N

N

Global optimization of expensive-to-evaluate functions:
an empirical comparison of two sampling criteria

Julien Villemonteix, Emmanuel Vazquez, Maryan Sidorkiewicz, Eric Walter

» To cite this version:

Julien Villemonteix, Emmanuel Vazquez, Maryan Sidorkiewicz, Eric Walter. Global optimization of
expensive-to-evaluate functions: an empirical comparison of two sampling criteria. Journal of Global
Optimization, 2009, 43 (2-3), pp. 373-389. 10.1007/s10898-008-9313-y . hal-00354656v2

HAL Id: hal-00354656
https://centralesupelec.hal.science/hal-00354656v2
Submitted on 17 Mar 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://centralesupelec.hal.science/hal-00354656v2
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Global optimization of expensive-to-evaluate functionsan empirical
comparison of two sampling criteria

Julien Villemonteix - Emmanuel Vazquez - Maryan
Sidorkiewicz - Eric Walter

the date of receipt and acceptance should be inserted later

Abstract In many global optimization problems motivated by engiiregm@pplications, the number of
function evaluations is severely limited by time or cost.efsure that each of these evaluations usefully
contributes to the localization of good candidates for thie of global minimizer, a stochastic model of the
function can be built to conduct a sequential choice of et points. Based on Gaussian processes and
Kriging, the authors have recently introduced the infoiiora! approach to global optimization (IAGO)
which provides a one-step optimal choice of evaluation {gdimterms of reduction of uncertainty on the
location of the minimizers. To do so, the probability depsit the minimizers is approximated using con-
ditional simulations of the Gaussian process model behingikg. In this paper, an empirical comparison
between the underlying sampling criterion called condaiominimizer entropy (CME) and the standard
expected improvement sampling criterion (El) is preser@aissical test functions are used as well as sam-
ple paths of the Gaussian model and an industrial applicafibey show the interest of the CME sampling
criterion in terms of evaluation savings.

Keywords expected improvement, global optimization, Kriging

1 Introduction

To minimize an expensive-to-evaluate functibra common approach is to use a cheap approximation of
this function, which can lead to significant savings oveditianal methods. In this context, global opti-
mization techniques based on Gaussian processes anddl(ggin, e.g., [4]) are often preferred, for they
provide an appealing probabilistic framework to accountlie uncertainty on the function approximation.
Expensive-to-evaluate functions are often encounteradlinstrial optimization problems, where the func-
tion value may be the output of complex computer simulati@nghe result of costly measurements on
prototypes.

Most Kriging-based strategies proposed in the past fewsy@sae, e.g., [9] and the references therein)
implicitly seek a likely value for a global minimizer, and then assurteelie a suitable location for the next
evaluation off. Yet, making full use of Kriging, it is possible &xplicitly account for the uncertainty on the
global minimizers, and the most likely location of a globatimizer is not necessarily a good evaluation
point to improve the accumulated knowledge on the globalmmizers.

Based on these considerations, the Informational AppréacBlobal Optimization (IAGO) strategy
recently proposed in [20] evaluatésvhere the potential for reduction of the uncertainty on treation of
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the minimizers is deemed to be highest. The entropy of thditional distribution of the global minimiz-
ers is taken as the uncertainty measure, and is approximaitegl conditional simulations of the Gaussian
process modelind. This approach has two main advantages over classicali¢rigased global optimiza-
tion methods, such as the Efficient Global Optimization (B@IQorithm (see [10]). First, it should lead to
significant savings on the number of evaluationg o$econd, results under the form of probability distri-
butions are particularly attractive. The purpose of thigsgras to evidence the evaluation savings that can
be obtained via the use of IAGO.

EGO and IAGO differ only by the sampling criterion used foooking the next evaluation point. These
two criteria, namelyexpected improveme(iEl) for EGO andconditional minimizer entropyCME) for
IAGO, undergo a series of numerical experiments. The firgegrments are conducted on four classical test
functions. Later on, empirical convergence rates are estichusing sample paths of a Gaussian process.
A final comparison is performed on a real-case applicaticthéodesign of intake ports in the automotive
industry, for which a single evaluation of the function todgimized requires about ten hours of computer
time.

