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Performance Analysis of Covariance Matrix

Estimates in Impulsive Noise

Frédéric Pascal, Philippe Forster , Jean-Philippe Ovarlez and Pascal Larzabal

Abstract

This paper deals with covariance matrix estimates in impulsive noise environments. Physical models
based on compound noise modeling (SIRV, Compound Gaussian Processes) allow to correctly describe
reality (e.g, range power variations or clutter transitions areas in radar problems). However, these
models depend on several unknown parameters (covariance matrix, statistical distribution of the texture,
disturbance parameters) which have to be estimated. Based on these noise models, this paper presents
a complete analysis of the main covariance matrix estimates used in the literature: four estimates are
studied, the well-known Sample Covariance Mathikscy and a normalized versioMy , the Fixed
Point (FP) estimatégp , and a theoretical benchmaMtrp . Among these estimates, the only one
of practical interest in impulsive noise is the FP. The three others, which could be used in a Gaussian
context, are, in this paper, only of academic interest, for comparison with the FP. A statistical study
of these estimates is performed through bias analysis, consistency, and asymptotic distribution. This study
allows to compare the performance of the estimates and to establish simple relationships between them.

Finally, theoretical results are emphasized by several simulations corresponding to real situations.

Index Terms

SIRV, covariance matrix estimates, statistical performance analysis, bias, consistency, asymptotic

distribution, non-Gaussian noise.
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. INTRODUCTION

It is often assumed that signals, interferences or noises are Gaussian stochastic processes. Indeed,
this assumption makes sense in many applications. Among them, we can cite: sources localization in
passive sonar where signals and noises are generally assumed to be Gaussian, radar detection where
thermal noise and clutter are often modeled as Gaussian processes and digital communications where the
Gaussian hypothesis is widely used for interferences and noises.

In these contexts, Gaussian models have been thoroughly investigated in the framework of Statistical
Estimation and Detection Theory [1], [2], [3]. They have led to attractive algorithms. For instance, we
can cite the stochastic Maximum Likelihood method for sources localization in array processing [4], [5],

and the matchetbter in radar detection [6], [7] and in digital communications [8].

However, such widespread techniques are sub-optimal when the noise process is a non-Gaussian
stochastic process [9]. Therefore, non-Gaussian noise modeling has gained many interest in the last
decades and currently leads to active researches in the literature. High order moment methods [10] have
initiated this research activity and partightering methods [11] are now intensively investigated. In radar
applications, experimental clutter measurements, performed by MIT [12], showed that these data are not
correctly described by Gaussian statistical models. More generally, numerous non-Gaussian models have
been developed in several engineerfrelds. For example, we can cite the K-distribution already used
in the area of radar detection [13], [14]. Moreover, let us note that the Weibull distribution is a widely

spread model in biostatistics and in radar detection [15].

One of the most general and elegant impulsive noise model is provided by the soSifiedcally
Invariant Random VectoréSIRV). Indeed, these processes encompass a large number of non-Gaussian
distributions, included, of course, Gaussian processes and also, the aforementioned distributions. SIRV
and their variants have been used in various problems such as: bandlimited speech signals [16], radar
clutter echoes [17], [18], and wireless radio fading propagation problems [19], [20]. Moreover, SIRVs
are also connected to other interesting processes such as the "heavy-tailed” processes, which have been

used to model impulse radio noises as well as processes use@dimcial engineering models [21].

A SIRV is a compound process. It is the product of a Gaussian random process with the square root

of a non-negative random scalar variable (calledtéxturein the radar context). Thus, the SIRV is fully
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characterized by the texture (representing an unknown power) and the unknown covariance matrix of the
zero-mean Gaussian vector. One of the major challengirguliies in SIRV modeling, is to estimate
these two unknown quantities [22], [23], [24]. These problems have been investigated in [25] for the
texture estimation while [26] and [27] have proposed different estimates for the covariance matrix. The

knowledge of the estimates statistical properties is essential to use them in different contexts.

This paper deals with three covariance matrix estimates: the well-known Sample Covariance Matrix
(SCM) [28], the Theoretical Fixed Point (TFP), both studied for academic purposes, and the Fixed Point
(FP) which may easily be implemented in practice [29]. These three estimates arise as the solutions of
Maximum Likelihood (ML) or Approximate Maximum Likelihood (AML) problems. The main contribu-
tion of this paper is to derive and to compare their statistical properties: bias, consistency, second order

moment and asymptotical distribution.

