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Abstract In many global optimization problems motivated by engineering applications, the number of
function evaluations is severely limited by time or cost. Toensure that each of these evaluations usefully
contributes to the localization of good candidates for the role of global minimizer, a stochastic model of the
function can be built to conduct a sequential choice of evaluation points. Based on Gaussian processes and
Kriging, the authors have recently introduced the informational approach to global optimization (IAGO)
which provides a one-step optimal choice of evaluation points in terms of reduction of uncertainty on the
location of the minimizers. To do so, the probability density of the minimizers is approximated using con-
ditional simulations of the Gaussian process model behind Kriging. In this paper, an empirical comparison
between the underlying sampling criterion called conditional minimizer entropy (CME) and the standard
expected improvement sampling criterion (EI) is presented. Classical test functions are used as well as sam-
ple paths of the Gaussian model and an industrial application. They show the interest of the CME sampling
criterion in terms of evaluation savings.

Keywords expected improvement, global optimization, Kriging

1 Introduction

To minimize an expensive-to-evaluate functionf , a common approach is to use a cheap approximation of
this function, which can lead to significant savings over traditional methods. In this context, global opti-
mization techniques based on Gaussian processes and Kriging (see, e.g., [4]) are often preferred, for they
provide an appealing probabilistic framework to account for the uncertainty on the function approximation.
Expensive-to-evaluate functions are often encountered inindustrial optimization problems, where the func-
tion value may be the output of complex computer simulations, or the result of costly measurements on
prototypes.

Most Kriging-based strategies proposed in the past few years (see, e.g., [9] and the references therein)
implicitly seek a likely value for a global minimizer, and then assume itto be a suitable location for the next
evaluation off . Yet, making full use of Kriging, it is possible toexplicitlyaccount for the uncertainty on the
global minimizers, and the most likely location of a global optimizer is not necessarily a good evaluation
point to improve the accumulated knowledge on the global minimizers.

Based on these considerations, the Informational Approachto Global Optimization (IAGO) strategy
recently proposed in [20] evaluatesf where the potential for reduction of the uncertainty on the location of
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the minimizers is deemed to be highest. The entropy of the conditional distribution of the global minimiz-
ers is taken as the uncertainty measure, and is approximatedusing conditional simulations of the Gaussian
process modelingf . This approach has two main advantages over classical Kriging-based global optimiza-
tion methods, such as the Efficient Global Optimization (EGO) algorithm (see [10]). First, it should lead to
significant savings on the number of evaluations off . Second, results under the form of probability distri-
butions are particularly attractive. The purpose of this paper is to evidence the evaluation savings that can
be obtained via the use of IAGO.

EGO and IAGO differ only by the sampling criterion used for choosing the next evaluation point. These
two criteria, namelyexpected improvement(EI) for EGO andconditional minimizer entropy(CME) for
IAGO, undergo a series of numerical experiments. The first experiments are conducted on four classical test
functions. Later on, empirical convergence rates are estimated using sample paths of a Gaussian process.
A final comparison is performed on a real-case application tothe design of intake ports in the automotive
industry, for which a single evaluation of the function to beoptimized requires about ten hours of computer
time.

The Kriging framework is briefly recalled in Section 2, as well as the definitions of the EI and CME
criteria. A brief description of computational aspects of the IAGO approach is also presented. Section 3
reports the empirical comparison of these two criteria. Finally, Section 4 presents conclusions and offers
perspectives for future work.

2 Kriging-based global optimization

Let X, the factor space, be a compact subset ofRd and f : X → R be the function to be minimized. The
objective is to findx∗ a global minimizer off over X when the evaluation off is expensive. To do so,
a cheap model off (also known as surrogate approximation) based on previous evaluations will be used.
Even if deterministic models have been discussed (as in the response surface methodology, see, e.g., [15]),
it is stochastic models that will retain our attention, and more precisely the Bayesian approach to global
optimization (see, e.g., [14]). In this framework,f is viewed as a realisation (or sample path) of a stochastic
processF (F can also be viewed as a Bayesian prior onf ). The distribution ofF conditionally to past
evaluation results forf is used to design asampling criterionto be optimized to choose an additional
evaluation point forf .