The Kriging framework is briefly recalled in Section 2, as had the definitions of the EI and CME
criteria. A brief description of computational aspects lué 1AGO approach is also presented. Section 3
reports the empirical comparison of these two criteriaalyn Section 4 presents conclusions and offers
perspectives for future work.

2 Kriging-based global optimization

Let X, the factor space, be a compact subsékbfand f : X — R be the function to be minimized. The
objective is to findx* a global minimizer off overX when the evaluation of is expensive. To do so,
a cheap model of (also known as surrogate approximation) based on previaalaaions will be used.
Even if deterministic models have been discussed (as iregmonse surface methodology, see, e.g., [15]),
it is stochastic models that will retain our attention, andrenprecisely the Bayesian approach to global
optimization (see, e.g., [14]). In this frameworfkis viewed as a realisation (or sample path) of a stochastic
process= (F can also be viewed as a Bayesian prior fgn The distribution ofF conditionally to past
evaluation results foff is used to design aampling criterionto be optimized to choose an additional
evaluation point forf.

When F is Gaussian (we make this assumption in the rest ofaperp the conditional distribution &f
at an untried point is also Gaussian with mean and variarate#n be obtained analytically using Kriging
(prediction based on Gaussian processes has been knowoffetiman 50 years as Kriging in geostatistics
and we shall keep to this terminology). Gaussian models aigirt§ have been introduced in the field of
Bayesian optimization in [10], through the Efficient Glolgitimization (EGO) algorithm. Since then (see
[14] for an overview of previous work in the field), Gaussiangesses and Kriging have been the object of
most publications in the field of Bayesian global optimiaatiwith improvements of the EGO algorithm
(see, e.g., [22] or [8]) and comparative studies (see, 8]agr[[17]). Our contribution to the field is also
based on Kriging.

2.1 Linear prediction

In this section, we recall some well-known facts about Krggon which the rest of the paper is based (for
more details, see [4, 20] and the references therein).

Letk(.,.) be the covariance function &f, andx be a point inX whereF is to be predicted. The mean
of F(x) is assumed to be a finite linear combination of known funetiarof x, m(x) = B'p(x), wherep
is a vector of fixed coefficients to be computed, @) = [p1(x),..., pi(x)]T. Usually the functiong; are
monomials of low degree in the componentxdin practice, their degrees do not exceed two).

Given the vectof, = [f(X1),..., f (xn)]T of past evaluations at points@ia = {1, ...,xn} € X" (a sample
value of F, = [F(x1),...,F (xn)]T), the Kriging predictoiF (x) of F(x) is the minimum-variance unbiased
linear predictor in the vector space sp&iix1),...,F(xn)}. It can be written as

F(x)=A(x)"Fn, 1)



with Fp = [F(X1),...,F (xn)]T, andA(x) the vector of Kriging coefficients for the predictionat
The vector of coefficientk(x) is solution of the linear system of equations

(;’(TZ) <ﬁ&;>—<:§§§§) 2)

with 0 a matrix of zerosK = (k(Xi,Xj))lsilan the covariance matrix df at all evaluation points iy,
K(X) = [K(X1,X), -..,k(xn,X)] T, the vector of covariances betwe€fx) andFp, and

p(x1)"
P= :
P(Xn)"

The Kriging coefficients at can thus be computed without evaluatifig), along with the variance of the
prediction error

82(x) = k(x,%) — N()Tk(x) = p(x) TH(X) 3)

as these quantities only depend on the covariande.d@nce f has been evaluated at afl in S, the
prediction off (x) is the conditional mean d%, given by

f(x) = E[F ()] #n] = A(x) "fn,

with 7, = {F, = f,} the evaluation results. Whehis evaluated exactly, Kriging is an interpolatiof €
Sn, F(xi) = F(xi)). Although noise on the evaluation results could easily dlen into account in the
prediction, in what follows, the evaluations are assumdtktaoise-free (see [20] for the noisy case).

