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Abstract—In this paper, we derive a deterministic equivalent
of the Shannon-transform of certain type of large unitary
random matrices. This approximation is exploited to evaluate
the uplink channel capacity of clustered orthogonal CDMA
network. When non-uniform power allocation among the users

of each cluster is allowed, we derive an explicit iterative water-
filling algorithm which, upon convergence, achieves the multi-
user decoding capacity. In particular, we show that, in a self-
organizing clustered orthogonal CDMA network, each cluster can
optimize its power allocation policy independently of the other
clusters at the expense of a small feedback overhead. Simulations
corroborate the theoretical derivations.

I. INTRODUCTION

Previous releases of the universal mobile telecommunica-

tions system (UMTS) aimed to ensure quality of service for

all users in the cells. The recent developments of 3G protocols

however push more and more towards the maximization of

the user sum rates in the cell. 3G systems are based on code

division multiple access (CDMA) which use random i.i.d.

codes in the uplink and incur interference among the users.

Orthogonal codes (which reduce drastically the interference)

are unfortunately not used as it would require some important

overhead signaling to synchronize the users. One way of

dealing with this issue, which is part of the recent cognitive

radio incentive [2], proposes to allow users to self-organize in

small clusters (e.g. here CDMA-based clusters) or coalitions

[11], [12] to optimize their uplink communications to a central

base station [13], [14]. Due to the very short distance between

the users within the cluster, non-interfering transmissions can

be performed through the use of orthogonal codes per cluster.

Those networks are referred to as self-organizing networks,

which we shall consider in the following.

Among the past contributions in the multi-cell CDMA

case, a performance study of multi-cell orthogonal CDMA

networks in frequency selective channels was carried out

in [3]. The authors suggest that frequency selectivity has a

stronger negative impact on CDMA performance than the path

loss; therefore multiple small CDMA cells might turn out

more advantageous than a large single CDMA cell. The same

conclusions were given in a similar uplink random CDMA

study in [4]. In [5], the performance of single-cell CDMA

in flat-fading channels with random codes was analyzed for

different types of decoders when power optimization is per-

formed at the transmitter. Most of these studies derive results

under the assumption that the number of users per cell is large,

since simpler derivations are possible using the theory of large

random matrices [6].

In this paper we derive results for the uplink capacity of

a clustered CDMA self-organizing network when the CDMA

code matrices are large and isometric.1 Those results are based

on tools from random matrix theory [6] and free probability

[7], [8]. We will in particular derive two theorems which relate

respectively the η-transform and the Shannon-transform (see

definitions hereafter) of such a channel model to deterministic

approximations independent of the code matrix realization.

Another deterministic equivalent of the η-transform has been

considered recently in the frequency selective case by Peacock

et al. [1] using a different approach, referred to as “incremental

matrix expansions”. However, the form of their deterministic

approximations does not allow for a trivial calculus of the

Shannon-transform, which is provided here. Up to the authors’

understanding, both our and Peacock’s results are different,

though they are shown to tend to the same asymptotic expres-

sion. Our result on the Shannon-transform allows us first to

derive explicit expressions for the uplink clustered orthogonal

CDMA capacity and more importantly to produce an iterative

water-filling algorithm for the cell users to achieve network

capacity under per-cluster sum power constraint (where the

power within a cluster is seen as a long term exchangeable

utility, see [12] for more justifications). We will also propose

an algorithm for each cluster to automatically reconfigure their

power allocations, independently of the other clusters, when a

user connects or disconnects to the cell.

The remainder of this paper unfolds as follows: in Section

II, the fundamental mathematical results of this paper are

provided. In Section III, the clustered CDMA self-organizing

network model is introduced. In Section IV, the capacity

achieving power allocation algorithm is presented. In Section

V, numerical simulations are carried out. Finally, in Section

VI, we draw our conclusions.

Notation: Capital boldface characters denote matrices (IN

1by isometric, we mean a non-necessarily square matrix with orthogonal
columns.



is the N ×N identity matrix). Hermitian transpose is denoted

(·)H. The operator detX represents the determinant of the

matrix X. The function δ(x) is the Kronecker Dirac function

such that δ(x) = 1 if x = 0 and equals 0 otherwise. The first

derivative of the function f is denoted f ′.