When F is Gaussian (we make this assumption in the rest of the paper), the conditional distribution ofF
at an untried point is also Gaussian with mean and variance that can be obtained analytically using Kriging
(prediction based on Gaussian processes has been known for more than 50 years as Kriging in geostatistics
and we shall keep to this terminology). Gaussian models and Kriging have been introduced in the field of
Bayesian optimization in [10], through the Efficient GlobalOptimization (EGO) algorithm. Since then (see
[14] for an overview of previous work in the field), Gaussian processes and Kriging have been the object of
most publications in the field of Bayesian global optimization, with improvements of the EGO algorithm
(see, e.g., [22] or [8]) and comparative studies (see, e.g. [9] or [17]). Our contribution to the field is also
based on Kriging.

2.1 Linear prediction

In this section, we recall some well-known facts about Kriging on which the rest of the paper is based (for
more details, see [4, 20] and the references therein).

Let k(., .) be the covariance function ofF , andx be a point inX whereF is to be predicted. The mean
of F(x) is assumed to be a finite linear combination of known functions pi of x, m(x) = βββTp(x), whereβββ
is a vector of fixed coefficients to be computed, andp(x) = [p1(x), ..., pl (x)]T. Usually the functionspi are
monomials of low degree in the components ofx (in practice, their degrees do not exceed two).

Given the vectorfn = [ f (x1), ..., f (xn)]
T of past evaluations at points inSn = {x1, ...,xn} ∈ Xn (a sample

value ofFn = [F(x1), ...,F(xn)]
T), the Kriging predictorF̂(x) of F(x) is the minimum-variance unbiased

linear predictor in the vector space span{F(x1), ...,F(xn)}. It can be written as

F̂(x) = λλλ(x)TFn , (1)
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with Fn = [F(x1), ...,F(xn)]
T, andλλλ(x) the vector of Kriging coefficients for the prediction atx.

The vector of coefficientsλλλ(x) is solution of the linear system of equations
(

K P
PT 0

)(

λλλ(x)
µµµ(x)

)

=

(

k(x)
p(x)

)

, (2)

with 0 a matrix of zeros,K = (k(xi ,x j))1≤i, j≤n the covariance matrix ofF at all evaluation points inSn,

k(x) = [k(x1,x), ...,k(xn,x)]T, the vector of covariances betweenF(x) andFn, and

P =







p(x1)
T

...
p(xn)

T






.

The Kriging coefficients atx can thus be computed without evaluatingf (x), along with the variance of the
prediction error

σ̂2(x) = k(x,x)−λλλ(x)Tk(x)−p(x)Tµµµ(x) , (3)

as these quantities only depend on the covariance ofF . Once f has been evaluated at allxi in Sn, the
prediction of f (x) is the conditional mean ofF, given by

f̂ (x) = E[F̂(x)|Fn] = λλλ(x)Tfn,

with Fn = {Fn = fn} the evaluation results. Whenf is evaluated exactly, Kriging is an interpolation (∀xi ∈
Sn, F̂(xi) = F(xi)). Although noise on the evaluation results could easily be taken into account in the
prediction, in what follows, the evaluations are assumed tobe noise-free (see [20] for the noisy case).

As advocated in [18], the covariance ofF is chosen within the Matérn class of covariance functions (cf.
[20] and the reference therein for more details on the choiceof a covariance), and the covariance parameters
are either set a priori or estimated from the data using the maximum-likelihood method.

After the evaluations inSn, f (x) is viewed as a sample path ofF that interpolates the datafn. Such
sample paths, known asconditional sample paths, are realizations ofF conditionally toFn and are essential
to the IAGO approach. They represent all the behaviors that are deemed possible forf given the results of
evaluations inSn. Figure 1(a) illustrates the relationships betweenf , f̂ , σ̂ and the conditional sample paths.

2.2 Kriging-based sampling criteria

Among the many sampling criterion available in the literature, we feel that expected improvement (EI),
which has been the object of most publications in the field forthe last ten years, is the most suited for a
comparison with the one we proposed in [20].