As advocated in [18], the covariancef®is chosen within the Matérn class of covariance functiofs (c
[20] and the reference therein for more details on the chafieecovariance), and the covariance parameters
are either set a priori or estimated from the data using thémrman-likelihood method.

After the evaluations irs,, f(x) is viewed as a sample path Bfthat interpolates the dafa. Such
sample paths, known asnditional sample pathsre realizations df conditionally toF, and are essential
to the IAGO approach. They represent all the behaviors tiead@emed possible fdrgiven the results of
evaluations irSn. Figure 1(a) illustrates the relationships betwéefi, & and the conditional sample paths.

2.2 Kriging-based sampling criteria

Among the many sampling criterion available in the literafuve feel that expected improvement (El),
which has been the object of most publications in the fieldtierlast ten years, is the most suited for a
comparison with the one we proposed in [20].

2.2.1 Expected improvement

This sampling criterion corresponds to a one-step optitnategyy given the Gaussian pribron the un-
known functionf. Let f* = minyex f(x) be the global minimum of, S, be a set oh evaluation points in
X, and consideMp = miny,cs, F(x;) an estimator forf *. For the loss function

L(Sn,F) - Mn - f*,
the risk, or expected loss for a candidate paifior the evaluation off, given the evaluation resulfg, is
given by
E(L(SnU{c} F)[#n) = E(min{Mn, F(c)}|7n) — . 4)

One can show that minimizing (4) is equivalent to maximizing El criterion as presented for example in
[9],i.e.,
El(c) = E[l(c)| ], (%)



with
0 if F(c) > My
l(c)= { Mn—F(c) otherwise ‘
One can easily rewrite (5) as
El(c) = 6(c) [ud(u) + &' (u)] (6)

with A

_ m—f(c)

- 6(e)

My = E[Mp|#n] = minycs, f(Xi) the current estimation of the minimum, addthe normal cumulative
distribution. The new evaluation point is then chosen a®bajlmaximizer of E(c).

2.2.2 Conditional minimizer entropy

The IAGO approach is based on two complementary principles, set it apart from previous work in

Bayesian global optimization. First, a one-step optimahgling criterion for the reduction of the uncer-
tainty on the minimizers. Second, the use of Kriging to eatdithis sampling criterion by approximating
the distribution of the minimizers conditionally to pasta&wations. We now briefly present our sampling
criterion, and refer to [20] for computational details.

In [20], conditional entropy has been introduced to meagurénformation gained on the minimizers
by an additional evaluation df. ThisStepwise Uncertainty Reducti@®UR) strategy [6], chooses the point
that potentially brings the largest reduction in entromefsas a measure of uncertainty).

More formally, given our Gaussian priér on the functionf to be minimized, the uncertainty on the
minimizerx* can be measured by the entropy of the global minimizers

=Y px=(X)log(px- (x)),

xXeG

with X* a random vector uniformly distributed in the set of the glombénimizers of F over a discrete
approximationG of X, andpx- the point mass density of*.

Now, given a vectorf, of evaluation results, the uncertainty left &h is the entropy ofpx- (| #n)
the point mass density of* conditionally to the evaluation results, (or in shortconditional minimizer
density,

H(X"[gn) = %Px* (X|Fn)log(px- (X[ #n))-

The idea of the IAGO strategy is iteratively to ensure a aeg-sptimal reduction of the entropy of this
distribution.

The risk associated with a candidate evaluation@iX is then chosen as the differential entropy of the
global minimizers conditionally to the potential resultasf evaluation at (in short CME forconditional
minimizer entropy

Hn(c) = H(X"|7n,F(c)),
and the evaluation is performed at

Xn+1 = argminHu(c).
ceX

From the definition of conditional entropy [5], we can write

:/ngpF(q(W?n)( %Dx* (X|Fn, F( y) log(px+ (X|Fn, F (C) = y)))dy @)

with pe(c)(+|#n) the distribution ofF (c) and px-(+|#n, F (c) =y) the distribution ofX* conditionally to#n
and{F(c) = y}. The CMEHx(c), as written in (7), can be viewed as an expected loss, thefuossion
being the entropy opx- (| #n, F () = y) the conditional minimizer density after- 1 evaluations.



