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Adaptive Black Blood Fast Spin Echo for End-Systolic
Rest Cardiac Imaging

Brice Fernandez,1,2,3 Julien Oster,2,3 Maelene Lohezic,1,2,3 Damien Mandry,2,3,4

Olivier Pietquin,2,3,5 Pierre-André Vuissoz,2,3 and Jacques Felblinger2,3,4*

Black Blood Fast Spin Echo imaging of the heart is usually per-
formed during mid-diastolic rest. This is a direct consequence
of the long inversion time required to suppress the blood sig-
nal, which is constrained by the T1 of the blood, and of the
heart rate. To overcome these constraints, and to acquire black
blood images in the end-systolic rest period, a new approach
is introduced aiming at adaptively predicting the best time to
prepare and acquire MR signals. It is based on a RR interval pre-
diction algorithm and on a cardiac cycle model. The proposed
method was applied to 14 healthy volunteers and is compared
to a simple alternative method using a fixed delay and to the
standard black blood imaging method for imaging in the mid-
diastolic rest period. Results show that the proposed method
offers an increased robustness in terms of trigger delay error
and image quality compared to the tested simple alternative.
Also, it has been shown by qualitative analysis done by an expe-
rienced observer that the right ventricle, especially the thin right
ventricle free wall, is better depicted with our method than with
the standard mid-diastolic rest acquisition. Magn Reson Med
000:000–000, 2010. © 2010 Wiley-Liss, Inc.

Key words: cardiac MRI; right ventricle; end-systolic rest;
Kalman filter

The Fast spin echo (FSE) sequence (1) is a key compo-
nent of cardiac MR examination. It provides an accurate
depiction of the heart and the mediastinum anatomy with
a high signal-to-noise ratio. It also opens the possibility
of good T1 or T2 weighting. Nulling flowing blood signal,
known as black blood imaging, is achieved thanks to a dou-
ble inversion recovery (DIR) pulse pair. Combining FSE
with a black blood preparation (2) enables a correct depic-
tion of the myocardium morphology. T2-weighted imaging
of the heart provides additional information to that given
by contrast enhanced MRI. Therefore, the double inver-
sion recovery FSE (DIR-FSE) has been extensively used
for various cardiac pathologies (3,4). This sequence has
been widely used to detect intra myocardial fat infiltra-
tion often associated with arrhythmogenic right ventricular
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dysplasia/cardiomyopathy (ARVD/C) (5,6). Another poten-
tial application is the myocardial T2 measurement used to
help the detection of acute heart transplant rejection (7).

As demonstrated by Weissler et al. (8), the duration of
the systole is less sensitive to heart rate variation than the
diastole one. The end-systolic rest is generally considered
to last around 60–80 msec (9) against 150–200 msec for
the mid-diastolic rest (10). However, according to a recent
study (11), 26% of patients have a longer rest period at end-
systole than at mid-diastole, especially patients with high
heart rate. Previously cited results on cardiac rest (8–12)
imply that it is always possible to perform a DIR-FSE in the
end-systolic rest providing natural heart cycle changes are
taken into account. Indeed, in case of high heart rate, over
85 bpm (beats per minute), performing black blood FSE in
end-systolic rest is still be feasible as the cardiac rest is less
sensitive to heart rate variations (13) and longer than the
mid-diastolic rest. However, given the short time between
the R wave and the end-systolic rest, as well as the long
inversion time TI recommended (12), DIR pulses have to
be played out before the R-wave to perform black blood
acquisitions in end-systole. Because the end-systolic rest
is relatively short, the echo train has to be placed carefully
in the cardiac cycle.

An end-systolic view of the heart may be of clinical
interest for pathologies such as ARVD/C (5,6) and acute
heart transplant rejection (7). The right ventricle wall is
known to be thin; the right ventricle wall may consequently
be better depicted during the end-systolic rest when the
myocardium is completely contracted and thicker.

The purpose of this pilot study is the implementation and
the evaluation on healthy volunteers of two methods for
acquiring black blood FSE in end-systolic rest. First, a fixed
delay is used to position the acquisition window in the end-
systolic rest of the next cardiac cycle. The second method
is novel and adaptive. Based on a cardiac cycle model and
Kalman filtering (14), it allows predicting the RR interval
length to start DIR preparation before the R-wave. An adap-
tive trigger delay is created for a correct acquisition window
positioning with respect to the RR interval variation. The
evaluation is made by the assessment of the depiction of
left and right ventricles, as well as to the error made in the
echo train placement with respect to the end-systolic rest.

