
HAL Id: hal-00491976
https://centralesupelec.hal.science/hal-00491976

Submitted on 14 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of asynchronism on GPU accelerated parallel
iterative computations

Sylvain Contassot-Vivier, Thomas Jost, Stéphane Vialle

To cite this version:
Sylvain Contassot-Vivier, Thomas Jost, Stéphane Vialle. Impact of asynchronism on GPU accelerated
parallel iterative computations. PARA 2010 : State of the Art in Scientific and Parallel Computing,
Jun 2010, Reykjavik, Iceland. 4 p. �hal-00491976�

https://centralesupelec.hal.science/hal-00491976
https://hal.archives-ouvertes.fr


Impact of asynchronism on GPU accelerated parallel iterative

computations

Sylvain Contassot-Vivier∗1,2, Thomas Jost†2, and Stéphane Vialle‡2,3

1Loria, University Henri Poincaré, Nancy, France
2AlGorille INRIA project team, France

3IMS Group, SUPELEC, France

Abstract We study the impact of asynchronism on parallel it-

erative algorithms in the particular context of local clusters of

workstations including GPUs. The application test is a classical

PDE problem of advection-diffusion-reaction in 3D. We propose

an asynchronous version of a previously developed PDE solver

using GPUs for the inner computations. The algorithm is tested

with two kinds of clusters, a homogeneous one and a heteroge-

neous one.

Keywords Parallelism, GPGPU, Asynchronism, Scientific com-

puting

1 Introduction
Scientific computing generally involves a huge amount of

computations to obtain accurate results on representative

data sets in reasonable time. This is why it is important

to take as much advantage as possible of any new device

which can be used in the parallel systems and bring a sen-

sible gain in performances. In that context, one of our pre-

vious works was focused on the use of clusters of GPUs

for solving PDEs [7]. The underlying scheme is a two-

stage iterative algorithm in which the inner linear compu-

tations are performed on the GPUs [6]. Important gains

were obtained both in performance and energy consump-

tion. In the meantime, we also showed in our works re-

lated to asynchronism in parallel iterative algorithms [5, 1]

that this algorithmic scheme could be very interesting in

some specific combinations of parallel system and algo-

rithm. Moreover, we also identified the context in which

this algorithmic scheme is advantageous compared to the

synchronous one. As asynchronism allows an efficient and

implicit overlapping of communications by computations,

it is especially well suited to contexts where there is a sen-

sible ratio of communication time according to the com-

putation time. This is for example the case in large local

clusters or grids where communications through the sys-

tem are expensive compared to local accesses.

Our motivation for conducting the study presented in

this paper comes from the fact that a local cluster of GPUs

∗Email: Sylvain.Contassotvivier@loria.fr
†Email: Thomas.Jost@loria.fr
‡Email: Stephane.Vialle@supelec.fr

represents a similar context of costly communications ac-

cording to computations. Indeed, the cost of data transfers

between the GPU memory and the CPU memory inside

each machine is added to the classical cost of local com-

munications between the machines. So, we propose in this

work to study the interest of using asynchronism in our

PDE solver in that specific context.

The test application used for our experiments is the clas-

sical advection-diffusion-reaction problem in a 3D envi-

ronment and two chemical species (see [3] for further de-

tails). Two series of experiments have been performed, one

with a heterogeneous cluster with two couples of CPU-

GPU, and another one with a homogeneous cluster.

The following section presents the algorithmic scheme

of our iterative PDE solver together with the implemen-

tation sketch of the asynchronous version. Then, the ex-

periments are presented and the results are discussed in

Section 3.

2 Asynchronous PDE Solver
It is quite obvious that over the last few years, the clas-

sical algorithmic schemes used to exploit parallel systems

have shown their limit. As the most recent systems are

more and more complex and often include multiple lev-

els of parallelism with very heterogeneous communication

links between those levels, one of the major drawbacks of

the previous schemes has become their synchronous na-

ture. Indeed, synchronizations may sensibly degrade per-

formances in large or hierarchical systems, even for local

systems.

For a few years now, asynchronous algorithmic schemes

have emerged, and although they cannot be used for all

problems, they are efficiently usable for a majority of

them. In scientific computing, it can be expressed only

in iterative algorithms. Although those methods are gener-

ally slower than direct ones, they are often the only known

way to solve some problems and they are also less memory

consuming.