The paper is organized as follows. In Section I, a background on the SIRV covariance matrix estimates
is given. Sections Ill, IV and V present the main results of this papemperformance analysis of the
estimates in terms of bias, consistency, covariance matrices, and asymptotic distribution. For clarity, long
proofs are reported in Appendices. Finally, Section VI gives some simulation resulsntgog the

theoretical analysis.

[I. PROBLEM FORMULATION

In this section, we introduce the SIRV noise model under study and the associated covariance matrix
estimates. In the following;l denotes the conjugate transpose operatatenotes the transpose operator,

E stands for the statistical mean of a random variable, af{1 Jis the trace of the matriM.

A. Statistical Framework

Let us recap some SIRV theory results. A SIRV is a complex compound Gaussian process with random
power. More precisely, a SIR¥ [30], [31] is the product between the square root of a positive random

variable and am-dimensional independent zero-mean complex Gaussian vector

cC= X.

For identbability considerations, the covariance matx= E xx" is normalized accordingto T¥) =

m (see [26]) and called, in the sequel, normalizatiin.
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The SIRV Probability Density Function (PDF) expression is

1 + 1 _ci MmSic
TV ——exp S——— q()d ,

p(c) =

whereq is the texture PDF.

Notice that, when is Dirac distributedj.e, q( ) = ( S o), the resulting SIRV is a zero-mean
Gaussian vector with covariance matrixM while when is Gamma distributed, the resulting SIRV is
the well known K-distribution. However, the closed-form expression of the texture PBmmot always
available €.g, Weibull SIRV). Thus, in problems wher@ is unknown and has to be estimated from
SIRV realizations, it would be of interest to have a covariance matrix structure estimate independent of

the texture.

B. Covariance Matrix Structure Estimation

The covariance matrix has to be normalized to identify the SIRV noise model. Consequently, it is
reasonable to think that the same normalization has to be applied to its estimate. However, as it will
be shown later, the appropriate normalization for performance analysiq 8 s'itM) = m and will be

called normalizatior#¥2 for any estimateM of M:

Normalization #1: T¢M) = m,
At S1 ; Su2 Su2 (1)
Normalization #2: T¢gM>-M) = m or, equivalently, T{M MM )= m.
WhenM is unknown, it could be objected that normalizatié® is only of theoretical interest while
only normalizatior#1 can be applied in practice. In most applications, howeMeiis exploited in such
a way that any scale factor avi has no ifluence on théenal result. €.g, in radar detection, the detector
could be a likelihood ratio, homogeneous in termshf[26]). This would also be the case in general
estimation problems where estimated parameters only depend on the structure of the covariance matrix.

Hence, the normalization, chosen for any studied case, is of little importance.

In this framework, the three estimates will be built fraxh independent realizations af denoted

C1= 1X1,-..,C8 = N XN and called secondary data.

First, if we had access to th¢ independent realizations,, ..., xy of the underlying Gaussian vector

X, the ML estimate would lead to the Sample Covariance Matrix (SCM) which is Wishart distributed
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[33] and déened by

1 N
Mscm = N XXE (2)
k=1
But, in practice, we only have access to tthiandependent realizations of a SIRM, ...,cy and it is

impossible to isolate the Gaussian procesidowever, it is used as a benchmark for comparison with the
other estimates. Moreove¥lscy performance analysis will lead to an interpretation of the theoretical

expressions obtained for the other estimates.

To fulPll normalization#2 , My will be debned by

m
My = . M , 3
N Tr (M3 ™Macn) SCM 3)
Eg. (3) can also be written
m N y
MN = XX - (4)

N

xtmS1y K=t
i=1
Estimates (2) and (3) have only a theoretical interest sincglseare not available. Practical estimates

are functions of they’s and "good” ones should not depend on thes.

A brst candidate is the Normalized Sample Covariance Matrix (NSCM) [34] given by

m N ccf
Mnscm = N Pt

k=1 Gk Ck

which can be rewritten only in terms af’s

m N oxexf!

Mnscm = — 5
N Hix

k=1 Xk Xk

As the statistical performance of this estimate have been extensively studied in [35], only its statistical
analysis results will be presented in order to compare all available estimates. Moreover, although this

"heuristic” estimate respects normalizatigt , it exhibits several severe drawbacks.

A second candidate, provided by the ML theory [26], [27], is the FP estilvgte of M, debned as

a bxed point of functionf  \

N gl (5)

cl AS1gy

Z| 3

k=1
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whereD = {A M (C)|A" = A, A positive déonite} with M, (C) = { mx m matrices with elements
in C}.

The notatiorf )y stresses the dependencyMrand on the covariance matr involved in thecy’s.