THEORY

DIR-FSE and Rest Periods

Black blood fast spin echo sequences use a pair of inver-
sion pulses. DIR preparation allows the homogeneous

© 2010 Wiley-Liss, Inc. 1
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FIG. 1. Standard double inversion recovery (DIR) fast spin echo (FSE) pulse sequence with representation of the cardiac activity. a: Schematic
representation of the volume of the right ventricle. Systolic and diastolic rests are noted to show the approximate length of each one compared
to electrocardiogram (ECG). b: Schematic ECG with the R and the T-wave. The end-systolic rest begins just after the T-wave and the available
imaging time is depicted in diastolic rest period. c: Standard DIR-FSE method. RF pulses in bold face are slice selective, TD is the trigger
delay defined as the time between the R wave and the beginning of the FSE sequence or acquisition window and TI is the inversion time.
TW is the trigger window defined as a dead time at the end of the cardiac cycle when the start of a new DIR-FSE sequence is inhibited. The
delay Dh represents the time between the R wave and the beginning of DIR pulses that depends on specific hardware.

suppression of the blood signal except for stationary flows
(15,16). The optimal TI to suppress the blood signal, TI,opt,
can be calculated knowing its T1,blood and the repetition
time TR with the well-known Fleckenstein’s formula (17):

TI,opt = T1,blood · [ln 2 − ln(1 + exp(−TR/T1,blood))]. [1]

The blood T1 is long (e.g. 1200 msec at 1.5 T) and TI

should be long as well. Moreover, when a TI longer than
TI,opt is used the image quality is improved (12), especially
for the right ventricle.

In clinical applications, data are generally acquired dur-
ing the mid-diastolic rest, as for moderate heart rates
(50–85 bpm), the beginning of the diastolic rest period is
in good agreement with the long inversion time needed
to nullify the blood signal (see Fig. 1). In cases of sig-
nificant RR variations or high heart rates (over 85 bpm),
DIR-FSE is impossible to acquire in mid-diastolic rest (18).
In such cases, it is possible to acquire data at end-systole
as the end-systolic rest is longer than the mid-diastolic rest
and less sensitive to beat-to-beat changes. So in addition
to the clinical benefit expected due to the contraction of
the myocardium, performing DIR-FSE in end-systolic rest
could also be desirable in such cases.

In current clinical applications, the trigger delay TD,
defined as the time between the R-wave and the begin-
ning of the acquisition window, is highly constrained by
the heart rate and the inversion time. As a consequence, the
acquisition is difficult to perform during the end-systolic

rest while taking constraints on TI into account, espe-
cially for T2-weighting imaging. In addition, if the FSE
acquisition is performed in the end systolic rest, the DIR
preparation and the acquisition will be performed while
the heart is in different positions, leading to a signal loss.
To limit this effect, the thickness of the selective inversion,
or DIR thickness, is usually made three times larger than
the slice thickness.

The basic principle of acquiring data in end-systolic rest,
using a DIR-FSE sequence, is to delay the beginning of the
sequence to start the DIR preparation before the next R-
wave and to place the echo train in end-systolic rest. Two
methods are proposed, an adaptive one that uses a Kalman
filter for RR interval prediction and a simple one that uses
a fixed delay (Fig. 2). The main difference between these
two methods is the delay computation technique.

Adaptive Method

Instantaneous heart rate, which is defined as the time
between two consecutive R waves, also called RR inter-
val, is known to vary from beat to beat. This variation has
been demonstrated while breathing, denoted by respira-
tory sinus arrhythmia (19), but also during breath-hold (20).
To model these beat-to-beat cardiac cycle changes, an RR
interval modeling has been proposed (21).

