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Abstract: In this paper, we present a new weighted least-squares (WLS) approach for parameter 
estimation based on binary data. Two WLS criteria are studied. We show that these two criteria do not 
have the same asymptotical behavior although they are closely related. Particularly, in the presence of 
noise, one of the criteria used for determining the system parameters provides an appropriate estimation, 
whereas the other one leads to an underestimation of the system parameters. These asymptotical results are 
illustrated by simulations in Gaussian and non-Gaussian contexts.  

 

1. INTRODUCTION 

In this paper, we give some theoretical results concerning the 
asymptotic bias of least-square approaches to parameter 
estimation methods based on binary measurements. This 
work is based on (Colinet and Juillard, 2008). It is originally 
motivated by the need to add integrated low-cost self-test 
features to micro fabricated devices, such as MEMS and 
NEMS. Even though there exists a wide range of applications 
where identification methods based on binary observations 
are necessary or desirable (Wang et al., 2003), the focus is 
brought here on the test of microelectronic devices.  

1.1 Context and state of the art 

It is well-known that, as characteristic dimensions become 
smaller, the dispersions afflicting electronic devices tend to 
become larger. Typical sources of dispersion are variations in 
the fabrication process or changes in the operating conditions, 
such as temperature and ambient pressure. Imperfect 
knowledge of semiconductor physics or of nano-mechanics is 
also a large source of uncertainty. As a consequence, it is 
usually impossible to guarantee a priori that a given device 
will function properly. The tests that are run after fabrication, 
under different operating conditions, ensure that only suitable 
devices are commercialized. However, these tests are very 
costly: a typical figure is that one third of the cost of a micro 
fabricated device is due to testing (Charlot et al., 2001). An 
alternate solution is to integrate low-cost self-test (and self-
tuning) features, such as parameter estimation routines, in 
each device, so that it can adapt to changing conditions.  

However, most parameter estimation methods (Ljung, 1999; 
Walter and Pronzato, 1997) do not easily scale down to the 
micro- or nano-world. This is because these methods rely on 
high-resolution digital measurements of the system output. 
Their integration requires the implementation of high-
resolution analogue-to-digital converters (ADCs) and, thus, 
results in longer design times, larger silicon areas and 

increased costs. Our objective is then to develop a parameter 
estimation method that relies on very low-resolution (ideally 
binary) measurements, in order to keep the added cost as 
small as possible.  

In the field of micro-electronics, this issue has been 
addressed by Negreiros (2003): the proposed method consists 
in using a white Gaussian input to excite the unknown 
(linear) system and to estimate the power spectral density 
(PSD) of the binary output, which is assumed to be 
stationary. From this estimated PSD, it is possible to 
analytically derive the modulus of the transfer function of the 
unknown system. However, one cannot use this approach to 
obtain any information concerning the phase of the transfer 
function. Moreover, the generation of a white Gaussian input 
requires a high-resolution digital-to-analogue converter 
(DAC), whose implementation can be costly. These issues 
are partially solved in (Juillard and Colinet, 2008), where a 
white Bernoulli input is used as an exciting signal (thus 
requiring only a 1-bit DAC). Provided the mixing properties 
of the linear system are good (i.e. its impulse response does 
not vanish too quickly), it is possible to establish an 
analytical relationship between the cross-covariance function 
of the binary inputs and outputs and the impulse response of 
the unknown system and, thus, to identify the system.  