As shown in [36], equatioM = f (M) has a solution of the form M, where is an arbitrary
scaling factor. In this paper, the only solutibhep satisfying normalizatio#2 is called the Fixed Point
estimate. In other wordsvigp is the unique solution of

mN o N x

m
Mep = fyM(MFp) = = ————=7—= N : (6)

pd

BTV
k=1 X{' MEp X
such thatMgp respects normalization #2.

Notice thatMgp, asMyscwm , does not depend on the textureas emphasized in Eq. (6).

Remark 11.1

The FP is the ML estimate when the texturés assumed to be an unknown deterministic parameter, and
is an Approximate Maximum Likelihood (AML) whenis assumed to be a positive random variable [26],
[27].

Finally, an analysis of another texture-independent estirivbtep of M is performed, where

N HpnSL~ HnS1ly ©
NkzlckM Cx Nk:lka Xk

m N ¢l m N oxexf

(7)

M1Ep =

In this paper, it is called the Theoretical Fixed Point (TFP) estimate. This estimate is only of theoretical
interest since it depends on the unknown covariance migkrik is closely related to the FP estimate (6)
and it will be shown that its statistical performance have strong connections with thdde fof Notice
that MTgp satidPes normalizatior#2 : TI’(MSlMTFp) = m. So, the TFP estimate will be considered

as the benchmark foMgp .
In this context of covariance matrix estimation in impulsive noise, the statistical properties of the

three proposed estimatdd,y, Mtep andMgp will be established in this paper, while existing results

concerningMscy andMyscm Will be reminded.
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[ll. BIAS ANALYSIS

This section provides an analysis of the biaglenoted by
B(M)=E M SM,

for each estimaté introduced previously.

The SCMMscu has been studied in literature and is unbiased. Ndy, bias will be analysed next.

Its unbiasedness is presented in the following theorem

Theorem 111.1 (Unbiasedness ofMy )

My is an unbiased estimate Wff .

Proof: To prove thatE My = M, the focus is put on

Xi X

EMy =m E —— " 8)
x MS1x,

i=1

For this purpose, let us whiten th's in Eq. (8), according ty, = MSY2x,

N YKYE
E My = mMY? E — M2, (9)
= yiHyi
i=1
Fork=1,...,N, Ay are given by
H
Yk Yk
yiHyi

i=1

Sincey, CN (0,1) for anyk, thej™ element ofy, denoted byyl((” can be written as
yl(<J) — (1/ 2) i(]) exp(i I(<J))’

where for1 k Nandl | m, i(j) 2(2) and S) U ([0,2 ]), where 2(2) denotes the
Chi-squared distribution with 2 degrees of freedom &i{fD, 2 ]), the uniform distribution on interval

[0,2 ], and i(j) and S) are independent.
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Thus, by replacing thg,’'s in Eqg. (10), elemenpq of matrix Ay is

E(P) E(Q)
A(kpCI) — — exp(i ( I(<p) S l((OI))) )
2(r)
i

i=1 r=1

SinceE exp(i l((p)) =0, for any(k, p), the non diagonal elements Bf[A] are null. Then, diagonal

elementpp is
i(p) i(p)
(pp) _— —
E A, = E N = E N ,
2(r) 2(p) 2(r)
i k i
i=1 r=1 =1 el
i=k r=p
i(p)
where N is a Beta of thebrst kind distributed random variable with parameters 2
200 4 2(r)
|

i=1 r=1
i=k r=p

2 1
2+2NmS2 Nm

and 2Nm S 2. Moreover, the statistical mean of &2,2Nm S 2) is , thus

1
E AP - Wforkzl,...,N and forp=1,...,m andE [A] = (1/Nm )| . Using these results
in EQ. (9) leads to
N
E My = mMY? ANm)l MY2,
k=1

proving thatMy is unbiased

[ |
The analysis oMyscm bias is provided in two cases. In the most general case, theorem 111.2 gives a
closed form expression dflyscm  bias. Then theorem 111.3 proves the unbiasednesBlQkcy when

M = |, wherel is the identity matrix.