2.2.1 Expected improvement

This sampling criterion corresponds to a one-step optimal strategy given the Gaussian priorF on the un-
known functionf . Let f ∗ = minx∈X f (x) be the global minimum off , Sn be a set ofn evaluation points in
X, and considerMn = minxi∈Sn F(xi) an estimator forf ∗. For the loss function

L(Sn,F) = Mn− f ∗,

the risk, or expected loss for a candidate pointc for the evaluation off , given the evaluation resultsfn, is
given by

E(L(Sn∪{c},F)|Fn) = E(min{Mn,F(c)}|Fn)− f ∗. (4)

One can show that minimizing (4) is equivalent to maximizingthe EI criterion as presented for example in
[9], i.e.,

EI(c) = E [I(c)|Fn] , (5)
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with

I(c) =

{

0 if F(c) ≥ Mn

Mn−F(c) otherwise
.

One can easily rewrite (5) as

EI(c) = σ̂(c)
[

uΦ(u)+ Φ′(u)
]

, (6)

with

u =
mn− f̂ (c)

σ̂(c)
,

mn = E[Mn|Fn] = minxi∈Sn f (xi) the current estimation of the minimum, andΦ the normal cumulative
distribution. The new evaluation point is then chosen as a global maximizer of EI(c).

2.2.2 Conditional minimizer entropy

The IAGO approach is based on two complementary principles,that set it apart from previous work in
Bayesian global optimization. First, a one-step optimal sampling criterion for the reduction of the uncer-
tainty on the minimizers. Second, the use of Kriging to evaluate this sampling criterion by approximating
the distribution of the minimizers conditionally to past evaluations. We now briefly present our sampling
criterion, and refer to [20] for computational details.

In [20], conditional entropy has been introduced to measurethe information gained on the minimizers
by an additional evaluation off . ThisStepwise Uncertainty Reduction(SUR) strategy [6], chooses the point
that potentially brings the largest reduction in entropy (seen as a measure of uncertainty).

More formally, given our Gaussian priorF on the functionf to be minimized, the uncertainty on the
minimizerx∗ can be measured by the entropy of the global minimizers

H(X∗) = − ∑
x∈G

pX∗(x)log(pX∗(x)),

with X∗ a random vector uniformly distributed in the set of the global minimizers ofF over a discrete
approximationG of X, andpX∗ the point mass density ofX∗.

Now, given a vectorfn of evaluation results, the uncertainty left onx∗ is the entropy ofpX∗(·|Fn)
the point mass density ofX∗ conditionally to the evaluation resultsFn (or in shortconditional minimizer
density),

H(X∗|Fn) = − ∑
x∈G

pX∗(x|Fn)log(pX∗(x|Fn)).

The idea of the IAGO strategy is iteratively to ensure a one-step optimal reduction of the entropy of this
distribution.

The risk associated with a candidate evaluation atc∈ X is then chosen as the differential entropy of the
global minimizers conditionally to the potential result ofan evaluation atc (in short CME forconditional
minimizer entropy)

Hn(c) = H(X∗|Fn,F(c)),

and the evaluation is performed at

xn+1 = argmin
c∈X

Hn(c).

From the definition of conditional entropy [5], we can write

Hn(c) =

Z

y∈R

pF(c)(y|Fn)

(

− ∑
x∈G

pX∗(x|Fn,F(c) = y) log(pX∗(x|Fn,F(c) = y))

)

dy, (7)

with pF(c)(·|Fn) the distribution ofF(c) andpX∗(·|Fn,F(c) = y) the distribution ofX∗ conditionally toFn

and{F(c) = y}. The CMEHn(c), as written in (7), can be viewed as an expected loss, the lossfunction
being the entropy ofpX∗(·|Fn,F(c) = y) the conditional minimizer density aftern+1 evaluations.
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2.2.3 Practical aspects

The distributionpF(c)(·|Fn) is Gaussian, with mean and variance simply obtained by Kriging. There is,
however, no result in the literature that we can use to describe analytically any useful property of the
conditional minimizer density. To compute (7), we resort toan approximation that is conducted via Monte-
Carlo simulations ofF conditionally to available evaluation resultsFn and to a potential evaluation result
y at c (this approximation as well as recommendations for the choice ofG are described in details in [20]).
This approximation leads to a complexity inO(N) for the computation ofHn(c), with N the size of the
discrete approximation ofX. Note that in IAGO the conditional minimizer density is thusavailable at each
step and provides (at least for low-dimensional problems) aclear view of the progress achieved in the
optimization process (cf. Figure 1(b)).