Outside the context of micro-electronics, the most significant 
contributions come from Wigren (1998) and Wang and his 
co-workers (Wang et al., 2006; Wang et al., 2003; Zhao Y. et 
al., 2007). In (Wang et al., 2003), Wang. introduced a new 
method for estimating parameters from binary (or quantized) 
data. The unknown system is excited by a periodic signal 
and, as in (Rafaljowicz, 1996), the threshold of the quantizer 
is randomly specified by a partially known dithering signal. 
However, the hypotheses on the quantizer’s input and on the 
random threshold are much less strict than in (Rafaljowicz, 
1996): the main constraint is that the cumulative distribution 
function (cdf) of the threshold must be invertible. Although it 
is usually possible to generate continuous dithering signals, 
this constraint prevents their approach from being used with 
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discrete-valued dithering signals, which are very easy to 
generate in the context of microelectronic applications. Under 
these hypotheses, the parameter estimation problem reduces 
to solving a linear system. This approach is generalized in 
(Wang et al., 2006), where it is shown that the cdf does not 
have to be known a priori: it can be estimated along with the 
parameters of the system. This work has been extended from 
finite impulse response (FIR) systems to infinite impulse 
response (IIR) systems and to nonlinear Wiener systems 
(Wang et al., 2006; Zhao et al., 2007). Finally, Wigren has 
developed a least mean squares (LMS) approach to the 
problem of online parameter estimation from binary 
observations (Wigren, 1998). This method is based on an 
approximation of the quantizer, which makes it possible to 
define an approximate gradient of the least-squares criterion 
(this is developed in section II). Under some hypotheses 
(Ljung, 1977), it is possible to guarantee the asymptotical 
convergence of this method to the nominal parameters (or at 
least to the boundary of the model set). 

Each of these methods has its merits and weaknesses. It is our 
opinion that Wigren’s approach is the one that fits better in 
the context of test of electronics system: as opposed to 
Wang’s or Rafajlowicz’s methods, it does not require a 
varying threshold (dithering signal), which can only be 
implemented with a high-resolution DAC or a surface-
consuming analog component. Furthermore, it can be used 
online, without specific input design, as well as offline. 
However, it does rely on an approximation of the quantizer -
and, thus, it is not an exact method, stricto sensu, as opposed 
to (Colinet and Juillard, 2008). Moreover, convergence is not 
guaranteed in the presence of measurement noise at the 
quantizer’s input. 

The method introduced in (Colinet and Juillard, 2008) bears 
some likeness to Wigren’s, in the sense that it is based on the 
minimization of a least-squares criterion. Its main 
distinguishing feature is that no approximation of the 
quantizer is made (hence, it is not based on a “pseudo-
gradient”): rather, it relies on a weighted least-squares (WLS) 
criterion where the parameter-dependent weights are chosen 
in order to smooth out the discontinuities. The asymptotical 
convergence of this approach to the nominal system 
parameters can be guaranteed, even in the presence of 
measurement noise, provided the signal at the quantizer’s 
input is Gaussian and centred. Note that these hypotheses 
used in (Colinet and Juillard, 2008) only provide sufficient 
conditions for the asymptotical convergence and should not 
be considered as restrictive. 

1.2 Outline of the article 

In this paper, we present some new asymptotical results 
concerning WLS criteria in the presence of measurement 
noise at the quantizer’s input. The structure of the article is 
the following. In section II, the notations are introduced and 
the WLS criteria presented in (Colinet and Juillard, 2008) is 
re-introduced, along with their asymptotical properties. In 
section III, we study an alternative WLS approach: we prove 
that this approach is as efficient as the one proposed in 

(Colinet and Juillard, 2008) in the absence of measurement 
noise. On the other hand, we show that this other approach 
leads to a systematic error in the presence of measurement 
noise. Some examples are given in section IV. Section V 
contains some concluding remarks.  
 

2. PRELIMINARIES 

2.1 Framework and notations 

Let us consider a discrete-time invariant linear systemH . 
We assume H  has a finite impulse response of length L , i.e. 
the impulse response can be represented by a column 

vector ( )Lkk 1== θθ . Let lu  be the known scalar value of the 

system input at time l  and ly  be the (scalar) value of the 
system output, so that: 

θφT
lly = ,  (1) 

where ( )l Llkkl u 1+−==φ  is the (column) vector of observations 

at time l . Let ld  be an additive dithering signal and lb  an 

additive noise at the quantizer’s input. Let xm  and 2
xσ  

denote the first- and second-order moments of any signal x . 
The system output is measured via a 1-bit ADC so that only 
the sign ( )ll zSs =  of the system output is known, where 

( )
( )




−=

≥=

otherwise ,1

0 if ,1

xS

xxS
,  (2) 

and llll bdyz ++= . 