Theorem 11.2 (Myscwm bias when M has distinct eigenvalues)

Assuming thaM has distinct eigenvalueM) yscw  bias is given by
B(Mnscwm ) = U (diag(Ec)) U™ S M,

where

November 5, 2007 DRAFT
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€ the operator diag reshapesavector v=(Vj)1 j m intoamx m diagonal matriy/ = (Vjj )1 ij m
with elementd/; = v;,

€ U is the orthogonal matrix of then eigenvectors o,

. log (/i) o i . o .
€ E=(Ej)1ij mwthE; = WS — ifi=j andEj =0 if i = j, where ; is thei
il j
eigenvalue oM,
' 1
€C:(Cj)1j mWIthC]':m W
k=j ]
Proof: see [35]. [ |

Theorem 111.3 (Unbiasedness ofMyscy Wwhen M = 1)

Mnscwm s an unbiased estimate lof

Proof: With the same reasoning as in theorem Ill.1's proof, it is shown EhaMyscm IS a

diagonal matrix with elements

m m
AKD = mE 2K 20) =mg 20 204 20)
j=1 i=t
ji=k
m .
where 27 2(K) 4 20)  is a Beta of thebrst kind distributed random variable with parameters
. . 2 1
2 and2m S 2. Since the statistical mean of §2,2m S 2) is ————~— = —, Ak =1 which
2+2mS2 m
completes the proof. [ |

Theorem 111.4 (Unbiasedness ofMgp)

MEep is an unbiased estimate lif

Proof: For clarity, in this sectioMMgp will be denotedV. Thebrst part of the proof is the whitening

of the data. By applying the following change of variablg,= MS”zxk to Eq. (6), one has

m N MY2y, yH MY2
Mgp = N

S1 '
k=t YTy
where

T= Mél/zMFPMgllz.

Therefore,
N Yk VE

m

T Kk
3T

Nk:lyET Yi
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T is thus the unique FP estimate (up to a scaling factor) of the identity matrix. Its statistics are clearly
independent oM since they,’s areN (0, 1).

Moreover, for any unitary matrixJ,

N z 7}

Z| 3

UTU" = -
k=1 2z UTU" 2z

wherez, = Uy, are also i.i.dN (0,1) . Therefore U TU" has the same distribution s, so
E T =UE T U", for any unitary matrixJ.

SinceE T is different from0, Lemma A.1, detailed in the Appendix, ensures tRatT

Moreover, sinceT = MSY2MMSY2 thusE M = M also since TtMSIM)=m, =1.

In conclusion:M is an unbiased estimate bf, for any integem . [ |

Theorem 111.5 (Unbiasedness ofM1gp)

Mtep is an unbiased estimate lif

Proof: To prove Theorem III.5, changing varialte= MY 2y, wherey CN (0,1), leads to

E Mrep = MY2E zHLH MY2
The equality
E m ﬁ =
yhy ’
is proven by Theorem III.3.
Thus,E Mtgp = M, i.e, M1ep is an unbiased estimate df . [ |

IV. CONSISTENCY

An estimateM of M is consistent if

> 0,Pr( MSM )SNSS$ 0,
whereN is the number of secondary datg's used to estimat® and . stands for any matrix norm.

Remark V.1

WhenM has distinct eigenvalues, Theorem I11.2 shows Maiscm IS a biased estimate &f. Moreover,
this bias does not depend on the nunmieof X 's. Thus,Mnscwm IS not a consistent estimatedf. In the

sequel, sincéyscwm suffers from the previous drawbacks (bias and non consistent), thus from here on,
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this estimate will not be taken into account whérhas distinct eigenvalues. On the other hand, the NSCM

estimate of will be studied as a particular case of the TFP estimate.

Under Gaussian assumptions, the SCM estimate is consistent. This result was established in [28] pp.
80-81.

Theorem V.1 (My consistency)
My Is a consistent estimate bf.
Proof: By whitening thexg’s in Eq. 4:
N

A
MN:mM1/2 k=1 M1/2

wherey, CN (0,1).
Then, the Weak Law of Large Numbers (WLLN) demonstrates that

1N .
N VYK ﬁ I
k=1
1N .
g Wy &5 By =m.

i=1
Finally, basic theorems on stochastic convergence show that

My &8 W™,
N +
which means thaMy is a consistent estimate ™. [ |

Theorem V.2 (Mgp consistency)

Mep is a consistent estimate bf .

Proof: See Appendix B. [ |

Theorem IV.3 (MTgp consistency)

MtEep Is a consistent estimate bf .

Proof: Theorem IIl.1 and the WLLN imply thaMtgp is a consistent estimate ™. [ |
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V. ASYMPTOTIC DISTRIBUTION
A. Notations

In this section, a perturbation analysis will be used to derive the asymptotic distribution of the three

estimates, all denotelll for clarity. For this purposeM is rewritten as
M=M+ M.

The essential quantities for the analysis arerael as follows:

e — Mél/z( M)Mél/z: Mél/zMMél/sz

¢ = ved ) where is the vector containing all the elements of and vec denotes the operator
which reshapes then x n matrix elements into an column vector.