2.2.3 Practical aspects

The distributionpg ) (| #n) is Gaussian, with mean and variance simply obtained by KgigThere is,
however, no result in the literature that we can use to desaalytically any useful property of the
conditional minimizer density. To compute (7), we resoratoapproximation that is conducted via Monte-
Carlo simulations of- conditionally to available evaluation resultg and to a potential evaluation result
y atc (this approximation as well as recommendations for theaehof G are described in details in [20]).
This approximation leads to a complexity @(N) for the computation ofH,(c), with N the size of the
discrete approximation af. Note that in IAGO the conditional minimizer density is thaailable at each
step and provides (at least for low-dimensional probleme)ear view of the progress achieved in the
optimization process (cf. Figure 1(b)).

In the Bayesian optimization framework, the expensivextaluate function is replaced by a cheap
criterion, updated after each evaluation, which has to benigeed for a new evaluation point to be chosen.
Up to now, we have focused on the choice of criterion, but tengibn has been paid to the entire procedure
for global optimization, including for example an updateg#ss for the Kriging prediction. To keep this
paper focused on a comparison between sampling criterizhai only mention the classical framework
of the Efficient Global Optimization (EGO) (Algorithm 1).

EGO (see, e.g. [10]) starts with a small initial design usedét a first estimate of the parameters of
the covariance and to compute a first Kriging model. Basedizniodel, an additional point is selected
in the design space to be the location of the next evaluafidnio order to maximize the El criterion. The
parameters of the covariance are then re-estimated, tiggngjrmodel is re-computed, and the process of
choosing new points continues until the improvement exgztitbm sampling additional points has become
sufficiently small. The CME criterion can easily be inseiited similar algorithm in place of El to transform
EGO into IAGO.

Algorithm 1: Efficient global optimization framework

Input: Initial design of evaluation points and corresponding ealaf f

Output: Additional evaluations

1. while the evaluation budget is not exhausted or some other cogweegcondition is not satisfied
2 do Estimate the parameters of the covariance

3. Compute the Kriging model

4. Optimize the sampling criterion (El or CME here)

5 Evaluatef

3 Empirical comparison between El and CME

As presented in the previous section, El and CME are bothilkgipased sampling criteria and both one-
step optimal in some sense. CME should lead to faster coemeegates, and this for three major reasons.

First, El aims at estimating the@inimum while CME concentrates on thainimizers The search is
therefore likely to be more global when based on the latteco8d, EI aims at improving the estimation
of the minimum by sampling where its appearance is most jmleb# seems more reasonable to try di-
minishing the uncertainty associated with its positior. &ample, it might be excessively costly to refine
the estimation in a small neighborhood opatentialminimum, which may only be local, while evalua-
tions usingHn, could show that a large part of the search space has a veryrtdvalpility of containing the
global minimum (this idea will be confirmed in Section 3.3hifd, the computation of CME involves the
statistical properties of the sample pathd-ofwhile, by contrast the computation Bfl involves only the
conditional mean and variance Bfat c. A more thorough use of the available information on the fiomc
is indeed appealing in this context of expensive, and tbheeefparse, evaluations.

To substantiate these intuitions, a comparison of El and @Mikorder.

3.1 Experimental conditions

To make this comparison fair, we propose to study the behswifd=| and CME independently Algorithm 1)
and from the optimization method to be used to optimize thepdiaig criteria (Step 4 in Algorithm 1).
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Fig. 1 (a): Conditional sample paths &f, and corresponding Kriging prediction. The squares repreavailable values of, the
bold line is the conditional meah as computed by the Kriging predictor, the dotted lines mew5% confidence intervals for
the prediction { -+ 1.965) and the thin lines are conditional sample pathg. Estimated conditional minimizer densitpy(- (-|#n))
associated with the Kriging prediction.

These aspects are quite complex, and ad-hoc strategiebéeamgroposed in the literature (see [9] for an
example of optimization method for the sampling criterlddwever, our first objective here is to motivate
the choice of a sampling criterion.