In the Bayesian optimization framework, the expensive-to-evaluate function is replaced by a cheap
criterion, updated after each evaluation, which has to be optimized for a new evaluation point to be chosen.
Up to now, we have focused on the choice of criterion, but no attention has been paid to the entire procedure
for global optimization, including for example an update process for the Kriging prediction. To keep this
paper focused on a comparison between sampling criteria, weshall only mention the classical framework
of the Efficient Global Optimization (EGO) (Algorithm 1).

EGO (see, e.g. [10]) starts with a small initial design used to get a first estimate of the parameters of
the covariance and to compute a first Kriging model. Based on this model, an additional point is selected
in the design space to be the location of the next evaluation of f in order to maximize the EI criterion. The
parameters of the covariance are then re-estimated, the Kriging model is re-computed, and the process of
choosing new points continues until the improvement expected from sampling additional points has become
sufficiently small. The CME criterion can easily be insertedin a similar algorithm in place of EI to transform
EGO into IAGO.

Algorithm 1: Efficient global optimization framework
Input: Initial design of evaluation points and corresponding values of f
Output: Additional evaluations
1. while the evaluation budget is not exhausted or some other convergence condition is not satisfied
2. do Estimate the parameters of the covariance
3. Compute the Kriging model
4. Optimize the sampling criterion (EI or CME here)
5. Evaluatef

3 Empirical comparison between EI and CME

As presented in the previous section, EI and CME are both Kriging-based sampling criteria and both one-
step optimal in some sense. CME should lead to faster convergence rates, and this for three major reasons.

First, EI aims at estimating theminimum, while CME concentrates on theminimizers. The search is
therefore likely to be more global when based on the latter. Second, EI aims at improving the estimation
of the minimum by sampling where its appearance is most probable. It seems more reasonable to try di-
minishing the uncertainty associated with its position. For example, it might be excessively costly to refine
the estimation in a small neighborhood of apotentialminimum, which may only be local, while evalua-
tions usingHn could show that a large part of the search space has a very low probability of containing the
global minimum (this idea will be confirmed in Section 3.3). Third, the computation of CME involves the
statistical properties of the sample paths ofF , while, by contrast the computation ofEI involves only the
conditional mean and variance ofF at c. A more thorough use of the available information on the function
is indeed appealing in this context of expensive, and therefore sparse, evaluations.

To substantiate these intuitions, a comparison of EI and CMEis in order.

3.1 Experimental conditions

To make this comparison fair, we propose to study the behaviors of EI and CME independently Algorithm 1)
and from the optimization method to be used to optimize the sampling criteria (Step 4 in Algorithm 1).
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Fig. 1 (a): Conditional sample paths ofF , and corresponding Kriging prediction. The squares represent available values off , the
bold line is the conditional mean̂f as computed by the Kriging predictor, the dotted lines provide 95% confidence intervals for
the prediction (̂f ±1.96σ̂) and the thin lines are conditional sample paths. (b): Estimated conditional minimizer density (pX∗ (·|Fn))
associated with the Kriging prediction.

These aspects are quite complex, and ad-hoc strategies havebeen proposed in the literature (see [9] for an
example of optimization method for the sampling criteria).However, our first objective here is to motivate
the choice of a sampling criterion.

Therefore, we conducted our experiments using the same Matérn covariance with the same values,
fixed a priori, for the covariance parameters. The setG of potential evaluation points was identical for both
criteria, and the choice of the next evaluation point was carried out via an exhaustive computation of the
relevant sampling criterion over this set. The question to be addressed in what follows then boils down to
the following interrogation: Given the same prior information on the function, which sampling criterion
chooses the best point (in a sense to be discussed later) amongst a finite set of possible evaluations points?