In the sequel, these quantities will be indexed according to the studied estiraatg, ~, Trp and

FP.

The asymptotic distribution dfl is obtained from the distribution of with the following Proposition:

Proposition V.1

vedM)= MY2 M 2+ veqM),

where represents the Kronecker product.

!
Proof: M = MY2  MY2+ M . This is proven by the property, W'leFG) = E G vedF) for

any matrixg, F, G, (see [33] p.9). [ |

The aim of this section is to derive the asymptotic distribution gfe., the asymptotic distribution of

Re( )
Im( )

It will be shown later that this distribution is Gaussian and therefore is fully characterized by its asymptotic

, Where R¢ ) denotes the real part of the complex vectoand In( ) its imaginary part.

H

covariance matrix. This matrix may be derived from the two quantifies andE . However,

in this spedpc case, is the vec of an Hermitian matrix b can be obtained fronk H
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B. Results

The following original results use the notatio@g andC,, debned by

m U1
C, = e ] PS - veql)vedl) , (11)
m 1
C, = ] IS - vedl)vedl) : (12)
whereP is debned by, forl p,p m,
Pg=1 for k=I=p+m(pS1,
Pq=1 for k=p+m(pS1andl=p+mpS1l)), (13)

Py =0 else

The covariance matrix of véMscy ) has been established in [28] and is reminded here below.

Theorem V.1 (ve€Mscym ) Asymptotic Distribution)

. R i .
1) N d scm) & N (0,Cscm), where&  stands for the convergence in distribu-
Im( scm) N+
. . . Rd scm) . .
tion andCscy denotes the covariance matrix of which can be straightforwardly

Im( scm)
obtained from:

2) NE scm scwm SNSS§ P whereP is débned above;

3) NE scm Scum 5 1.

Proof: See [33].

Theorem V.2 (ve¢My ) Asymptotic Distribution)

— R gl
1) N € ﬁﬁ N (0,Cy), whereCy denotes the covariance matrix and can be straight-
Im( ) *

forwardly obtained from:
m+1

) NE oy $55

Cy;
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3) NE n R sssssN

The two matrice<C; andC, are déned by Egs. (11) and (12).
Proof: See Appendix C.

Theorem V.3 (ve€M1gp) Asymptotic Distribution)

) N Re Ttrp)

N (0,Crrp), whereCtgp denotes the covariance matrix and can
Im( tep) N
be straightforwardly obtained from:
2) NE 1FP TFP %’3? Cy;

3) N E TFEFP 1|——||:p ﬁ C2.
Proof: See Appendix D.

[
In [37], the following original results oMgp with the above notations has been partially established

Theorem V.4 (ve€Mgp) Asymptotic Distribution)

1) N R Fr) e

N N (0,Cgp), whereCgp denotes the covariance matrix and can be
Im( gp) N7
straightforwardly obtained from:

VVVVV m+1
2) NE frp fp §$5+3 Cy;
2
H s m+1

Proof: Proof of theorem V.4 is fully given in Appendix E.

C. Synthesis

All the results on the asymptotic second order moment/lofire recapped in table I:

¢ The three estimateMgp, Mtpp and My, share the same asymptotic covariance matrix up to
scaling factors
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TABLE |

ASYMPTOTIC SECOND ORDER MOMENT

MFP MTFP IuSCM IuN

Limit of NE uikz S o e P m c,
- B - ) N '2 .
Limit of NE " ntl 7c, Cz nlo G,

n

€ More precisely, mmTl ? N ep, mTl N n and N tgp have the same asymptotic distri-
bution. ThereforeMgp, with N secondary data, has the same asymptotic behavidv as with
- N secondary data. Sindéy is the SCM up to a scale factor, we may conclude that, in problems
invariant with respect to a scale factor on the covariance matrix, the FP estimate is asymptotically

equivalent to the SCM with a little less secondary dd8% N data.

VI. SIMULATIONS

In order to enlighten results provided in sections lll, IV and V, some simulation results are presented.
Since Mgp and Mtgp are texture independent arMdscy and My are only valid under Gaussian
assumption, simulations are performed with Gaussian noise.

OperatorA is debned as the empirical mean of the quanti#e$) obtained froml Monte Carlo runs.

For each iteration, a new set olN secondary data,, ..., Xy iS generated to compui(i).

Thus, for exampleﬁ is debned by

M = M (i) .