The asynchronous feature consists in suppressing any

idle time induced by the waiting for the dependency data

to be exchanged between the computing units of the par-

Sylvain.Contassotvivier@loria.fr
Thomas.Jost@loria.fr
Stephane.Vialle@supelec.fr


allel system. Hence, each unit performs the successive

iterations on its local data with the dependency data ver-

sions it owns at the current time. The main advantage of

this scheme is to allow an efficient and implicit overlap-

ping of communications by computations. On the other

hand, the major drawbacks of asynchronous iterations are:

a more complex behavior which requires a specific conver-

gence study, and a larger number of iterations to reach con-

vergence. However, the convergence conditions in asyn-

chronous iterations are verified for numerous problems

and, in many computing contexts, the time overhead in-

duced by the additional iterations is largely compensated

by the gain in the communications [1, 4]. In fact, as partly

mentioned in the introduction, as soon as the frequency of

communications relatively to computations is high enough

and the communication costs are larger than local accesses,

an asynchronous version may provide better performances

than a synchronous version.

2.1 Multisplitting-Newton algorithm

There are several methods to solve PDE problems,

each of them including different degrees of synchro-

nism/asynchronism. The method used in this study is the

multisplitting-Newton which allows for a rather important

level of asynchronism. In that context, we use a finite

difference method to solve the PDE system. Hence, the

system is linearized, a regular discretization of the spatial

domain is used and the Jacobian matrix of the system is

computed at the beginning. The Euler equations are used

to approximate the derivatives. The algorithmic scheme of

the method is as follows:

• Rewriting of the problem under a fixed point problem

formulation:

x = T (x),x ∈ R where T (x) = x−F ′(x)−1F(x) and

F ′ is the Jacobian

• We get F ′
× ∆X = −F with F ′ a sparse matrix (in

most cases)

• F ′ and F are distributed over the computing units

• Each unit computes a different part of ∆X using the

quasi-Newton algorithm over its sub-domain as can

be seen in Fig. 1

• The local elements of X are directly updated with the

local part of ∆X

• The non-local elements of X come from the other

units using messages exchanges

• F is updated by using the entire vector X

2.2 Inner linear solver

The method described above is a two-stage algorithm in

which a linear solver is needed in the inner stage. In fact,

most of the time of the algorithm is spent in that linear

solver. This is why we chose to use the most powerful

elements of the parallel system on that part. Thus, the lin-

ear computations have been placed on the GPUs. Due to

� =0 0

0
0

�
F

L
o
c

∆
X

FLoc

Figure 1: Local computations associated to the sub-

domain of one unit

their regularity, those treatments are very well suited to the

SIMD architecture of the GPU. Hence, on each comput-

ing unit, the linear computations required to solve the par-

tial system are performed on the local GPU while all the

algorithmic control, non-linear computations and data ex-

changes between the units are done on the CPU.

The linear solver has been implemented both on CPU

and GPU, using the biconjugate gradient algorithm (see [6]

for further details). This linear solver was chosen because

it performs well on non-symmetric matrices (on both con-

vergence time and numerical accuracy), it has a low mem-

ory footprint, and it is relatively easy to implement.

2.2.1 GPU implementation

Several aspects are critical in a GPU: the regularity of the

computations and the memory which is of limited amount

and the way the data are accessed. In order to reduce

the memory consumption of our sparse matrix, we have

used a compact representation, depicted in Fig. 2, similar

to the DIA (diagonal) format in BLAS, but with several

additional advantages. The first one is the regularity of

the structure which allows us to do coalesced memory ac-

cesses most of the time. The second one is that it provides

an efficient access to the transpose of the matrix, which is

required in the biconjugate gradient method.

AD

0 1 3 6 8LA

0 1 3 6 8

Figure 2: Compact and regular sparse matrix represen-

tation

In order to be as efficient as possible, the shared memory

has been used as a cache memory whenever it was possible

in order to avoid the slower accesses to the global memory

of the GPU. The different kernels used in the solver are di-

vided to reuse as much data as possible at each call, hence

minimizing transfers between the global memory and the

registers. To get full details on those kernels, the reader

should refer to [6].



2.3 Asynchronous aspects

Since the size of the simulation domain can be huge, the

domain is distributed among several nodes of a cluster.

Each node solves a part of the resulting linear system and

sends the relevant data to the other units that need them.

In the asynchronous version, this is that part which is per-

formed asynchronously. One synchronization is still re-

quired between each time step of the simulation, as illus-

trated in Fig. 3.

Simulation

Time

Processor 1

Processor 2

Time step Time step

Simulation

Figure 3: Asynchronous iterations inside each time step

of the computation

At the practical level, the main differences with the syn-

chronous version lie in the suppression of some barriers

and in the way the communications between the units are

managed. Concerning the first aspect, all the barriers be-

tween the inner iterations inside each time step of the simu-

lation are suppressed. The only remaining synchronization

is the one between each time step as pointed out above.