Let S be the respiration signal acquired by a respira-
tory belt and dS its time derivative. Their values at the
nth R wave time are, respectively, denoted Sn and dSn. Let
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FIG. 2. DIR-FSE pulse sequence in presence of RR interval variations for the fixed fixed delay method (a) and the adaptive method (b). In
each cardiac cycle, the end systolic rest is denoted by SR. The inversion time TI is the same for both methods and has been omitted for
clarity, TI is the time between the DIR pulses and the FSE sequence. a: Fixed delay method. Based on the average heart rate, sequence
parameters and the cardiac cycle model, a fixed delay (D) is computed that enables to place the FSE sequence in end-systole and to keep
a long TI. b: Adaptive method that uses predictions and the cardiac cycle model.

define ∆ the instantaneous heart rate. ∆n is defined as the
difference between the nth and (n − 1)th R wave time. By
predicting only one upcoming RR interval ∆̂n+1, the DIR-
FSE sequence could be started by considering a fixed TD

as already proposed but not validated on humans (21). The
underlying hypothesis is that the systole has always the
same duration. As the data acquisition will be performed
in the next cardiac cycle ∆n+2, the variation of the second
cycle has to be taken into account because the end-systolic
rest is short. Even if the systole duration is less sensitive
to RR interval variations, considering only one upcoming
RR interval could lead to synchronisation errors. Conse-
quently, a prediction of the two next RR intervals ∆̂n+1 and
∆̂n+2 is used in conjunction with a simple cardiac cycle
model to correctly place the acquisition window and to
create an adaptive trigger delay. This allows tracking the
end-systolic rest from cycle to cycle.

The assumption made in this work is that RR intervals
can be modeled as a linear combination of previous RR
intervals, respiration and its derivative. Consequently, at
the nth R wave time, the two next RR intervals are then
predicted according to the following equations:

∆n+1 =
p1∑

i=0

ai∆n−i +
p2∑

i=0

biSn−i +
p3∑

i=0

cidSn−i , [2]

∆n+2 =
p4∑

i=0

di∆n−i +
p5∑

i=0

eiSn−i +
p6∑

i=0

fidSn−i . [3]

The advantage of this modeling is that it uses only
widely available signals such as ECG and respiratory
belt measurements. This set of equations uses parame-
ters (ai , bi , ci , di , ei , fi) that need to be known to accu-
rately predict RR intervals. In this work, a Kalman filter
is used to estimate online the set of unknown parame-
ters (ai , bi , ci , di , ei , fi) from Eqs. 2 and 3. Kalman filtering
(14,22) is a well known and grounded theory and has
already been applied to the MR field (23–26). This the-
ory assumes a dynamical state-space model defined by the
following pairs of generic equations:

xn+1 = Fnxn + un [4]

yn = Gnxn + vn· [5]
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Table 1
Definition of the Constants A and B of the Cardiac Cycle Model

A B

Male 0.0021 × 60 0.546
Female 0.0020 × 60 0.549

Equation 4, also called process equation, represents the
time evolution of the parameter’s vector (via the transition
matrix Fn). In the Kalman filter literature, this parameter’s
vector is also called the state vector. Equation 5 describes
the observation process (via the measurement matrix Gn),
that is the relation between observed RR intervals and
the parameters. un and vn represent, respectively, the pro-
cess and measurement noises and describe the uncertainty
of the modeling. Further details about Kalman filter are
provided in Appendix A.

The linear modeling of RR intervals, Eqs. 2 and 3, is well
adapted for Kalman filtering and can be formulated as a
dynamical state-space system described by Eq. 6. The evo-
lution of the parameter’s vector is modeled by a random
walk, as no a priori can be assumed on its time evolution.
Thus, the transition matrix Fn is the identity. This model-
ing can be applied for both free breathing and breath-hold
modes, as the Kalman filter aims at adaptively estimating
the optimal model parameters (ai , bi , ci , di , ei , fi). Using this
state-space formulation and the Kalman filtering theory, the
prediction of the next RR intervals ∆̂n+1 and ∆̂n+2 can be
computed (see Appendix A for details).

xn = [a0, . . . , ap1 , b0, . . . bp2 , c0, . . . , cp3 , d0, . . . , dp4,

e0, . . . , ep5 , f0, . . . , fp6 ]T ,

Fn = Identity ,

yn = [∆n+1, ∆n+2]T [6]

Gn =




∆n, . . . , ∆n−p1 , Sn, . . . , Sn−p2 , dSn, . . . , dSn−p3 ,
0, . . . , . . . , . . . , 0

0, . . . , . . . , . . . , 0, ∆n, . . . , ∆n−p4 , Sn, . . . , Sn−p5 ,
dSn, . . . , dSn−p6




Once the beginning and the duration of the next cycle are
estimated, a cardiac cycle model is used to place the acqui-
sition window during the end-systolic rest. This model,
which is derived from the description by Weissler et al.
(8), gives the systolic and diastolic durations, T s and Td,
respectively, as a function of the RR interval ∆ (Fig. 1a).
Note that the systolic duration T s includes the end-systolic
rest. The cardiac model is described as follow:{

T s = B − A · ∆−1

Td = ∆ − T s [7]

where T s, Td, ∆ are expressed in seconds. The constants A
and B are defined in Table 1.

