )

�

� .

Now, it just remains to derive the two quantitiesE
�
� T F P � �

T F P

�
andE

�
� T F P � H

T F P

�
.

One has, for a largeN ,

E
�
� T F P � �

T F P


=

m2

N
E

�

�
� vec

�

�
yyH

yH y

�

� vec

�

�
yyH

yH y

�

�

� �

�
� Š vec(I ) vec(I ) � , (17)

wherey =
 
y(1) , . . . , y(m)

! �
� CN (0, I ) .

Then, focusing on the following variable

B = E

�

�
� vec

�

�
yyH

yH y

�

� vec

�

�
yyH

yH y

�

�

� �

�
� .

and rewriting they(j ) ’s as y(j ) =
�

� 2 (j ) / 2 exp(i� (j ) ) where for j = 1 , . . . , m , � 2 (j ) and � (j ) are

independent variables, with� 2 (j ) � � 2(2) and� (j ) � U ([0, 2� ]) , each element of matrixB becomes

Bkl = E

�

�
�

$
� 2 (p) � 2 (q) � 2 (p� ) � 2 (q� )

� % m
j =1 � 2 (j )

� 2

�

�
� E

�
exp(i (� (p) Š � (q) + � (q� ) Š � (p� ) ))


.

Now, it comes thatBkl = 0 , except for the following indexes

1) k = l = p + m(p Š 1) ,

2) k = p + m(p Š 1) , l = p� + m(p� Š 1) andp �= p� ,
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3) k = p + m(p� Š 1) , l = p� + m(p Š 1) andp �= p� ,

and in these cases, one has

1) Bp+ m(pŠ 1),p+ m(pŠ 1) =
2

m(m + 1)
,

2) Bp+ m(pŠ 1),p� + m(p� Š 1) =
1

m(m + 1)
,

3) Bp+ m(p� Š 1),p� + m(pŠ 1) =
1

m(m + 1)
.

By replacing these results in Eq. (17), the following result is found

N E
�
� T F P � �

T F P


ŠŠŠŠŠ�
N � + �

C1 .

In the same way,

N E
�
� T F P � H

T F P

�
ŠŠŠŠŠ�
N � + �

C2 .

APPENDIX E

PROOF OF THEOREMV.4 (VEC( �MF P ) ASYMPTOTIC DISTRIBUTION)

First, �M is written as �M = M + � M where �M = �MF P in this subsection. For largeN , � M  0

because of the�M consistency andN is assumed to be large enough to ensure the validity of theÞrst

order expressions, thus

�M
Š 1


 
MŠ 1 Š MŠ 1(� M)MŠ 1!

.

For N large enough, this implies that

�M 
m

N

N


k=1

xkxH
k

xH
k

 
MŠ 1 Š MŠ 1(� M)MŠ 1

!
xk

,

and thus

� M 
m

N

N


k=1

�

�
xkxH

k

xH
k

 
MŠ 1 Š MŠ 1(� M)MŠ 1!

xk

�

� Š M .

Let yk = MŠ 1/ 2xk , then

MŠ 1/ 2(� M)MŠ 1/ 2 
m

N

N


k=1

ykyH
k

yH
k

�
I Š MŠ 1/ 2(� M)MŠ 1/ 2

�
yk

Š I ,
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or equivalently, by using expression� = M Š 1/ 2(� M)MŠ 1/ 2 ,

� 
m

N

N


k=1

ykyH
k

yH
k yk

�

� 1 Š
yH

k � yk

yH
k yk

�

�

Š I .

At the Þrst order, for largeN and consequently small� , it results in

� 
m

N

N


k=1

�

�
ykyH

k

yH
k yk

�

� 1 +
yH

k � yk

yH
k yk

�

�

�

� Š I .

To Þnd the explicit expression of� in terms of data, the above expression can be reorganized as

� Š
m

N

N


k=1

�

�
ykyH

k

yH
k yk

yH
k � yk

yH
k yk

�

� 
m

N

N


i =1

�

�
ykyH

k

yH
k yk

�

� Š I .