The communications management is a bit more complex

than in the synchronous version as it must enable sending

and receiving operations at any time during the algorithm.

Although the use of non-blocking communications seems

appropriate, it is not sufficient, especially concerning re-

ceptions. This is why a multi-threaded programming is

required. The principle is to use separated threads to per-

form the communications, while the computations are con-

tinuously done in the main thread without any interruption,

until convergence detection. In our version, we used non-

blocking sends in the main thread and an additional thread

to manage the receptions. It must be noted that in order to

be as reactive as possible, some communications may be

initiated by the receiving thread (for example to send back

the local state of the unit).

Subsequently to the multi-threading, the use of mutex

is necessary to protect the accesses to data and some vari-

ables in order to avoid concurrency and potentially inco-

herent modifications.

Another difficulty brought by the asynchronism comes

from the detection of the convergence. Some specific

mechanisms must replace the simple global reduction of

local states of the units to ensure the validity of the de-

tection [2]. The most general scheme may be too expen-

sive in some simple contexts such as local clusters. So,

when some information about the system are available (for

example bounded communication delay), it is often more

pertinent to use a simplified mechanism whose efficiency

is better and whose validity is still ensured in that context.

Although both general and simplified schemes have been

developed for this study, the performances presented in

the following section are related to the simplified scheme

which gave the best results.

3 Experimental results

The platform used to conduct our experiments is a set of

two clusters hosted by SUPELEC in Metz. The first one is

composed of 15 machines with Intel Core2 Duo CPUs run-

ning at 2.66GHz, 4GB of RAM and one Nvidia GeForce

8800GT GPU with 512MB per machine. The operating

system is Linux Fedora. The second cluster is composed

of 17 machines with Intel Nehalem CPUs (4 cores + hyper-

threading) running at 2.67GHz, 6GB RAM and one Nvidia

GeForce GTX 285 with 1GB per machine. The OS is the

same as the previous cluster. Concerning the interconnec-

tion network, both clusters use a Gigabit Ethernet network.

Moreover, they are connected to each other and can be

used as a single heterogeneous cluster via the OAR man-

agement system.

In that hardware context, two series of experiments

seemed particularly interesting to us. The first one consists

in running our application for several problem sizes on one

of the homogeneous clusters. We chose the most recent

one, with the Nehalem CPUs and GTX 285 GPUs. The

second series of experiments is similar to the first one ex-

cept that instead of using only one cluster, we used the two

clusters to obtain a heterogeneous system with 32 nodes.

The results are respectively presented in Table 1 and Ta-

ble 3. The problem size indicated in the left column cor-

responds to the number of elements for each dimension of

the spatial domain (3D). Thus, for a size of 50, there are

503 elements, and as we have two chemical species, the

global linear system is a square matrix with 2× 503 lines

and columns. Fortunately, the local nature of dependen-

cies in the advection-diffusion-reaction problem implies

that only 9 diagonals in that matrix are non-zero.

Pb size Sync Async Speed up Gain (%)

50 16.52 14.85 1.11 10.10

100 144.52 106.09 1.36 26.59

150 392.79 347.40 1.13 11.55

200 901.18 866.31 1.04 3.87

250 1732.60 1674.30 1.03 3.36

Table 1: Execution times (in seconds) with the homoge-

neous cluster (17 machines).

The results obtained in that context are interesting but

not as good as could be expected. The decrease of the gain

when the problem size increases is quite natural as the ra-

tio of communications according to the computations de-

creases and the impact of synchronizations becomes less

preponderant over the overall performances. However, the

rather limited maximal gain is a bit deceiving. In fact, it

can be explained, at least partially, by the very high perfor-

mance network used in the cluster, the rather small amount

of data exchanged between the nodes and the homogene-

ity of the nodes and loads. In such a context, it is clear



that the synchronous communications are not so expen-

sive compared to the extra iterations required by the asyn-

chronous version. Also, it can be deduced that although

the GPU ↔ CPU data transfers play a role in the overall

performances, their impact on our PDE solver is less im-

portant than one could have thought at first glance.

Two additional experiments have been done with the

same cluster but with less processors in order to observe

the behavior of our PDE solver when the number of pro-

cessors varies. The results are provided in Table 2.