3.2 Tests on classical benchmarks

The four test functions used in this section are taken from [8], where a comparison was conducted between
EI and classical global optimization schemes such as DIRECT(see, e.g., [16]). The problem dimensions
range from two to five, and all functions present several local minimizers (see Table 2 in Appendix 2).
The covariance parameters are estimated beforehand on the results of 200 evaluations randomly chosen in
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Table 1 Comparison of expected improvement and conditional minimizer entropy on four test functions taken from [8]∗.

Gi when points are chosen using EI Gi when points are chosen using CME
i = 20 i = 50 i = 100 i = 20 i = 50 i = 100

Six-Hump Camel Back 0.65 1 1 0.76 1 1
Tilted Branin 0.83 0.92 0.98 0.89 0.95 0.97
Hartman 3 0.64 0.98 1 0.82 0.99 1
Ackley 5 0.36 0.75 0.73 0.34 0.59 0.72

∗For each criterion, the convergence measureGi is averaged over 50 runs (the estimated standard error for the estimation of these
figures is always smaller than 0.01).

search space (using a latin hyper cube sampler), and the two criteria are optimized over a latin hyper cube
design containing 1000 points randomly re-sampled after every evaluation.

A single pointx1is randomly chosen in search space as a common starting pointfor both criteria, and 50
runs are conducted for each function to reduce the dependency on the starting point. After thei-th evaluation
of f , the efficiency of each criteria is measured by

Gi =
f (x1)−mi

f (x1)− f ∗
,

with mi = minx∈{x1,...xi} f (x) the current estimate of the global minimum.Gi (a modified version of the
quality measure used in [2]) thus describes the reduction, after i iterations of the optimization process, of
the initial estimation error for the global minimumf (x1)− f ∗. Table 1 presents, for each criterion, the
averaged efficiency after 20, 50 and 100 evaluations. EI beats CME for the Ackley function wheni = 40,
but for the other three test functions CME converges faster towards the optimum than EI, and significantly
so for the Hartman 3 function.

3.3 Tests on Gaussian processes simulations

Even if a comparison on classical test functions gives some perspectives on the qualities of each of the
criteria, the variability of the results from one test problem to the next may be significant, so one can
hardly use them to decide beforehand which sampling criterion to use on a specific problem. It therefore
would be best to derive some analytical convergence rates for both criteria under reasonable hypotheses
on the function to be optimized. In our context of expensive-to-evaluate functions, these convergence rates
would have to be non-asymptotic, and we do not know of any suchresults in the literature. However, the
probabilistic framework considered here makes it possibleto estimate empirical convergence rates. Since
the function to be optimized is assumed to be a sample path of aGaussian process, we can estimate the
convergence rates with both criteria when optimizing sample paths of a Gaussian process whose covariance
is the same as that chosen for the optimization algorithm.

For the sake of brevity, we shall limit our presentation to two Gaussian processes, one with very smooth
sample paths, and the other with irregular sample paths.

Two sets of 1000 sample paths were generated over a regular grid of 1500 points in[0,1]2. 15 evaluations
are then performed on each sample paths using both criteria.After each new evaluation, and for each
criterion, estimation errors are computed for the global minimum and the minimizer, as well as the entropy
of the conditional minimizer density. Two estimators of theglobal minimum are considered here, namely
mn = minx∈{x1,...xn} f (x), the best evaluation result obtained so far, and

m̃n = f̂ (argmax
x∈G

pX∗(x|Fn)),

the predicted value associated with the point where the conditional minimizer density is the highest. The
average convergence rates for irregular sample paths are presented on Figure 2(a) in terms of the entropy of
the conditional minimizer density, on Figure 2(b) in terms of the estimation error formn, and on Figure 2(c)
in terms of the estimation error for ˜mn.