1 |
1

i=1
A. Bias analysis

The results presented in this section are obtained for complex Gaussian zero-mean data with covariance
matrix M debned by

M = iSil for1 i,j m.
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Figure 1 shows the bias of each estimate for different values of=0.1,0.5 and0.9. The length

f h [ =3.
of each vectox, ism =3 ﬁ— ] #
#M S M#

For that purpose, a plot &8(M,N) = versus the numbeN of xx's and for any matrix

norm . is presented for each estimate.

It can be noticed that, as enlightened by theoretical analysis, the bidsioMtrp andMgp is very
close to0 for each value oN, while the bias ofMnyscm (wWhen the covariance matrid is different
from I) does not tend to zero with the numkér of xi’s. Moreover, this simulation underlines the fact

thatMyscwm bias does not depend dvh, it is constant for all numbeN of xi's.

Furthermore, the correlation céefent has of course no Buence on the unbiased estimates. On
the other hand, for each value of the bias of the NSCM estimate is different and it tends to O when

tends to O (cas®&! tends tol).

B. Consistency analysis

4

#
Figure 2 presents results of estimates consistency. For that purpose, a PioMoIN) = #M S Mﬁ

versus the numbeX of xy's is presented for each estimate.

It can be noticed that the above criteribr{M, N) tends to0 whenN tends to+ , for each estimate

and each value of. However, there are moifgsuctuations when data are strongly correlatesl,(  1).

C. Second order moment analysis

Simulations relating to second order moment have been represented on two different graphics: one on
transpose operator results and the other for the transpose conjugate opdrhta@sults.
In bPgure 3, the quantitys;(M,N)
# #

SiM,N)= N~ 3QF,

is plotted for the four studied estimates versus the nuriber xx’s, where is dePned in the notations
used in section V and the matr@ represents the closed form expressioiNdE for the different
estimates.

Let us recall these results:
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2

. m+1
or M = C
€ Fp, Q - 1,
€ for Myscm , Q= Cq,
€ fOFMSCM,Qz P,

m+1
e for My, Q = Cy,

whereC; is debned by (11) and® by (13).

Figure 3.a validates results on second order moment estimates obtained in section V because the
guantity S;(M, N) tends to zero wheil tends to ifpnity for all estimates.

From Figure 3.b, the same conclusion as Figure 3.a is drawn but with the transpose conjugate operator

H,i.e,
o
SS(M,N)=#N HSR

st

where the matrixR represents the closed form expressiorNoE H for the different estimates.

VIlI. CONCLUSION

In this paper, the problem of covariance matrix estimation in impulsive noise modeled by Spherically
Invariant Random Vectors was considered. Four estimathssm, My, MEp and Mtep have been
studied through a theoretical statistical analysis : bias, consistency, asymptotic distribution and second
order moments. All original results have been illustrated by simulations.

In this impulsive noise context, the Sample Covariance Matrix cannot be used in practice since this
estimate of the Gaussian kernel is based on unavailable data. The same remark holds for the theoretical
Pxed point estimate as it depends on the unknown covariance matrix that needs to be estimated. Finally
the well known Normalized Sample Covariance Matrix is biased and not consistent. Therefore the only
appropriate estimate is the so called Fixed Point estimate, which is unbiased, consistent and has, up to
a scale factor, the same second order moments as the sample covariance matrix of the Gaussian kernel.

Finally, this statistical study will allow a performance analysis of signal processing algorithms based
on these estimates. For instance performance of radar detection algorithms using the Fixed Point estimate

will be investigated in future work.
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APPENDIX A

LEMMA A.1
Lemma A.1

Let A denote a Hermitian matrix and Metstand for any unitary matrix, then
A=UAU", U A= I, R

Proof:

e If A= | thenA = UAU" .

¢ Now, assume that for a diagonalizable mattixand for any unitary matriXJ, A = UAU" . Let
V be the matrix of the eigenvectors 8f and the diagonal matrix of the eigenvalues Af then
A=vVv VH,
If U= V", one hasvDV" = D. This implies thatA is a diagonal matrix. By taking fot the
permutation matrix which reshapes elementsifieelement ofA , A; into the(i + 1) elements

Ai+1 i+1 , this leads to the conclusion.

APPENDIXB

PROOF OF THEOREMIV.2 (CONSISTENCY OFMgp)

To show the consistency dfl rp, denotedM(N) in the sequel and to show the dependence between
Mep and the numbeN of x,s, several properties of the functidp, \y dePned by (5) will be used.
First, a new functiorgy is dePned by

D S D
N AS ov=ASf (A
whereD = {A M, (C)|A" = A A positive déenite} with M, (C) = { mx m matrices with elements
in C}, andC, the set of complex scalar.
As M(N) is abxed point of functionf s, it is the unique zero, up to a scaling factor, of the random
functiongy . To show the consistency &fl (N), Theorem 5.9 pp. 46 of [38] will be used. Let us verify
hypothesis of this theorem.