The computation of the Kalman filter at the nth R wave
time gives the prediction of ∆̂n+1 and ∆̂n+2. Knowing the
timing of the DIR-FSE sequence for a given experiment,
an optimal trigger delay T̂Dn+2 and an optimal delay D̂n+1

are computed. T̂Dn+2 corresponds to the time between the
(n+1)th R wave and the beginning of the FSE echo train, and
D̂n+1 is the delay between the nth R wave and the beginning

of the DIR (Figure 2-b). Let define TFSE as the time between
the π/2-pulse of the FSE sequence and the end of the echo
train. The optimal trigger delay is computed using the two-
step prediction, the cardiac cycle model and the duration
of the echo train TFSE:

T̂ s
n+2 = B − A · ∆̂−1

n+2,
T̂Dn+2 = T̂ s

n+2 − TFSE.
[8]

Then, the optimal delay D̂n+1 is estimated using previous
results and sequence timing (e.g. TI):

D̂n+1 = ∆̂n+1 − TI + T̂Dn+2. [9]

Sequence timing for this adaptive method is represented in
Fig. 2b. Note that TFSE is required for the computation of
T̂Dn+2 to insure that the complete echo train is included in
the end-systolic rest period. This is due to the fact that the
systolic duration T s of the cardiac cycle model includes
the end-systolic rest. In this work, the interest of acquiring
images in end-systolic rest is demonstrated by using the
proposed model in breath-hold. Using the proposed predic-
tion scheme with respiratory signals in breath-hold is still
useful as breath-hold are not perfect, particularly in end-
expiration. Our hypothesis is that most people make small
movements while they are holding their breath, yielding
thoracic volume variations that could modify the RR inter-
val variation patterns. Moreover, a previous study (21)
has reported some prediction improvements when using
respiratory signals in breath-hold.

Fixed Delay Method

If the heart cycle is considered to remain constant and
stable during the whole acquisition, a simple solution to
perform DIR-FSE in end-systolic rest exists. It consists in
delaying the beginning of the DIR preparation after the last
detected R-wave by a fixed delay. For this method, the
fixed delay D has been computed using the average of heart
rate ∆̄ (average over 9 RR intervals prior acquisition), the
sequence parameters, and the cardiac cycle model:

TD = B − A · ∆̄−1 − TFSE,

D = ∆̄ − TI + TD.

The fixed delay method allows TI to be kept long by using a
fixed delay D. Sequence timing for the fixed delay method
is represented in Fig. 2a and for the proposed adaptive
method in Fig. 2b. Both method charts are illustrated in
situation of important RR interval variations.

MATERIALS AND METHODS

Materials

MR examinations were performed on a 1.5 T clinical MR
system Signa HDx (General Electric, Milwaukee, WI) with a
standard clinical eight elements cardiac coil. The adaptive
method, the fixed delay method, and the clinical standard
method (2) were implemented using a dedicated home-
built real-time system independent from the MR scanner
called Signal Analyser and Event Controller (SAEC) (27).
Commercial ECG sensors with a 20 Hz bandwidth (Schiller
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Medical, Wissembourg, France) and pneumatic respiratory
belt were used to collect physiological signals in the MR
bore. A TTL output of the SAEC was plugged in the external
triggering input of the MR system. This allowed the gat-
ing of the pulse sequence, when needed, with a minimal
time response. ECG, respiratory belts, trigger signals and
signals from the MR system such as acquisition windows,
gradients and RF were recorded by the SAEC to evaluate
the reliability of the different methods. As the performance
of the proposed adaptive method relies on the quality of
the QRS detector, the algorithm used in this work was the
same as in an industrial monitoring system (Argus PB-1000,
Schiller AG, Baar, Switzerland).