As expected, since the entropy of the conditional minimizeris the loss function behind CME, CME
performs significantly better than EI in terms of the entropyof the conditional minimizer density and,
in average, the uncertainty on the positions of the global minimizers diminishes faster if points are chosen
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Fig. 2 Convergence rates using EI (dotted line) and IAGO (bold line), when convergence is measured byH(X∗|Fn) (a), by the
estimation error for the global minimum with the best value obtained so far (mn) as an estimator (b), by the estimation error for the
global minimum withm̃n as an estimator (c). The convergence measures are averaged over 1000 sample paths of a Gaussian process
with a Matérn covariance with parametersν = 1, ρ = 0.3 andσ = 1 (see Appendix 5.1). The dashed line represents, as a reference,
the convergence rate for a random choice of evaluation points.
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Fig. 3 Convergence rates using EI (dotted line) and IAGO (bold line), when convergence is measured byH(X∗|Fn) (a), and when
convergence is measured by the estimation error for the minimum withm̃n as estimator (b). The dashed line represents, as reference,
the convergence rate for a random choice of evaluation points. The sample paths used here are smoother than those used forFigure 2
(the parameter for the Matérn covariance areν = 5, ρ = 0.3 andσ = 1).

using CME (cf. Figure 2(a)). This fact was guaranteed for thefirst evaluation since CME is one-step optimal
for this loss function, but it had to be checked for several evaluations.

Similarly, if the convergence is measured by the estimationerrormn− f ∗, EI is bound to perform better
if we consider only the first evaluation, since the convergence measure is the loss function behind EI.
However, it appears that after 15 evaluations, the performance of EI and CME are similar (cf. Figure 2(b)),
suggesting that even if EI is one-step optimal, in the long run, CME will bring the largest reduction for
mn− f ∗ (this is confirmed by computations, not presented here, witha larger number of evaluations).

EI would thus seem to be a better criterion in a context where very few evaluations are allowed. However,
mn is estimator actually a rather poor estimator of the global minimum, and it appears that when a faster-to-
converge estimator is used instead ofmn, CME performs significantly better than EI (Figure 2(c)), and this
right form the start. This estimator is ˜mn , whose interest is apparent for the three search strategy considered
here, for whichmn− f ∗ is significantly bigger than ˜mn− f ∗, and more than three times so after the first
evaluation (Figure 2(b) and Figure 2(c)). CME should therefore be preferred to EI when one is confronted
with irregular sample paths, since it allows a better estimation of f ∗.

If we look at what happens on a typical sample path (see Figure4), the drawbacks of EI are clearly
evidenced. As intuitively stated at the beginning of the section, EI stalls on a local optimum because with
(4) as a loss function, it is better to ensure a small improvement near a minimum already found than to
check that it is effectively a global minimum. In the case of irregular sample paths this might be highly
dangerous, and IAGO performs better simply because it first addresses the question of whether a minimizer
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Fig. 4 Minimization of a sample path from the Gaussian process usedto evaluate the convergence rates of Figure 2. The dots indicate
the evaluation points chosen by EI. The crosses indicate theevaluation points chosen by CME. The order in which the evaluations are
carried out is also indicated for CME.

is global before improving the precision on its exact position. When the sample paths are more regular, this
advantage diminishes (cf. Figure 3), as the local optima arescarcer.

A significant problem is left aside here, namely what happensin practice if the parameters of the covari-
ance are poorly estimated? Does the optimization strategy still perform well?Robustnessto a poor choice
of covariance parameters is of course a major issue but it is not considered here.The EI and CME crite-
ria should have similar robustness properties and may both be deceived by a poor choice of covariance as
demonstrated in [9]. We feel that this problem should be tackled from a Bayesian point of view, with some
prior on the covariance parameters. This will be done in future work, where we shall compare an extended
version of IAGO to the methods in [9] designed to be robust to apoor choice of covariance.

3.4 Test on an industrial application: intake port design

This section presents an industrial optimization problem in the automotive field, also used for the compari-
son of CME and EI.