Therefore, we conducted our experiments using the samerMat&ariance with the same values,
fixed a priori, for the covariance parameters. The(ef potential evaluation points was identical for both
criteria, and the choice of the next evaluation point wasiedrout via an exhaustive computation of the
relevant sampling criterion over this set. The questiong@tddressed in what follows then boils down to
the following interrogation: Given the same prior inforioaton the function, which sampling criterion
chooses the best point (in a sense to be discussed latergati@ofinite set of possible evaluations points?

3.2 Tests on classical benchmarks

The four test functions used in this section are taken fronjBere a comparison was conducted between
El and classical global optimization schemes such as DIREE®, e.g., [16]). The problem dimensions
range from two to five, and all functions present severalllatiaimizers (see Table 2 in Appendix 2).
The covariance parameters are estimated beforehand oesiksrof 200 evaluations randomly chosen in



Table 1 Comparison of expected improvement and conditional mizéméntropy on four test functions taken from*(8]

G; when points are chosen using EI G; when points are chosen using CME
i=20 i =50 i=100 i=20 i =50 i =100
Six-Hump Camel Back|| 0.65 1 1 0.76 1 1
Tilted Branin 0.83 0.92 0.98 0.89 0.95 0.97
Hartman 3 0.64 0.98 1 0.82 0.99 1
Ackley 5 0.36 0.75 0.73 0.34 0.59 0.72

*“For each criterion, the convergence meagbrés averaged over 50 runs (the estimated standard error éoedtimation of these
figures is always smaller than 0.01).

search space (using a latin hyper cube sampler), and therttedacare optimized over a latin hyper cube
design containing 1000 points randomly re-sampled afteryesvaluation.

A single pointxjis randomly chosen in search space as a common startingfpobth criteria, and 50
runs are conducted for each function to reduce the depepdertbe starting point. After thieth evaluation
of f, the efficiency of each criteria is measured by

f(x1) —m
f(x1)—f*’

with my = minyc gy, x3 f(X) the current estimate of the global minimuf. (a modified version of the
quality measure used in [2]) thus describes the reductiber, iaiterations of the optimization process, of
the initial estimation error for the global minimuri(x1) — f*. Table 1 presents, for each criterion, the
averaged efficiency after 20, 50 and 100 evaluations. Ekb@ltE for the Ackley function when= 40,
but for the other three test functions CME converges fasteatds the optimum than El, and significantly
so for the Hartman 3 function.

Gi=

3.3 Tests on Gaussian processes simulations

Even if a comparison on classical test functions gives soerspgctives on the qualities of each of the
criteria, the variability of the results from one test pml to the next may be significant, so one can
hardly use them to decide beforehand which sampling aniteio use on a specific problem. It therefore
would be best to derive some analytical convergence ratelsdi criteria under reasonable hypotheses
on the function to be optimized. In our context of expendiv@valuate functions, these convergence rates
would have to be non-asymptotic, and we do not know of any sestilts in the literature. However, the
probabilistic framework considered here makes it posdiblestimate empirical convergence rates. Since
the function to be optimized is assumed to be a sample pathGaussian process, we can estimate the
convergence rates with both criteria when optimizing sanpplths of a Gaussian process whose covariance
is the same as that chosen for the optimization algorithm.

For the sake of brevity, we shall limit our presentation to tdaussian processes, one with very smooth
sample paths, and the other with irregular sample paths.

Two sets of 1000 sample paths were generated over a regidaf ¢500 points irf0, 1)2. 15 evaluations
are then performed on each sample paths using both crifsfiter. each new evaluation, and for each
criterion, estimation errors are computed for the globalimum and the minimizer, as well as the entropy
of the conditional minimizer density. Two estimators of tflebal minimum are considered here, namely
My = MiNe x,  xq} (X), the best evaluation result obtained so far, and

My = f (argmaxpx- (x| #n)),
xeG

the predicted value associated with the point where theitiondl minimizer density is the highest. The
average convergence rates for irregular sample paths@semied on Figure 2(a) in terms of the entropy of
the conditional minimizer density, on Figure 2(b) in ternish@ estimation error fom,, and on Figure 2(c)
in terms of the estimation error fom,.”