For the adaptive method, a second order RR interval
model had been used, meaning that p1 to p6 are set to 1
in Eqs. 2 and 3. The second order has been chosen because
it is a good compromise between accurate prediction and
computational efficiency (21) and allows real-time process-
ing. Setting the model to an higher order will improve
accuracy of the prediction but lengthen the computation
and convergence times. In case of important beat-to-beat
changes, slowing the convergence time will increase the
time needed to have accurate predictions in subsequent
heart cycles. Once an R-wave was detected,an updated set
of parameters (ai , bi , ci , di , ei , fi) is computed by the Kalman
filter on the SAEC and used to estimate the two follow-
ing RR intervals (∆̂n+1 and ∆̂n+2). The DIR pulses were
played after the optimal delay D̂n+1 and FSE echo train was
acquired TI msec later, corresponding to the optimal trig-
ger delay of T̂Dn+2 msec after the last R-wave. The whole
process was repeated until the k-space was completely
filled. For the implementation of the filter, the state vec-
tor x0 was initialized to the previous RR interval length
meaning that a0 and d0 were set to 1 and other parameters
were set to 0. As the evolution process was simply mod-
eled by a random walk, the evolution noise un covariance
matrix was set to diag(10, 10) to denote the uncertainty on
the state evolution process (Eq. 4). The measurement noise
vn covariance matrix was set to diag(0.01, 0.01) to have a
quick convergence of the filter and to denote the confidence
on the observation yn. The fixed delay method was imple-
mented by delaying the beginning of the pulse sequence
after the last detected R-wave. The delay D was fixed for the
whole acquisition. The standard method, which acquire
mid-diastolic images, had been implemented as in clinical
routine by using the chosen QRS detector. The presented
method has not been compared to moving average on five
previous RR intervals (28) because an other study (29) has
reported improvement by using a predictive method com-
pared to the moving average approach. Moreover, the total
examination time has been kept at an acceptable length for
the volunteers.

MRI Protocol

Fourteen healthy volunteers underwent a cardiac MR
examination to evaluate and compare the different meth-
ods. The studied population was composed of seven males
and seven females with an average age of 28.7 ± 11 years,
an average weight of 70.9 ± 14.3 kg, and an average body
height of 1.72 ± 0.1 m. This study was approved by the
local ethics committee and was conducted in compliance

with local laws on clinical research. Informed consent was
obtained for all volunteers.

To see both right and left ventricles, a mid-ventricular
short axis cine sequence was acquired (balanced steady
state free precession bSSFP, TR = 3.9 msec, echo time TE =
1.7 msec, FOV = 360 mm×360 mm, bandwidth = 250 kHz,
matrix = 224 × 224, flip angle = 45◦, slice thickness =
8 mm, reconstructed matrix = 512 × 512) and used as
a reference to determine if subsequent acquisitions were
effectively acquired in the desired cardiac rest period. The
same mid-ventricular short axis view was acquired with
the DIR-FSE sequence using the three different methods,
depicted on Figs. 1 and 2. The first was the clinical standard
method with acquisition in mid-diastolic rest, the second
was the fixed delay method, and the third was the adaptive
method. The second and the third methods were expected
to image the heart in end-systolic rest.

For the clinical standard method and the adaptive
method, seven DIR-FSE images, with different TE rang-
ing from 10 to 70 msec, were acquired to get both T1

and T2 weighting images. For the fixed delay method,
from one to seven images, within the same TE range,
were acquired to keep total scan duration at an accept-
able length for the volunteers. The other DIR-FSE sequence
parameters were set as follow: TI = 500 msec, FOV =
360 mm × 360 mm, bandwidth = 125 kHz, matrix = 256 ×
256, slice thickness = 6 mm, DIR thickness = 18 mm,
echo train length = 16, reconstructed matrix = 512 × 512.
These imaging parameters led to an acquisition window
of 85 msec, which is the maximal acceptable length with
regard to the end-systolic rest duration. For all DIR-FSE
methods, an extra echo train was played out but not
acquired for MR signal stabilization purpose. All sequences
were performed in breath-hold of around 16 sec for stan-
dard and fixed delay DIR-FSE, 18 sec for the adaptive
DIR-FSE, and 12 sec for the cine. For DIR-FSE sequences,
an echo train was acquired every RR for heart rate smaller
than 85 bpm or every two RR for others. For the adaptive
DIR-FSE, volunteers were asked to hold their breath, then
the Kalman filter was started. Two or three RR intervals
were used to let the Kalman filter converge before starting
the sequence.