To solve thism2-system, above equation is rewritten as

B � F P  vec

�

�
m

N

N


i =1

�

�
ykyH

k

yH
k yk

�

� Š I

�

� , (18)

where

€ � F P = vec(� ) ,

€ Dk is them2× m2 matrix deÞned byDk = ( dln )(k)
1� l,n � m2 with dln = yp yq yp�

yq�
for l = p+ m(qŠ1)

andn = p� + m(q� Š 1), and

B = I Š
m

N

N


i =1

Dk

(yH
k yk)2

. (19)

From Eq. (16), the right-hand side member of Eq. (18) is seen to be equal to� T F P . Therefore,

B � F P  � T F P . (20)

Now, normalization#2 for �M ( Tr(MŠ 1 �M) = m) ensures that Tr(� ) = 0 which is equivalent to

vec(I )� � F P = 0 .

Thus, Eq. (20) may be rewritten as
�

� B +
1

m + 1
vec(I )vec(I ) �

�

� � F P  � T F P ,

and thus

� F P  GŠ 1 � T F P , (21)
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where

G = B +
1

m + 1
vec(I )vec(I ) � , . (22)

From the SLLN,B deÞned by Eq. (19) satisÞes

B a.s.ŠŠŠŠŠ�
N � + �

C2 = I Š m E

�

�
D

(yH y)2

�

� , (23)

wherey � N (0, I ) andD = ( dln )1� l,n � m2 , with dln = yp yq yp�
yq�

.

Thus, from standard probability convergence considerations, theÞrst point of Theorem V.4 is obtained.

Now, from (23), one has

C2 = I Š m E , whereE = E

�

�
D

(yH y)2

�

� .

In the same way as in the proof of theorem V.2, the non-zero elements of the matrixE are

1) Ep+ m(pŠ 1),p+ m(pŠ 1) =
2

m(m + 1)
,

2) Ep+ m(pŠ 1),p� + m(p� Š 1) =
1

m(m + 1)
,

3) Ep+ m(qŠ 1),p+ m(qŠ 1) =
1

m(m + 1)
,

and thus

C2 =
m

m + 1

�

� I Š
1

m
vec(I )vec(I ) �

�

� .

Therefore,G in Eq. (22) satisÞes

G a.s.ŠŠŠŠŠ�
N � + �

m

m + 1
I

And, it follows from Eq. (21) that
�

N � F P has the same asymptotic distribution as
m + 1

m

�
N � T F P .
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Diplôme d’Etudes Approfondies degree in Signal Processing from University of Orsay (Paris XI), Orsay,

France and the Ph.D. degree in Physics from the University of Paris VI, Paris, France, in 1987 and

1992, respectively. In 1992, he joined the Electromagnetic and Radar Division of the French Aerospace

Lab (ONERA), Palaiseau, France, where he is is currently Chief Scientist and member of the ScientiÞc

Committee of the ONERA Physics Branch. His current activities of research are centered in the topic of Signal Processing for

radar and SAR applications such as time-frequency, imaging, detection and parameters estimation.

Pascal Larzabal (M’93) was born in the Basque country in the south of France in 1962. He received

the Agrégation degree in electrical engineering and the Dr.Sci. and Habilitation `a diriger les recherches

degrees in 1985, 1988, and 1998, respectively, all from the Ecole Normale Sup´erieure of Cachan, Cachan,

France. He is now a Professor at the Institut Universitaire de Technologie of Cachan (University Paris

Sud, Paris, France, where he teaches electronic and signal processing. He is at the head of the Signal

Processing and Information team of the laboratory SATIE, CNRS, Ecole Normale Sup´erieure, Cachan.

His research interests are estimation in array processing and spectral analysis.

November 5, 2007 DRAFT



SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 28

0 100 200 300 400 500 600 700 800 900 1000
10

�ï4

10
�ï3

10
�ï2

10
�ï1

10
0

10
1

N

C
(M

(.
),

N
)

Bias Simulations

 

 

M(N)
M(NSCM)
M(TFP)
M(FP)

(a) � = 0 .1

0 100 200 300 400 500 600 700 800 900 1000
10

�ï4

10
�ï3

10
�ï2

10
�ï1

10
0

10
1

N

C
(M

(.
),

N
)

Bias Simulations

 

 

M(N)
M(NSCM)
M(TFP)
M(FP)

(b) � = 0 .5

0 100 200 300 400 500 600 700 800 900 1000
10

�ï4

10
�ï3

10
�ï2

10
�ï1

10
0

10
1

N

C
(M

(.
),

N
)

Bias Simulations

 

 

M(N)
M(NSCM)
M(TFP)
M(FP)

(c) � = 0 .9

Fig. 1. Estimates Bias for different values of� .
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Fig. 2. Estimates Consistency for different values of� . m = 3 .
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Fig. 3. Estimates second order moment
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