As expected, since the entropy of the conditional minimigehe loss function behind CME, CME
performs significantly better than El in terms of the entrgfythe conditional minimizer density and,
in average, the uncertainty on the positions of the globaimizers diminishes faster if points are chosen
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global minimum withni, as an estimatorcj. The convergence measures are averaged over 1000 sartieopa Gaussian process
with a Matérn covariance with parameters= 1, p = 0.3 ando = 1 (see Appendix 5.1). The dashed line represents, as ameggre
the convergence rate for a random choice of evaluation goint
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the convergence rate for a random choice of evaluation faltite sample paths used here are smoother than those useégifia 2
(the parameter for the Matérn covarianceare 5, p = 0.3 ando = 1).

using CME (cf. Figure 2(a)). This fact was guaranteed fofitiseevaluation since CME is one-step optimal
for this loss function, but it had to be checked for several@ations.

Similarly, if the convergence is measured by the estimativorm, — f*, El is bound to perform better
if we consider only the first evaluation, since the convecgemeasure is the loss function behind El.
However, it appears that after 15 evaluations, the perfoomaf El and CME are similar (cf. Figure 2(b)),
suggesting that even if El is one-step optimal, in the long @ME will bring the largest reduction for
my — f* (this is confirmed by computations, not presented here, avittiger number of evaluations).

Elwould thus seem to be a better criterion in a context whergfew evaluations are allowed. However,
my is estimator actually a rather poor estimator of the globaimmum, and it appears that when a faster-to-
converge estimator is used insteadmf CME performs significantly better than EI (Figure 2(c))dahis
right form the start. This estimatoriis, ; whose interest is apparent for the three search strategpjdmred
here, for whichm, — f* is significantly bigger thamy— f*, and more than three times so after the first
evaluation (Figure 2(b) and Figure 2(c)). CME should therebe preferred to EI when one is confronted
with irregular sample paths, since it allows a better edionaof f*.

If we look at what happens on a typical sample path (see Figyrthe drawbacks of El are clearly
evidenced. As intuitively stated at the beginning of thetiseg El stalls on a local optimum because with
(4) as a loss function, it is better to ensure a small imprammear a minimum already found than to
check that it is effectively a global minimum. In the case mégular sample paths this might be highly
dangerous, and IAGO performs better simply because it fildtesses the question of whether a minimizer
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Fig. 4 Minimization of a sample path from the Gaussian process tsedaluate the convergence rates of Figure 2. The dotsaitedic
the evaluation points chosen by El. The crosses indicatevdeation points chosen by CME. The order in which the etalns are
carried out is also indicated for CME.

is global before improving the precision on its exact positiWwhen the sample paths are more regular, this
advantage diminishes (cf. Figure 3), as the local optimaeaecer.

A significant problem is left aside here, namely what happrepsactice if the parameters of the covari-
ance are poorly estimated? Does the optimization stratidfpesform well? Robustnesto a poor choice
of covariance parameters is of course a major issue but iticensidered here.The ElI and CME crite-
ria should have similar robustness properties and may bothebeived by a poor choice of covariance as
demonstrated in [9]. We feel that this problem should bel&tkom a Bayesian point of view, with some
prior on the covariance parameters. This will be done inrutwork, where we shall compare an extended
version of IAGO to the methods in [9] designed to be robustpoar choice of covariance.

3.4 Test on an industrial application: intake port design

This section presents an industrial optimization problerhe automotive field, also used for the compari-
son of CME and EL.

3.4.1 Problem description

Intake ports (Figure 5) are engine components that conveyxaura of air and fuel to the combustion
chambers. The importance of this type of component lies énpttoperties of the flow it induces in the
combustion chamber, which has a direct impact on both thimymeance and the emissions of pollutant
by the engine. To comply with new emission standards (Eurad EBuro VI), while satisfying the ever
increasing need for engine performance, the shape of ipi@ite has to be carefully optimized. Two often-
conflicting objectives have to be maximized simultanequsdynely the flow rate and a scalar characteristic
of the turbulent flow known atumble[13]. Physics tells us that the higher the flow rate, the latge
amount of fuel that can be burnt, and consequently the lgingepower delivered by the engine. Similarly,
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Fig. 5 Intake port. The component itself is in the middle. Belowhis tombustion chamber. The upper cylinder is a tranquiizin
volume necessary for the convergence of finite-elementlatioos.

pollutants as nitrogen oxides (NDand carbon monoxide (CO) are, to a large extent, createah Wie
air/fuel mix is not homogeneous. Therefore, the largertineulience (and tumble accounts for the relevant
properties of it), the smaller the pollution.