3.4.1 Problem description

Intake ports (Figure 5) are engine components that convey a mixture of air and fuel to the combustion
chambers. The importance of this type of component lies in the properties of the flow it induces in the
combustion chamber, which has a direct impact on both the performance and the emissions of pollutant
by the engine. To comply with new emission standards (Euro V and Euro VI), while satisfying the ever
increasing need for engine performance, the shape of intakeports has to be carefully optimized. Two often-
conflicting objectives have to be maximized simultaneously, namely the flow rate and a scalar characteristic
of the turbulent flow known astumble[13]. Physics tells us that the higher the flow rate, the larger the
amount of fuel that can be burnt, and consequently the largerthe power delivered by the engine. Similarly,



11

Fig. 5 Intake port. The component itself is in the middle. Below is the combustion chamber. The upper cylinder is a tranquilizing
volume necessary for the convergence of finite-element simulations.

pollutants as nitrogen oxides (NOx) and carbon monoxide (CO) are, to a large extent, created when the
air/fuel mix is not homogeneous. Therefore, the larger the turbulence (and tumble accounts for the relevant
properties of it), the smaller the pollution.

The specifications for these two objectives are liable to change during conception. Therefore, it is impor-
tant to determine not only an optimal geometry for a given setof preferences but rather the full Pareto front.
However, building prototypes for tests is exceedingly expensive, and each flow simulation by finite-element
methods takes about ten hours on powerful servers. The approach advocated in this paper is therefore par-
ticularly attractive given the general will for reduction of duration and cost associated with development.

3.4.2 Computational issues

To extend our sampling criteria to a multi-objective problem, we use a standard procedure and consider
several linear combinations of the objective functions (a.k.a. aggregations), each accounting for a different
zone of the Pareto front. In [11], this approach has been usedto extend the EI criterion to a multi-objective
problem by randomly selecting a new aggregation after each evaluation of f . In this paper, we follow
the same route, but use the IAGO framework to compute the entropy of the conditional density of the
minimizers for the mono-objective optimization problem corresponding to each aggregation in a given set.
The search can thus be directed towards the most uncertain regions of the Pareto front.

The resulting multi objective extensions of CME and EI have been applied to the optimization of six
shape parameters of an intake port (these parameters are notdetailed here for confidentiality reasons). To
improve the number of simulations achievable in a given time, the geometry and mesh are automatically
generated for each finite-element simulation. The optimization algorithm is then directly interfaced with the
solver, limiting human intervention to the initializationof the procedure.

The initial value for the parameters of the Matérn covariance are estimated on simulations that have been
collected during the design of previous intake ports. It thus becomes possible to initialize the algorithms
with very few randomly chosen points (here with five points).

One thousand candidate points are used (N = 1000) and the parameters of the Matèrn covariance are
fixed.

3.4.3 Results

For comparison purposes, simulations were conduced on twenty intake ports whose parameters were chosen
using EI, CME, or a Latin Hyper Cube (LHC) as a reference. The Pareto-optimal points within each of the
three sets of evaluation results are presented in Figure 6. Comparison between sets estimates of Pareto
fronts is a tricky process, which may involve various quality measures [12]. Here however, the comparison
is clearly in favor of CME, as
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Fig. 6 Results of 20 evaluations randomly chosen using an LHC (dots), or optimally chosen by CME (crosses) or by EI (squares). For
CME and EI, only the Pareto-optimal points are presented. For LHC, a larger dot size indicates points that are, within theconsidered
set of points, Pareto-optimal. Tumble and flow rate have beenrescaled for confidentiality reasons. The dashed lines delimit the set of
points that are dominated by the Pareto-optimal points obtained using CME and which dominate the “worst point”, i.e. thepoint with
worst values attained for both objectives

.

– among all evaluation results, the point closest to an “ideal” solution (i.e. with best value yet obtained
for both objectives, here[−0.97,−1.97]T) has been chosen by CME;

– all but one point chosen by EI are dominated by points chosen by CME. In other words, almost any
good solution found by EI is bettered by a solution found by CME;

– the volume of the set of points dominated by the Pareto-optimal points (cf. [12] for details on this
quality measure) is 0.31 for CME (this volume is representedon Figure 6), while it is only 0.26 for
EI (the reference for the computation is the point with worstvalues attained for both objectives as
coordinates).