We are interested in finding an estimate θ̂  of θ , based on N  
observations of lu , ls  and, if need be, ld . It is assumed that 

lu , ld and lb  are stationary and uncorrelated and that lz  is 
Gaussian and centred. The estimated quantities are denoted 

by a hat (e.g. lll dyz ˆˆˆ += ). In order to simplify some 

expressions, ld  and lb  are assumed to be white and centred 

and θ̂  has length L .  

These notations are summed up in Fig. 1. 

2.2 WLS approach for parameter estimation based on binary 
data 

In (Colinet and Juillard, 2008), we show that the problem of 
parameter estimation from binary measurement can be treated 
by minimizing WLS criteria of the form: 
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Fig. 1. Framework and notations 

 
 
where ( ).f  is any continuously differentiable even function 

that satisfies ( ) 00 =f  and ( ) * ,0' +ℜ∈∀> xxf  (in practice, 

( ) 2xxf =  is often used). It is simple to show that ( )θ̂N
fJ  is 

continuously differentiable everywhere, except where: 

( ) 0ˆ
1

=∑
=

N

l
lzf .  (4) 

Since ( ).f  is positive, (4) reduces to:  

0θ

φ

φ

=
















+
















N
T
N

T

d

d

MM

11

ˆ ,  (5) 

which is a system of N  equations with L  ( NL < ) 
unknowns. Provided lu  has a density and 0 / ≠∃ ldl , it can 
be proved that (5) has no solution with probability 1. When 

0=ld , Nl ≤≤1 , (4) has 0θ =ˆ  for solution, regardless of 

lu . 

Since ( )2ˆ ll ss −  takes only two values, 0 and 4, it is clear 

that 10 ≤≤ N
fJ  and that: 

000 =⇒= N
f

N JJ , (6) 

where NJ 0  is the (discontinuous) non-weighted least-squares 
criterion. In (Colinet and Juillard, 2008), the case when 

( ) 2xxf =  is studied in depth and the properties of the 

corresponding WLS criterion, NJ1 , are established in a 
probabilistic framework, when N  goes to infinity. In 

particular, it is shown that NJ1  converges surely to:  

( ) 




 −−=∞ 2

1 1acos
1

rrrJ
π

, (7) 

where r  is the correlation coefficient of z  and ẑ . Under the 
assumptions made in section II.1, the expression of r  is: 

( )
θRθθRθ

θRθ
θ

ˆˆ

ˆ
ˆ

222

2

u
T

du
T

db

u
T

dr
+++

+
=

σσσ

σ
,  (8) 

where uR  is the LL×  covariance matrix of u . By 
straightforward differentiation, one can then prove the 
following properties. 

Property 1 - Provided uR  has full rank, the minimum of 
∞
1J  is reached for:  

- θθ =ˆ  if 02 ≠dσ . 

- 0,ˆ >∀= λλθθ  if 02 =dσ . 

 

Property 2 - ( )θ̂1
∞J  is convex in a neighbourhood of its 

minimum. 

Note that these properties hold regardless of the presence or 
absence of noise at the quantizer’s input. Note also that it is 
not possible to identify the system’s gain if 02 =dσ . The 
dithering signal acts as reference amplitude, as in (Wang et 
al., 2003). 

3. AN ALTERNATIVE WLS APPROACH 

An alternative approach to the problem of parameter 
estimation based on binary measurements is to define a 
criterion of the form:  

( )( )∑
=

−=
N

l
lll

N
f sszf

N
G

1

2ˆˆ
4
1

,  (9) 

where ( ).f  has the same properties as in section II.2, in order 

to ensure continuous differentiability of N
fG . In the case 

when ( ) 2xxf = , the corresponding criterion, NG1 , lends 

itself to analysis in much the same way as NJ1 . In particular, 

if lz  and lẑ  are stationary:  

( )( )22
11 ˆˆE

4
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∞ ,  (10) 

where ( ).E  denotes the expected value. Under the assumption 

that lz  and lẑ  are Gaussian and centred, we have: 
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where  
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Fig. 2. λ̂  vs. bσ  when lu , lb  and ld  are Gaussian and 
centred. 