Data Analysis

Mean heart rate was retrospectively computed to evaluate if
there were significant differences that could disturb results
on quantitative measures. The RR variability, defined as
the standard deviation of RR intervals, was also quanti-
fied for the same purpose. Differences in heart rate and RR
variability between acquisitions performed with the fixed
delay and the adaptive method were analyzed using the
Wilcoxon signed rank test.

Quantitative Assessment

Two types of quantitative measurements were used to
assess the reliability of the adaptive and fixed delay meth-
ods. These quantitative measurements consisted in com-
paring errors made on trigger delays using the adaptive
and fixed delay methods with the best achievable trigger
delay TD,best. This TD,best was computed retrospectively
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using the recorded ECG, the cardiac cycle model and
sequence parameters. The best achievable trigger delay was
computed using Eq. 8. The only difference was that RR
intervals ∆n+1 and ∆n+2 were real RR intervals extracted
from recorded ECG. For both methods, the applied trig-
ger delay TD,applied computed in real-time by each method
was extracted by using the ECG, trigger and the acquisition
window from recorded data. Finally, for the first quantita-
tive measurement, TD,best and TD,applied were compared in
a normalized histogram to quantify the distribution of the
absolute error.

The second quantitative measurement consisted of com-
puting the root mean squared error per volunteer defined
by :

RMSE =
√√√√ 1

N

N∑
i=1

(TD,applied(i) − TD,best(i))2.

The other data, such as mean heart rate, were expressed as
mean ± standard deviation. Statistical differences between
errors made by the fixed delay and the adaptive method
were analyzed using the Wilcoxon rank sum test. A P-value
smaller than 0.05 was considered statistically significant.

Qualitative Assessment

An image quality comparison was performed by a radiolo-
gist with 8 years of experience in cardiac MR examination.
DIR-FSE images were displayed in a random order using
a clinical visualization tool (Advantage Workstation, Gen-
eral Electric, Milwaukee, WI). In every cases, the observer
was blinded to the method used.

First of all, the observer was asked to state if images
acquired with the fixed delay and the adaptive method
were effectively in end-systolic rest in comparison to the
cine images. Then, the observer was asked to determine if
images acquired with the fixed delay, the adaptive, and the
clinical standard methods are of diagnostic quality or not.

Second, an image comparison was made between images
acquired in end-systolic rest with the fixed delay and the
adaptive method. Images of the same volunteer with the
same TE were blindly displayed to the observer by pairs.
The observer was asked to determine in which image the
heart was better depicted or if these images were equiv-
alent. Two features were considered separately: first, the
right ventricle wall and trabeculae were considered and
second, the left ventricle wall and papillary muscles.

Finally, a second image comparison was made between
the best images acquired in end-systolic rest, as previously
determined and images acquired in mid-diastolic rest. This
comparison aimed at verifying the hypothesis that right
ventricle could be better determined in end-systolic rest.
The comparison was focused on the right ventricle wall,
but the inferior wall and the free wall were compared sep-
arately. Once again, the observer was asked to determine
in which image these features were better viewed or if they
were equivalent.

After the comparison, the radiologist was asked to mea-
sure the thickness of the RV inferior and free walls for each
volunteer in end-systolic rest and in mid-diastolic rest.
This aims to show the thickening of the RV walls during the

FIG. 3. Normalized histogram of the absolute error made on trigger
delay by the adaptive (black) and the fixed delay (gray) methods. This
figure shows that error made by the adaptive method are mostly in
the small ranges, whereas those made by the fixed delay method
are equally distributed. A quarter of errors made by the fixed delay
method was over 100 msec.

end-systolic rest. The significance of these measurements
was assessed with a Wilcoxon signed rank test.

RESULTS

The MRI protocol was successfully completed on all 14
healthy volunteers. However, one volunteer was excluded
from the data analysis due to a faulty ECG sensor, leading
to a poor efficiency of the R-wave detector. Therefore, the
overall image quality for this volunteer was poor for the
three different DIR-FSE methods. The mean heart rate dur-
ing acquisition in breath-hold of DIR-FSE with the adaptive
method was 69 ± 8 bpm and 68 ± 9 bpm for the fixed delay
method. RR variability was 54 ± 25 msec for the adaptive
method and 49 ± 22 msec for the fixed delay method. No
significant difference in heart rate and RR variability were
observed during acquisition performed with the adaptive
and the fixed delay method (P = 0.78 for mean heart rate
and P = 0.68 for RR variability).