II. MATHEMATICAL PRELIMINARIES

Our main results rely on tools of random matrix theory

analysis, the η-transform and the Shannon-transform, which

we introduce in the following.

Definition 1 (η-transform): Let µ be a probability density

function. The η-transform η(x) of µ is defined as

η(x) =

∫

1

1 + xt
µ(dt) (1)

Note that the η-transform is linked to the better known Stieltjes

transform S(x) via the relation S(−1/x) = xη(x).
Theorem 1: Let K , N be positive integers, {Wi}i=1,...,K

be K independent N × N Haar distributed complex random

matrices and {Di}i=1,...,K be K diagonal N×N non-negative

matrices. Denote µi the empirical distribution of the entries

of Di. Then, for N large, K fixed, and for some x ≥ 0, the

η-transform η(x) of the empirical eigenvalue distribution of

BN =
∑K

k=1
WkDkW

H

k satisfies approximately

η(x) =

(

1 + x
K
∑

k=1

βk(x)

)−1

(2)

where the functions βk(x), k ∈ {1, . . . , K} satisfy the K
fixed-point equations

βk(x) =

∫

t

1− xη(x)βk(x) + xη(x)t
µi(dt) (3)

Proof: The proof relies mostly on the asymptotic freeness

[6] of the matrices WkDkW
H

k when N grows to infinity. In

this case, the R-transform R(x) of BN is asymptotically equal

to the sum of the R-transform Rk(x) of WkDkW
H

k . This R-

transform is defined with respect to the η-transform as2

R(−xη) = −
1

x
(1−

1

η
) (4)

η(−
1

R + 1

x

) = xR + 1 (5)

Denote ηk and Rk the η- and R-transform of WkDkW
H

k .

Then, from (1) and (5), we have

xRk + 1 =

∫

1

1− t
Rk+

1

x

µk(dt)

which leads to

Rk(x) =
1

x

∫

t

Rk(x) + 1

x
− t

µk(dt) (6)

and, in particular, defining βk(x) = Rk(−xη), we have

βk(x) =

∫

t

1− xηβk + xηt
µk(dt) (7)

2for readability, we will use the shortcut notation f = f(x) when no
confusion is possible.

which is exactly (3).

Now, since R =
∑K

k=1
Rk, using (4), this gives

η(x) =

(

1 + x

K
∑

k=1

Rk(−xη)

)−1

=

(

1 + x

K
∑

k=1

βk

)−1

(8)

which completes the proof.

The η-transform is of no direct practical use in our current

analysis (though it might be essential in the analysis of MMSE

decoders for CDMA downlink, see e.g. [1]). To establish

the capacity of uplink transmissions in CDMA networks, we

need a deterministic approximation of the so-called Shannon-

transform, defined as follows.

Definition 2 (Shannon-transform): Let µ be some probabil-

ity density function. We define the Shannon-transform V(x)
of µ as

V(x) =

∫

log(1 + xt)µ(dt) (9)

The Shannon-transform is intimately linked to the capacity of a

multi-dimensional channel whose matrix empirical eigenvalue

density function is µ. Note also that the Shannon-transform is

an integral of 1/x(1 − η(x)). From this observation, equiv-

alently to Theorem 1, we derive in the following theorem a

deterministic approximation for V(x).
Theorem 2: Let BN be an N ×N matrix as defined in the

conditions of Theorem 1. We have the following asymptotic

approximation of the Shannon-transform V(x) of BN as

V(x) = log

(

1 + x

K
∑

k=1

βk(x)

)

+

K
∑

k=1

∫

log (1 + xη(x)[t − βk(x)]) µk(dt) (10)

where βk(x) and η(x) are given by (2) and (3).