14 Machines of the newer cluster

Pb size Sync Async Speed up Gain (%)

50 20.95 17.83 1.17 14.89

100 182.85 132.35 1.38 27.62

150 486.69 442.16 1.10 9.15

200 1101.29 1029.61 1.07 6.51

9 Machines of the newer cluster

Pb size Sync Async Speed up Gain (%)

50 39.68 25.81 1.54 34.95

100 249.63 200.25 1.25 19.78

150 714.85 635.78 1.12 11.06

200 1599.01 1617.28 0.99 -1.14

Table 2: Execution times (in seconds) with 14 and 9

homogeneous machines.

Those results confirm the general trend of gain decrease

when the problem size increases. It can also be observed

that for smaller clusters, the limit of gain brought by asyn-

chronism is reached sooner. And finally, there are some

fluctuations in the gains which denote a complex behavior

of this kind of algorithm according to the context of use.

This would require a deeper study to identify the frontier

of gain between synchronism and asynchronism in func-

tion of the number of processors and the problem size.

Concerning the second context of use, the heteroge-

neous cluster, the results presented in Table 3 are very sur-

prising.

Pb size Sync Async Speed up Gain (%)

100 53.21 52.01 1.02 2.25

150 155.13 164.05 0.94 -5.75

200 322.11 395.11 0.81 -22.66

Table 3: Execution times (in seconds) with the hetero-

geneous cluster (15 + 17 machines).

In fact, the heterogeneity of the machines should im-

ply different computation speeds and the synchronizations

should induce a global slow down imposed by the slow-

est machine. Nevertheless, the results tend to show that

the difference in the powers of the machines is not large

enough to induce a sufficiently sensible unbalancing be-

tween them. Moreover, it clearly appears that the overhead

of the asynchronism in terms of iterations is rapidly more

important than the gain in the communications, leading to

a loss in performances.

Also, another point that may explain the degraded per-

formances of the asynchronous version in the heteroge-

neous cluster is that the GPU cards used in the older cluster
do not support double precision real numbers. Thus, the

program is compiled to use only single precision numbers,

which divides the data size by a factor two and then also

the communications volumes, reducing even more the im-

pact of the communications on the overall execution times.

4 Conclusion

Two versions of a PDE solver algorithm have been imple-

mented and tested on two clusters of GPUs. The conclu-

sion that can be drawn concerning the interest of asynchro-

nism in such a context of parallel system for that kind of

application is mitigated. Some gains can be observed but

they are rather limited. Moreover, the asynchronous ver-

sion is not always better than the synchronous one, de-

noting a combination application-system not completely

suited to that kind of algorithm.

However, as far as we know, that study is among the

very firsts of its kind and it shows that this subject requires

further works. For example, an interesting topic would be

to precisely identify the areas in which one of the operating

modes (sync or async) is better suited than the other to a

given context of number of processors and problem size. In

addition, using load-balancing in that context should also

improve performances of both versions.

References
[1] J. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of

the asynchronous iterative algorithms in the context of dis-

tant heterogeneous clusters. Parallel Computing, 31(5):439–

461, 2005.

[2] J. Bahi, S. Contassot-Vivier, and R. Couturier. An effi-

cient and robust decentralized algorithm for detecting the

global convergence in asynchronous iterative algorithms. In

8th International Meeting on High Performance Comput-

ing for Computational Science, VECPAR’08, pages 251–264,

Toulouse, June 2008.

[3] J. Bahi, R. Couturier, K. Mazouzi, and M. Salomon. Syn-

chronous and asynchronous solution of a 3D transport model

in a grid computing environment. Applied Mathematical

Modelling, 30(7):616–628, 2006.

[4] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Asyn-

chronism for iterative algorithms in a global computing en-

vironment. In The 16th Annual International Symposium

on High Performance Computing Systems and Applications

(HPCS’2002), pages 90–97, Moncton, Canada, June 2002.

[5] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel

Iterative Algorithms: from sequential to grid computing. Nu-

merical Analysis & Scientific Computing Series. Chapman

& Hall/CRC, 2007.

[6] T. Jost, S. Contassot-Vivier, and S. Vialle. An efficient multi-

algorithms sparse linear solver for GPUs. In EuroGPU mini-

symposium of the International Conference on Parallel Com-

puting, ParCo’2009, Lyon, Sept. 2009.

[7] T. Jost, S. Contassot-Vivier, and S. Vialle. On the interest

of clusters of gpus. In Grid’5000 Spring School 2010, Lille,

France, Apr. 2010.


	Introduction
	Asynchronous PDE Solver
	Multisplitting-Newton algorithm
	Inner linear solver
	GPU implementation

	Asynchronous aspects

	Experimental results
	Conclusion