Quantitative Assessment

Figure 3 shows the normalized histogram of the absolute
errors made on trigger delay by the adaptive and the fixed
delay methods. For example, 80% of trigger delays esti-
mated by the adaptive method were within a 40 msec error
range, whereas only 36% for the fixed delay method. More-
over, the fixed delay method error was higher than 100 msec
in 26.3% of the cases. This percentage decreased to only
2.6% for the adaptive method. Figure 3 shows that the
adaptive method significantly reduced the number of mis-
placed acquisition windows compared to the fixed delay
method.

The root mean square error, displayed on Fig. 4, was
significantly reduced by the adaptive method. The mean
and the standard deviation of the error were thus both
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FIG. 4. Root mean square error made in trigger delay between
TD,applied and TD,best for the adaptive (black) and the fixed delay (gray)
methods.

reduced by the adaptive method. The overall mean absolute
error made was 27 ± 39 msec for the adaptive method and
75 ± 98 msec for the fixed delay method with a significant
difference (P < 0.001).

Qualitative Assessment

Qualitative results show that 100% (n = 104) of images
acquired with the adaptive method are actually in end-
systolic rest against 70.6% (n = 68) for images acquired
with the fixed delay method. The distribution of the diag-
nostic image quality is depicted on Fig. 5. This shows that
27.9% of images acquired with fixed delay method were of
nondiagnostic quality; this percentage is reduced to only
1.9% for the adaptive method and 4.4% for the standard
method.

FIG. 5. Overall results on diagnostic quality for the three DIR-FSE
methods: the adaptive method (n = 104), the clinical standard
method in mid-diastolic rest (n = 91), and the fixed delay method
(n = 68).

A total of 68 image pairs acquired with the fixed delay
and the adaptive method has been compared by the radiol-
ogist. This comparison shows that the right ventricle and
trabeculae are better seen with the adaptive method in 65%
of image pairs, with the fixed delay method in 28%, and are
equivalent in 7%. The left ventricle and papillary muscles
are better depicted in 65% of image pairs with the adaptive
method, 28% with the fixed delay method, and equivalent
in 7% (Fig. 6).

The comparison of the right ventricle visualization
between images acquired in end-systolic rest and in mid-
diastolic rest has been done with all 68 comparable image
pairs. The right ventricle inferior wall is better depicted in
end-systolic rest in 81% of image pairs, in mid-diastolic
in 15%, and are equivalent in 4%. Among images in

FIG. 6. Image quality comparison of the left and right ventricles (LV and RV, respectively) between the adaptive and the fixed delay method.
Distribution of methods for which the LV and RV are best depicted.
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FIG. 7. Image quality comparison of the right ventricles (RV) inferior and free wall between the mid-diastolic rest and the end-systolic rest.
Distribution of rest periods for which the RV inferior and free wall are best depicted.

end-systolic rest, 70% of images were acquired with the
adaptive method. For the right ventricular free wall, 87%
of image pairs are better in end-systolic rest, 7% are better
in mid-diastolic rest, and 6% are equivalent. Seventy one
percent of images in end-systolic rest were acquired with
adaptive method (Fig. 7).

The thickness of the RV inferior wall in mid-diastolic
rest was 2.53 ± 0.5 mm and 4.55 ± 0.92 mm (P < 0.01) in
end-systolic rest. For one patient, the radiologist was not
able to measure the RV inferior wall in end-systolic rest.
The thickness of the RV free wall in mid-diastolic rest was
2.45 ± 0.63 mm and was 4.48 ± 1.17 mm (P < 0.01) in end-
systolic rest. The radiologist was unable to measure the
thickness of the RV free wall in mid-diastolic rest on five
volunteers due to partial volume effect.

Three images acquired in end-systolic rest with the cine,
the fixed delay and the adaptive methods are displayed on
Fig. 8. It is worth noting how the right ventricle wall is
well depicted with the adaptive method (Fig. 8c), contrary
to the image obtained with the fixed delay method (Fig. 8b),
which demonstrates the need to take RR interval variations
into account for end-systolic rest imaging. To demonstrate
the gain in performance black blood FSE in end-systolic

rest, images in end-systolic rest and mid-diastolic rest are
displayed on Fig. 9. The depiction of the right ventricular
free wall is better in end-systolic rest with the adaptive
method (Fig. 9c) than in mid-diastolic rest (Fig. 9e).