Proof: The Shannon-transform satisfies [6]

V(x) =

∫ x

0

1

u
(1− η(u))du

we therefore seek an integral form for the η-transform. Note

first that

1

x
(1− η) =

1

x
(1− (1 + x

K
∑

k=1

βk)−1) =

K
∑

k=1

βkη (11)

Also note from (3) that

1− xηβk =

∫

1− xηβk

1− xηβk + xηt
µk(dt) (12)

and therefore that

1 =

∫

1

1− xηβk + xηt
µk(dt) (13)

Now, for any k, the derivative along x of Ck =
∫

log(1 −
xηβk + xηt)µk(dt) is

C′

k =

∫

[−ηβk − xη′βk − xηβ′

k] + [η + xη′]t

1− xηβk + xηt
µk(dt) (14)
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Fig. 1. Self-organizing clustered CDMA network

Recalling now (13) and (3), this yields

C′

k = (−ηβk−xη′βk−xηβ′

k)·1+(η+xη′)·βk = −xηβ′

k (15)

We also have

(

log(1 + x

K
∑

k=1

βk)

)′

= η

K
∑

k=1

βk + x

K
∑

k=1

ηβ′

k (16)

Adding this last expression to
∑

k C′

k, we end up with the

desired
∑K

k=1
βkη. Verifying that V(0) = 0, we finally obtain

(10).

III. SYSTEM MODEL

A. Model

Consider a network composed of K clusters3 and a single

base station, each cluster being composed of a maximum of N
users each. The users of cluster k ∈ {1, . . . , K} are assigned

orthogonal spreading codes forming the columns of a unitary

N × N Haar distributed matrix Wk. Each cluster operates

independently regarding the allocation of spreading codes,

and therefore the Wk matrices are considered independent.

Depending on its position in cluster k, user n ∈ {1, . . . , N}
induces a path-loss λkn in the uplink transmission to the

base station4. The path-losses in cluster k are gathered in

the diagonal matrix Λk = diag(λk1, . . . , λkN ). Moreover we

assume that the transmission channel is frequency flat, i.e.

the propagation channel fade is constant over the transmission

bandwidth. User n in cluster k transmits with power pkn,

the collection of which is gathered in the matrices Pk =
diag(pk1, . . . , pkN ). We additionally assume the base station

experiences a background noise distributed as CN(0, σ2). This

situation is depicted in Figure 1.

B. Uplink capacity

Denoting Dk = ΛkPk, the uplink (per-time sample) capac-

ity C reads

C(σ2) =
1

N
log det

(

IN +
1

σ2

K
∑

k=1

WkDkW
H

k

)

(17)

3we assume that the clusters are formed in a self-organized manner based
on the distance, see [12]

4when there are less than N users in a specific cluster, we can freely write
λkn = 0 for the virtual users.

Denoting µk(t) = 1

N

∑N

n=1
δ(t − λknpkn), from Theorem

2, when N is large, we have approximately5

C(σ2) = log

(

1 +
1

σ2

K
∑

k=1

βk(σ−2)

)

+

K
∑

k=1

∫

log
(

1 + σ−2η(σ−2)[t− βk(σ−2)]
)

µk(dt)

(18)

with η(x) and βk(x) satisfying the implicit Equation (3). We

therefore have an expression of the uplink capacity which

only depends on the path losses λkn, k ∈ {1, . . . , K},
n ∈ {1, . . . , N}. This suggests that the choice of the spreading

codes Wk’s has asymptotically no impact on the achievable

uplink sum rate. We will now seek a power allocation strategy

which maximizes the capacity under cluster power constraints.

IV. SELF-ORGANIZED POWER ALLOCATION

In the following, based on relative fairness among clusters

and on individual mobile terminal capabilities, cluster k is

allocated a total allowed transmit Pk; therefore
∑N

n=1
pkn =

Pk.

A. Optimal power allocation

To maximize the system capacity with respect to the KN
scalars pkn, we shall first show the following lemma,

Lemma 1: The power allocation policy pkn = p⋆
kn optimiz-

ing the deterministic capacity approximation (18) satisfies, for

all k, n,

p⋆
kn =

(

αk −
σ2 − η⋆β⋆

k

λknη⋆

)+

(19)

where η⋆, β⋆
k are the respective values of η and βk when C

achieves its maximum, and αk is such that
∑

k p⋆
kn = Pk.