First, the Strong Law of Large Numbers (SLLN) gives

A D, o) S gA),
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whereiﬁ stands for the convergence almost surely and
+

xxH

forx CN (O,M).
Then g debned by Eq.??) is rewritten by applying an appropriate change of variablexohet y =
ASY2yx wherey CN (0,ASY2MASY2) and thus

A D, gA)= AY2 1SmE — AYZ,

By using the same change of variablg, is rewritten

_m Ny
A D, gv(A)= AY? IS < Ty AY2,
k=1 Yk Vi

Now, it must be shown that for every> 0,

(H1): sup{ au(A)Sg(A)} &5 o,
AD *

H2): inf A)} >0=gM).
(H2) Y { 9(A)} g(M)
Now, for everyA D
# #
# #
GWA)SGA) =m A - COY g W g
§ AN YR Wy &

Vi
and thus, the SLLN, applied to th¢ i.i.d variablesY = yﬁ; , with samebrst order moment, ensures
k Yk
(H1).
Now, to show(H 2), it sufbces to use the bias dflyscy shown by Theorem II1.2. Indeed, for every

A D ,withA= M,

g(A) > 0. (14)
Eq.(14) is explained by
g(A) = B(NNSCM,AéuzMASUZ) )
whereN .\ asuzppsve iS the NSCM estimate 0ASY2\ASY2 andB (N gy asvzpmasee) the
bias ofNNSCM’ ASVZMAS Y2 debned by Theorem Ill.2.

Finally, Theorem 5.9 pp. 46 of [38] concludes the proof aidp %ﬁi M , which is the dénition

of the consistency oMgp .
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APPENDIXC

PROOF OF THEOREMV.2 (VEC(My) ASYMPTOTIC DISTRIBUTION)

N = Mgl/ZMN Mél/Zé | .
By using the denition of My, Eqg. (3), one obtains

m . 1 ( ) .
N= =~ ( scm+1)SI= scm +1)S 1.
Tr( scm + 1) Tr( sem)
+
m
It is supposed thaltl is large enough to ensure the validity of thest order expressions, with respect
to scwm, and thus

. Tr( scwm) y
N 1S———— ( sem +1)S|H,
m
” . Tr( scwm) _ _
and by omitting the second order terine,, scwm —, - previous equation becomes
. Tr( scwm)
N scMm S ————— 1.

m

Now, with the notations presented at the beginning of section V, it comes

. Tr( scm)
N scm S TVGCU),

Moreover, from the expression @f, in Eq. (12) and by noting that TA) = vedl) vedqA) for any
matrix A, one has

m+1

N C2 scm - (15)

Since N scm is asymptotically Gaussian, Eq. (15) ensures that the same result holds\fory .
It just remains to derive the asymptotic behavior of the two quantNiEs n  andNE H
These limits follow from the results concerningcy Stated in table |

|

NE vy S5 mtl’Cy,
!

NE n X sﬁs%s M+l c,,

where matriceC; andC, are déned by Egs. (11-12).

November 5, 2007 DRAFT



SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 21

APPENDIX D

PROOF OF THEOREMV.3 (VEC(M1gp) ASYMPTOTIC DISTRIBUTION)
After the whitening of thexy’s, Mtep debned by Eq. (7) becomes

N H
Miep = MY2 — Y ¥k MY2
N\, Vi Vi

wherey, CN (0O,1). Now, in terms of tgp, it comes

m NN X (16)
N YK Vi '

TEP = VeC MSl/zMTFp M51/2g| = vecC

The Central Limit Theorem (CLT) ensures thkest point of Theorem V.3

N Rel Tep) ﬁﬁt N (0,Crfp) ,

Im( tFp)

Re( TFP)

whereC+tgp is the covariance matrix of
Im( trp)

Now, it just remains to derive the two quantitiEs trp tep andE t1ep Hep

One has, for a largdl,

E = m” E vec " vec " S vec(l) vec(l) (17)
TFP TFP ~— N Hy yHy )
!
wherey = y® . y(M"  CN (0,1).
Then, focusing on the following variable
yy" yy"
B=E vec Ao vec Ao
yUy yUy
and rewriting they()'s asy() = 2G)/2 exp( 0y where forj = 1,...,m, 20) and @) are

independent variables, with?d)  2(2) and () U ([0,2 ]), each element of matriB becomes

2(p) 2(q) 2(p) 2(a)
Bk|=E
%.m_ 2(j) ?
j=1

Now, it comes thaBy, = 0, except for the following indexes

E exp(i( PSS @4+ @g )y

1) k=1=p+m(pS1,
2) k=p+m(pS1,l=p+m(pS1 andp=p,
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3) k=p+m(pS1),l=p+mpS1) andp=p,

and in these cases, one has

2

1) Bp+ m(p31),pr mps1) = m(m—+ 0’
1

2) Bprm(ps)p+m(p$1) = mm+1)’
1

3) Bpem(p$1).p+mps1) = mm+1)

By replacing these results in Eq. (17), the following result is found

NE TFP TEFP ﬁ C]_.