 

Fig. 3. λ̂  vs. bσ  when lu  and lb  are Gaussian and centred, 

whereas ld  is uniform or Bernoulli. 
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and thus: 

( ) ∞∞ =




 −−= 1

2
ˆ

2
2
ˆ

1 1acos JrrrG z
z σ

π
σ

.  (12) 

The optimal θ̂  is found by differentiating (12). This yields: 

0
θ

θR0
θ

=
∂

∂
+⇔=

∂

∂ ∞
∞

∞

ˆ
ˆ2

ˆ
12

ˆ1
1 r

dr
dJ

J
G

zu σ ,  (13) 

where 

21 1
2

r
dr
dJ

−−=
∞

π
,  (14) 
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σ
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Thus, (13) is equivalent to: 

( ) 0θRθR =−− u
z

z
u rr

σ
σ ˆ21ˆacos .  (16) 

If uR  has full rank, this reduces to: 

( ) θθ
z

zrr
σ
σ ˆ21ˆacos −= .  (17) 

Thus the optimal θ̂ is (at least) collinear to θ . Two cases 
must now be distinguished, depending on whether a dithering 
signal is present at the quantizer’s input or not. 

3.1 Case 1: 02 ≠dσ  

Suppose now that 1=r : in this case, ( ) 01acos 2 =−= rr  

and (16) is verified. In other words, any vector θ̂  such that  

1=r  minimizes ∞
1G . Now, it is clear that r  can be equal to 1 

if and only if: 







=

=

θθ̂

02
bσ

. (18) 

Thus the following property holds. 

Property 3 - Provided uR  has full rank, the minimum of 
∞
1G  is reached for θθ =ˆ  if 02 ≠dσ  and 02 =bσ . 

Consider now that 02 ≠bσ  and, as a consequence, that 
1≠r . (17) can be rewritten as:  
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Taking the square of (20) and multiplying by 2
zσ  yields: 
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Fig. 4. λ̂  vs. bσ  when ld and lb  are Gaussian and centred 

and lu  is Gaussian with nonzero mean. 
 

Fig. 5. λ̂  vs. bσ  when lu  and ld  are Gaussian and centred 

and lb  is Gaussian with nonzero mean. 
 

We know that ( ) 1,10 <∀<≤ rrg  and that 02 ≠bσ . From 
(22), it is straightforward that: 

1<λ .  (23) 
Thus, in the presence of measurement noise at the quantizer’s 
input, one cannot hope to achieve a consistent estimation of 
the nominal parameters θ  by minimizing ∞

1G .  

Property 4 - Provided uR  has full rank, the minimum of 
∞
1G  is reached for θθ λ=ˆ , 1<λ  if 02 ≠dσ  and 02 ≠bσ . 

3.2 Case 2: 02 =dσ   

In the simpler case when 02 =dσ , it is simple to show the 
following two properties. 

Property 5 - Provided uR  has full rank, the minimum of 
∞
1G  is reached for: 

- 0,ˆ ≥∀= λλθθ , if 02 =dσ  and 02 =bσ . 

- 0θ =ˆ , if 02 =dσ  and 02 ≠bσ . 