Proof: To prove this lemma, we follow Prop. 4 in [10].

We need to ensure successively that, denoting C(σ2) =
V (p11, . . . , pKN , β1, . . . , βK , η),6

(i) ∂V/∂βk = ∂V/∂η = 0.

(ii) C is strictly concave in the pkn.

Part (ii) is in fact obvious once (i) is shown. Indeed, in this

case, the successive derivatives of C along pkn equal those

of V along pkn plus other terms (the derivatives of V along

η and βk) which are null. Therefore, since V is the sum of

strictly concave functions of the pkn, C is strictly concave.

To show (i), we simply differentiate and observe that

∂V

∂η
=
∑

k

∫

tσ−2 − βkσ−2

1− ηβkσ−2 + ησ−2t
µk(dt) = 0 (20)

∂V

∂βk

= ησ−2 +

∫

−ησ−2

1− ηβkσ−2 + ησ−2t
µk(dt) = 0 (21)

both equalities stemming from the remarks (13) and (3).

5note that the capacity is the Shannon-transform of σ−2 and not of σ2.
6V can be seen as a function of (N + 1)K + 1 independent variables.



From (ii), C admits a unique maximum and from (i), when

βk and η have reached this maximum, the power allocation of

the pkn’s reduces to maximizing

log

(

1 + σ−2

K
∑

k=1

βk

)

+

K
∑

k=1

∫

log
(

1 + σ−2η[t− βk]
)

µk(dt)

(22)

independently of η and the βk’s. This is, for each k, it re-

duces to maximizing
∫

log
(

1 + σ−2η[t− βk]
)

µk(dt), whose

solution is the water-filling solution (19).

To achieve the capacity optimizing power allocation policy,

similarly to [10], we propose the following iterative water-

filling algorithm,

At initialization, for all k, pkn = Pk

N
, η = 1, βk = 1.

while the pkn’s have not converged do

for k ∈ {1, . . . , K} do

Set (η, βk) as solution of (2), (3)

for n = 1 . . . , N do

Set pkn =
(

αk −
σ2

−ηβk

λknη

)+

, with αk such that
∑

n pkn = Pk.

end for

end for

end while

This algorithm cannot be proved to converge. However,

from the proof of Lemma 1 and following the arguments in

[10], upon convergence, the algorithm is proved to converge

to the optimal solution.

The power allocation algorithm allows now the base station

to indicate to all users the uplink transmission powers, pro-

vided that it is aware of all the λkn’s. We will show in the

following that such a centralized approach is unnecessary to

achieve optimal power allocation; precisely, we will show that

each cluster k can independently perform power allocation

regardless of the λjn, j 6= k, provided that each cluster

feedbacks a single real parameter to a neighboring cluster after

the individual optimization process.

B. Self-organized capacity optimization

The main interest of the system model under consideration

lies in the independence of every cluster in terms of code

allocation: each cluster can behave autonomously, without the

need for the base station to intervene in the code allocation

policy. Now, in order to achieve the optimal uplink capacity

throughout the K clusters, user n in cluster k must be allocated

a transmit power pkn = p⋆
kn. Those pkn’s can be computed

explicitly at the base station or by any central entity aware

of all the λkn’s. However, this requires a large amount of

overhead data to be transferred back and forth through the

network; this comes at a non-negligible cost and goes against

the philosophy of self-organized networks.

It is actually possible to circumvent this issue by per-

forming successive local optimizations in every cluster and

by successively transmitting a single parameter to the other

clusters: this parameter is the updated evaluation of the η-

transform of BN . More explicitly, we consider the following

algorithm,
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Fig. 2. Uplink capacity of a K = 3-clustered orthogonal CDMA, uniform
and optimal power allocation, N = 8. For user n in cluster k, λkn =
−αk([n − 1]/[N − 1]) dB, α1 = 10 dB, α2 = 20 dB, α3 = 30 dB.

At initialization, in cluster k, set pkn = Pk

N
, η = 1 and

βk = 1.

while η has not converged do

for cluster k ∈ {1, . . . , K} do

Compute η as in (2).