The specifications for these two objectives are liable tagealuring conception. Therefore, itis impor-
tant to determine not only an optimal geometry for a givero§gtreferences but rather the full Pareto front.
However, building prototypes for tests is exceedingly egiee, and each flow simulation by finite-element
methods takes about ten hours on powerful servers. The appexlvocated in this paper is therefore par-
ticularly attractive given the general will for reductiohduration and cost associated with development.

3.4.2 Computational issues

To extend our sampling criteria to a multi-objective prabJeve use a standard procedure and consider
several linear combinations of the objective functionk.@a.aggregations), each accounting for a different
zone of the Pareto front. In [11], this approach has beenwsextend the El criterion to a multi-objective
problem by randomly selecting a new aggregation after esafluation of f. In this paper, we follow
the same route, but use the IAGO framework to compute the@ntof the conditional density of the
minimizers for the mono-objective optimization problemresponding to each aggregation in a given set.
The search can thus be directed towards the most uncertggmssof the Pareto front.

The resulting multi objective extensions of CME and El hagerbapplied to the optimization of six
shape parameters of an intake port (these parameters adetadéed here for confidentiality reasons). To
improve the number of simulations achievable in a given fithe geometry and mesh are automatically
generated for each finite-element simulation. The optitidralgorithm is then directly interfaced with the
solver, limiting human intervention to the initializatiof the procedure.

The initial value for the parameters of the Matérn covargeane estimated on simulations that have been
collected during the design of previous intake ports. listbecomes possible to initialize the algorithms
with very few randomly chosen points (here with five points).

One thousand candidate points are ugée=(1000) and the parameters of the Matern covariance are
fixed.

3.4.3 Results

For comparison purposes, simulations were conduced ortynirgake ports whose parameters were chosen
using El, CME, or a Latin Hyper Cube (LHC) as a reference. Tae®-optimal points within each of the
three sets of evaluation results are presented in Figureogp@rison between sets estimates of Pareto
fronts is a tricky process, which may involve various quatiteasures [12]. Here however, the comparison
is clearly in favor of CME, as
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Fig. 6 Results of 20 evaluations randomly chosen using an LHC Jdat®ptimally chosen by CME (crosses) or by El (squares). Fo
CME and El, only the Pareto-optimal points are presentedLR&, a larger dot size indicates points that are, within¢basidered
set of paoints, Pareto-optimal. Tumble and flow rate have besraled for confidentiality reasons. The dashed linesiele set of
points that are dominated by the Pareto-optimal pointsimddausing CME and which dominate the “worst point”, i.e. ffeént with
worst values attained for both objectives

— among all evaluation results, the point closest to an “idsellution (i.e. with best value yet obtained
for both objectives, herg-0.97,-1.97)T) has been chosen by CME;

— all but one point chosen by El are dominated by points choge@GME. In other words, almost any
good solution found by El is bettered by a solution found byE;M

— the volume of the set of points dominated by the Pareto-adtjmoints (cf. [12] for details on this
quality measure) is 0.31 for CME (this volume is represemed-igure 6), while it is only 0.26 for
El (the reference for the computation is the point with warslues attained for both objectives as
coordinates).

This test case confirms that Bayesian global optimizatieagly applicable to an industrial problem,
even with a very small evaluation budget. The interest of GM&pparent after only a few evaluations, as
predicted by the convergence rates of Section 3.3.

3.5 Computational burden

The comparison made so far dealt only with convergence.rékessuperiority of CME over El was demon-
strated for sample paths of Gaussian random processegsafde two very different regularities of the
sample paths (cf. Section 3.3), while the convergence ategenerally in favor of CME when applied
to some classical test functions (cf. Section 3.2) or to dnaddndustrial problem. However, El is easier
to compute since it only requires the mean and variance gbttbdiction at the candidate point, while the
complexity of the computation of IAGO is i®@(N), with N the size of a discrete approximationXfused
for the estimation of the conditional density.