4. SIMULATION RESULTS 

In this section, we compare the results obtained with WLS 
criteria NG1  and 

NJ1  defined in the previous sub-sections. We 

choose ]11[=θ  (i.e. 2=L ). The signals lu , ld and lb  

have Gaussian distributions with zero mean: uσ  is set equal 

to 1, whereas dσ  and bσ  may vary. In order to satisfy the 
asymptotic conditions, one must impose LN >>  (Colinet 

and Juillard, 2008). For each experiment, θ̂  is estimated with 

NG1  and
NJ1 , thanks to a BFGS quasi-Newton method, 

implemented by the fminunc function of Matlab. Each 
experiment is repeated a large number of times, in order to 
estimate λ

~
, the expected value ofλ , for different values of 

dσ  and bσ . More precisely, for given dσ  and bσ , λ
~
 is 

defined as: 

∑
=

=
P

p

p

P 1

ˆ
1~

θ

θ
λ ,  (24) 

where ( )N
p G1minargˆ =θ  or ( )NJ 1minarg , depending on 

which criterion is tested, and P  is the number of 
experiments. P  is chosen so that the standard deviation of 

λ
~
 is small. Note that the angle between pθ̂  and θ  must be 

small for (24) to give a meaningful estimation of λ . 
Since LN >> , this should indeed be the case: as a measure 
of precaution, one can verify that the correlation coefficient 

between pθ̂  and θ  is very close to 1, for all experiments.  

The results are shown in Fig. 2. The value of λ  estimated 
with NJ1  is always very close to 1, regardless of the value of 

dσ  or bσ : this is as expected from the asymptotic analysis 
(Property 1) and shows that it is possible to properly estimate 
the system parameters regardless of the level of noise at the 
quantizer input, when NJ1  is selected as the criterion. 

Conversely, when NG1 is used, λ  is equal to 1 only when 
0=bσ . When bσ  increases, the estimated value of λ  

decreases, which illustrates Property 4. This shows that this 
criterion is not suitable for parameter estimation in a noisy 
context. Moreover, λ  is not only a function of bσ  but also 
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of dσ : as can be expected, the larger dσ  is with respect to 

bσ , the closer λ  is to 1. 

Several other scenarios can be tested in which the constraints 
on the distributions of lu , ld and lb  are made less strict. In 

Fig. 3, lu  and lb  are Gaussian and centred, whereas ld  is 

uniform or Bernoulli. This test shows that, when bσ  

increases, λ  becomes larger than 1 when NJ1  is used. In Fig. 

4, ld and lb  are Gaussian and centred, whereas lu  is 
Gaussian with nonzero mean: simulations show that λ  
becomes smaller than 1 when NJ1  is used. Finally, in Fig. 5, 

lu  and ld  are Gaussian and centred, whereas lb  is Gaussian 
with nonzero mean. However, this does not seem to have any 
influence on λ , which stays very close to 1 when NJ1  is 
used. In these last three scenarios, the qualitative behaviour 
of λ  when NG1 is used does not differ much from the case 
when all signals are Gaussian and centred. One can also 
notice that the bias is always larger when NG1  is used.  

These simulations tend to show that the hypotheses made for 
obtaining Properties 1-6 may somehow be relaxed when 

0=bσ : NJ1  and 
NG1  give equally good results regardless of 

the distribution of ld  or of the mean value of lu  or lb . 

When 0≠bσ , NJ1  and 
NG1  fail in correctly estimating θ  

when ld  is Bernoulli or uniform. This is also the case when 

lu  has nonzero mean. This goes to show that, if 0≠bσ , the 
only hypothesis that may be relaxed concerns the 
measurement noise lb . 

5. CONCLUSION 

In this paper, we present a new WLS approach for parameter 
estimation based on binary data: this approach is an 
alternative to the one presented in (Colinet and Juillard, 
2008). However, we have shown that these two criteria, 
although they are closely related, do not have the same 
asymptotical behavior. In particular, we have established that, 
in the presence of noise, using NG1  for determining the 

system parameters leads to an underestimation of θ , even 

though the direction of the vector is properly determined. 
These asymptotical results are confirmed by simulations 
performed in a Gaussian context. Other scenarios, where not 
all signals are Gaussian or centred, have also been tested: 
these show that the hypotheses made for obtaining the 
theoretical results can somehow be relaxed. 
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