Set βk as solution of (3), from the updated η.

for n = 1 . . . , N do

Set pkn =
(

αk −
σ2

−ηβk

λknη

)+

, with αk such that
∑

n pkn = Pk.

end for

Transmit the updated value η to cluster k + 1 (with

convention 1← K + 1).

end for

end while

This algorithm only requires for the clusters to transmit the

updated value of η at each step. Note that computing η requires

only to know the updated value of
∑

k βk. This value does not

need be additionally transmitted if we assume that each cluster

stores the last value of η and infers from it the updated
∑

k βk.

This way, when a new user registers or a current user

disconnects from a cluster, all the transmitted powers can be

quickly updated throughout the network at a low feedback

cost. Moreover, as will be observed in Section V, the con-

vergence time of the algorithm is in general so fast that a

single round of optimization over the K clusters is sufficient

(and therefore the outer while loop is not needed) to achieve

a satisfying uplink rate.

In the next section, the theoretical results discussed so far

are confronted to simulations.

V. SIMULATION AND RESULTS

In this section, we verify the theoretical formula derived

in Theorem 2, the power allocation algorithm derived from

Lemma 1 and the self-organizing successive power alloca-

tion proposed in Section IV-B. Throughout this section, we
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consider a K = 3-cluster self-organizing orthogonal CDMA

network with N = 8 users per cluster. The uplink signal

from user n in cluster k experiences a path loss λkn =
−αk([n − 1]/[N − 1]) dB, with α1 = 10 dB, α2 = 20 dB,

α3 = 30 dB; this allows to have in each cluster a linear range

(in dB) of users with relative path losses varying from 0 dB

to (−αk) dB.

In Figure 2, we present simulation results based on the

averaging of 100 Monte Carlo simulations when uniform

power allocation is applied or when the allocated powers are

issued from random Monte Carlo trials (but satisfy the power

constraints); for the latter, for each of the 100 simulations,

we define the system capacity as the maximal rate achieved

over 10, 000 random realizations of vectors {p11, . . . , pKN}
ordered in such a way that pkj < pk,j+1.7 Those are compared

against the solutions given by Theorem 2 with uniform power

allocation and the iterative water-filling algorithm, respec-

tively. We observe a perfect fit, even for this low N = 8
value, between the simulated and theoretical results in the

uniform power allocation case. As for the optimal power

allocation, we observe an almost perfect fit, which will surely

be more accurate if one increases the number of random power

allocations of the Monte Carlo method.

In Figure 3, we apply the self-organizing power allocation

algorithm under the same constraints as in Figure 3, when 0,

1 or an infinite number of rounds (at least a sufficient number

of rounds to ensure convergence of η) are performed). We

observe surprisingly enough that a single round is enough

to already achieve the optimal capacity limit of the complete

algorithm. As a consequence, the algorithm is extremely fast

at providing high performance power allocation among the

K clusters. For the sake of comparison, we also propose in

Figure 3 the so-called ‘local power allocation’ policy applied

7this allows to significantly reduce the number of required simulations by
discarding obviously wrong solutions.

by each cluster as though it were alone in the network, which

is maximized by the classical water-filling solution, i.e. with

powers

pkn =

(

α′

k −
σ2

λkn

)+

(23)

where α′

k ensures that
∑

n pkn = Pk . We observe that, while

in the low SNR region, this local strategy is reasonable, it is

no longer the case in the high SNR regime. Since the cost

of the transmission of the datum η is obviously very low in

this regime, the self-organizing power allocation policy is even

more interesting.

VI. CONCLUSION

In this paper, we provided two novel theorems relating

the uplink capacity of a large clustered orthogonal frequency

flat CDMA network communicating to a single base station

to deterministic capacity approximations. Those actually very

accurate approximations only depend on the path losses of

the users’ uplink signals. Moreover, we provided an efficient

algorithm for the clusters to perform local power allocation

in order to maximize the system throughput at the cost of a

single datum exchange in the network. Simulation results show

a perfect fit between Monte Carlo and theoretical results even

when the system dimension is not very large.
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