This test case confirms that Bayesian global optimization iseasily applicable to an industrial problem,
even with a very small evaluation budget. The interest of CMEis apparent after only a few evaluations, as
predicted by the convergence rates of Section 3.3.

3.5 Computational burden

The comparison made so far dealt only with convergence rates. The superiority of CME over EI was demon-
strated for sample paths of Gaussian random processes, at least for two very different regularities of the
sample paths (cf. Section 3.3), while the convergence ratesare generally in favor of CME when applied
to some classical test functions (cf. Section 3.2) or to an actual industrial problem. However, EI is easier
to compute since it only requires the mean and variance of theprediction at the candidate point, while the
complexity of the computation of IAGO is inO(N), with N the size of a discrete approximation ofX used
for the estimation of the conditional density.

In practice, with our implementation of IAGO (cf. [20]) around 40s are required on an AMD opteron 285
server to choose an additional evaluation point for the sample paths of Section 3.3 (by extensive computation
of Hn over 1500 candidate points, which is enough in practice since this set is randomly re-sampled after
each evaluation). By comparison, choosing a point with EI takes less than half a second under the same
conditions. To broaden the range of potential applications, we tried to limit the computational expense
by testing other approximations for the conditional minimizer density (since the manipulation of sample
paths, necessary for the approximation proposed here, is responsible for most of the computational burden).
We proposed for example, to estimate the derivatives off by Kriging (as in, e.g., [19]) and to compute
the probability for a given point to be a local optimum and under a certain threshold. It was then easy to
build a relatively accurate approximation of the conditional minimizer density, but the approximation had a
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detrimental effect on the convergence rate, so that EI then became more efficient. In fact, the quality of the
approximation of the conditional minimizer density is important for CME to perform better than EI.

IAGO therefore remains destined to the optimization of functions that require a large amount of com-
puter time (or more generally a significant expense) to be evaluated, which is after all what it was designed
for and is the case in many applications in the industrial world including the one we presented here.

4 Conclusions and perspectives

In this paper, we have evidenced a clear superiority of CME over EI, especially when the function to be
optimized is irregular. The comparison has been conducted using classical test functions and an actual
industrial application, but above all using sample paths ofthe model behind Kriging. The use of sample
paths indeed allows the computation of empirical convergence rates that can also be useful to tune other
components of any Kriging-based algorithms (e.g., the optimization of the sampling criterion). Now that
the interest of the CME criterion has been demonstrated, attention should turn to other crucial aspects of
any Kriging-based optimization algorithm. One of these aspects is the improvement of robustness against
a bad choice of covariance for the Gaussian process model. Wefeel that the Bayesian framework that we
have used until now should also be useful in this respect.

5 Appendices

5.1 Appendix 1: Matèrn covariance

In this paper, we follow Stein (1999) and use of the isotropicMatérn covariance:

k(x,y) = k(h) =
σ2

2ν−1Γ(ν)

(

2ν1/2h
ρ

)ν

K ν

(

2ν1/2h
ρ

)

∀ (x,y) ∈ X
2 , (8)

with h the Euclidean distance betweenx andy, andK ν the modified Bessel function of the second kind [23].
The parameters of this covariance are easy to interpret, asν controls regularity,σ2 is the variance (k(0) =
σ2), andρ represents therangeof the covariance,i.e., the characteristic correlation distance. They can either
be fixed using prior knowledge on the system, or be estimated from experimental data. In geostatistics,
estimation is carried out using the adequacy between the empirical and model covariance (see, e.g., [4]).
In other areas, cross validation (cf. [21]) and maximum likelihood (cf. [18]) are mostly employed. For
simplicity and generality reasons (cf. [18]), the maximum-likelihood method is preferred here.

5.2 Appendix 2: Test functions
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(
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


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


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i=1 x2
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d ∑d
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∀i ∈ J1,3K −32.8≤ xi ≤ 32.8
Nlocal > 1,Nglobal = 1
x∗ = 0, f ∗ = 0
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