In the same way,

APPENDIXE

PROOF OF THEOREMV.4 (VEC(Mgp) ASYMPTOTIC DISTRIBUTION)

First, M is written asM = M+ M whereM = Mgp in this subsection. For larghl, M 0

because of theM consistency andN is assumed to be large enough to ensure the validity ofthe

order expressions, thus

s1 S§1& w151 51!
M MS1S MSI( M)MST |

For N large enough, this implies that

m N Xk X |
M — — L,
N o X MSTSMSY(M)MSE X
and thus
m N Xy X[ | 3
M — - . SM.
N o, X MS1S MS( M)MSY x
Lety, = MSY2y, | then
N H
Mél/Z( M)M§1/2 g ykyk S I 1

K1 VE IéMél’Z( M)Méllz Vi
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or equivalently, by using expression = M gl’2( M)M§1/2,
m N YiY 5
N SI.
k=1 Sy 18 vil v
k Yk VY

At the brst order, for largeN and consequently small , it results in

m Ny o
— o 1+ — S
N o Yk Yk Y Yk

To bnd the explicit expression of in terms of data, the above expression can be reorganized as

MmNy e m N oy
S —— — — o SI.
N k=1 yk Yk yk Yk N i=1 yk Yk
To solve thism?-system, above equation is rewritten as
m N ka}Z| .
B rp vec — 0 S| ) (18)
N i=1 yk yk

where
e pp=ved ),
e Dy is them?x m? matrix debned byDy = (din){,, . withdin = yPyayP y9 forl = p+m(qS1)
andn=p + m(q S 1), and

. m N Dk ( )
B=1S — —. 19
N O ye)?
From Eq. (16), the right-hand side member of Eq. (18) is seen to be equalki®. Therefore,
B rp TFP - (20)

Now, normalization#2 for M (Tr(MglM) = m) ensures that Tr ) = 0 which is equivalent to
vec(l) EpP = 0.
Thus, Eq. (20) may be rewritten as

B+ veql)vedl) FP TFP.,

m+1

and thus

rp G rep, (21)
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where

G=B+ vedl)vedl) . (22)

m+1
From the SLLN,B debned by Eq. (19) sati®s

D

Bsﬁﬁ% C,=1SmE 52

(23)

wherey N (0,1) andD =(din)1 1in mz, with d, = yP yayP ya.
Thus, from standard probability convergence considerationgriigooint of Theorem V.4 is obtained.

Now, from (23), one has

D
C,=1SmE, whereE=E W

In the same way as in the proof of theorem V.2, the non-zero elements of the Badrx

2
1) Eprm(ps1)prm(ps1) = m(m+1)°

1

2) Epem(psnp+m(ps1) = m(m+1)’

1
3) Eptm(gs1),prm(asy) = mm+1) "
and thus

m U1
Co = ] IS Evec(l)vec(l)
Therefore,G in Eq. (22) satibes
cEs
N + m+1

_ m+1
And, it follows from Eq. (21) that N gp has the same asymptotic distributionasm— N Tgp.
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Consistency Simulations

! Consistency Simulations !
o T T T T T T T T ) o “IM(N)
“ M(NSCM) M(NSCM)
—M(TFP) —M(TFP)
- M(FP) -~ M(FP)

N o N
(@ =0.1 (by =05
) Consistency Simulations
1o T T T T T T T T TIIM(N)
o M(NSCM)
— M(TFP)
-~ M(FP)

(c) =0.9

Fig. 2. Estimates Consistency for different values ofn = 3.
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Second order moment simulations Second order moment simulations
2| N = M(TFP) 2 ~ M(TFP)
107 MEFP) k| 10700 M(FP) ]
> — M(SCM) ™ —M(SCM)
: < M(N) : ~~M§N)

S (M().N)

10 10 N 10 10 10 10 10 N 10 10

(a) transpose case (b) transpose conjugate case

Fig. 3. Estimates second order moment
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