In practice, with our implementation of IAGO (cf. [20]) anotdi40s are required on an AMD opteron 285
server to choose an additional evaluation point for the $apaths of Section 3.3 (by extensive computation
of Hy over 1500 candidate points, which is enough in practiceesihis set is randomly re-sampled after
each evaluation). By comparison, choosing a point with Eésdess than half a second under the same
conditions. To broaden the range of potential applicatioves tried to limit the computational expense
by testing other approximations for the conditional mirderi density (since the manipulation of sample
paths, necessary for the approximation proposed herespsmnsible for most of the computational burden).
We proposed for example, to estimate the derivative$ bf Kriging (as in, e.g., [19]) and to compute
the probability for a given point to be a local optimum and end certain threshold. It was then easy to
build a relatively accurate approximation of the condigibminimizer density, but the approximation had a
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detrimental effect on the convergence rate, so that El teearine more efficient. In fact, the quality of the
approximation of the conditional minimizer density is inmamt for CME to perform better than EI.

IAGO therefore remains destined to the optimization of tiores that require a large amount of com-
puter time (or more generally a significant expense) to briated, which is after all what it was designed
for and is the case in many applications in the industrialéviorcluding the one we presented here.

4 Conclusions and perspectives

In this paper, we have evidenced a clear superiority of CMé&r @&l, especially when the function to be
optimized is irregular. The comparison has been conducsetyiclassical test functions and an actual
industrial application, but above all using sample paththefmodel behind Kriging. The use of sample
paths indeed allows the computation of empirical convergeates that can also be useful to tune other
components of any Kriging-based algorithms (e.g., thenogtition of the sampling criterion). Now that
the interest of the CME criterion has been demonstrateehtain should turn to other crucial aspects of
any Kriging-based optimization algorithm. One of theseea$pis the improvement of robustness against
a bad choice of covariance for the Gaussian process moddeéWVehat the Bayesian framework that we
have used until now should also be useful in this respect.

5 Appendices

5.1 Appendix 1: Matérn covariance

In this paper, we follow Stein (1999) and use of the isotrdypatérn covariance:

2 120\ " 1/2
k(x,y) =k(h) = 2V7clrr(v) <2Vp h) Kv <2Vp h) V(x,y) € X2, (8)

with hthe Euclidean distance betweeandy, andx, the modified Bessel function of the second kind [23].
The parameters of this covariance are easy to interpretcastrols regularityp? is the variancek(0) =

02), andp represents theingeof the covariancé,e., the characteristic correlation distance. They can either
be fixed using prior knowledge on the system, or be estimatad &xperimental data. In geostatistics,
estimation is carried out using the adequacy between thériealand model covariance (see, e.g., [4]).
In other areas, cross validation (cf. [21]) and maximumliii@d (cf. [18]) are mostly employed. For
simplicity and generality reasons (cf. [18]), the maximlikelihood method is preferred here.

5.2 Appendix 2: Test functions
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Table 2 Test functions to be minimized [8]

Name Description

d=2

f(X) =4 — 2.1 +1/38 +xa % — 45 + 44
Six-Hump Camel Back [3]|] —1.6<x;3 <24, -08<x,<12

Niocal = 67 Nglobal =2

x* =1[0.089,0.713T and[0.089,0.713 ", f* = —1.03
d=2

2
_ _ 1) = (xe— 25@+ 81— 6) +10(1- &) cosq +10+ 05
Tilted Branin [8] B5<x <100<x <15
Niocal = 37 Nglobal =1
x* =[-32,123T f*=-1.17

d=3
F00 = — iy drexp| — 334030 = py)|
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f(x) = —20exg—0.2,/ 2 54  x?] —expl ¢ ; cog2m0g)] + 20+ e
Ackley 5[1] Vie[1,3] —328<x <328

Niocal > 1, Ngiobai = 1

X' =0, f* =0
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