DISCUSSION

Imaging the morphology of the heart in end-systolic rest
with black blood FSE is not a straightforward task and
depends on several patient specific factors. In this work,
the feasibility of black blood FSE in end-systolic rest has
been demonstrated. The presented method is based on an
adaptive RR interval prediction algorithm and an adap-
tive trigger delay. This method automatically adapts itself
to each patient’s instantaneous heart rate variation. The
adaptive technique was compared to a simple alternative
that uses a fixed delay. The results suggest an important
improvement for both qualitative and quantitative data.
It has been demonstrated that the right ventricle wall is
better determined in end-systolic rest. Consequently, the
adaptive DIR-FSE should be considered for imaging the
right ventricle wall in several clinical cases such as ARVD.
A clinical study has to be conducted to demonstrate the

FIG. 8. End-systolic images of volunteer number 12. a: End-systolic image from the cine sequence. b: Image acquired with the fixed delay
DIR-FSE method (RMSE = 42.5 msec) and c: with the adaptive DIR-FSE method (RMSE = 7.9 msec). Images (b) and (c) were acquired
with TE = 30 msec. Notice how the right ventricle free wall is well depicted on (c).
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FIG. 9. Images of volunteers number 8 and 9. End-systolic (a) and mid-diastolic (d) images from the cine sequence. b: Image acquired
with the fixed delay DIR-FSE method (RMSE = 22.4 msec for volunteer 8 and RMSE = 32.5 msec for volunteer 9) and (c) with the adaptive
method (RMSE = 12.1 msec for volunteer 8 and RMSE = 8.2 msec for volunteer 9). e: This was acquired with the clinical standard sequence.
b,c,e: These were acquired with TE = 30 msec. Notice how the right ventricle wall and trabeculae are well depicted in end-systolic rest (c)
compared to mid-diastolic rest (e). b: These are examples of fixed delay acquisition that leads to suboptimal image quality compared to
(c). These images has not been considered to be in end-systolic rest. (Zb,Zc,Ze) are a zoomed images on the square depicted in images
(b,c,e), respectively. Right ventricle wall thickness measured by the radiologist is noted when available on (Zc) and (Ze).

usefulness of such methods to diagnose ARVD and other
cardiac pathologies. The potential interest of the adaptive
method for acquiring data in end-systolic rest has been
demonstrated in breath-hold; future work will focus on
demonstrating its potential interest in free breathing.

The choice of comparing images by pairs acquired with
different methods has been made because this is the

simplest solution. As images acquired with different meth-
ods are not in the same cardiac rest period, this is a difficult
task to grade the same object using a five points scale
because, in the present case, the object is in different posi-
tions showing different features. This is particularly true
on healthy volunteers as there is no particular disease to
focus on. This side-by-side comparison allows to reduce
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intra observer variability because answers given by the
radiologists are simpler than a grade.

These results are in good agreement with previous stud-
ies (28,30), also reporting significant improvement when
using an adaptive trigger delay compared to a fixed delay.
These methods were designed to improve navigated coro-
nary MR angiography (MRA), which is free breathing
acquisition. The adaptive trigger delay was computed to
determine the beginning of the mid-diastolic rest and to
start the acquisition. These methods are based on a cardiac
model and the trigger delay is computed as a function of
the RR interval. In these studies, the trigger delay is adapted
by using the previous RR interval or an average of previous
intervals as a one-step prediction, while in this study, the
RR intervals are predicted using a Kalman filter for more
accuracy. Coronary MRA is performed in free breathing,
so the heart rate variation pattern differs from the one in
breath-hold for end-systolic DIR-FSE. This also implies dif-
ferent constraints on the scan time. Note that the prediction
algorithm is compatible with free breathing, as respiratory
signals are taken into account in the RR interval variation
modeling. Consequently, a one step prediction with the
adaptive trigger delay could be applied for coronary MRA.
Respiratory signals can be acquired with belts and echo
navigators. The adaptive acquisition scheme could also be
used for the acquisition of end-systolic rest DIR-FSE in free
breathing by using a generalized reconstruction including
motion correction (31).

The prediction algorithm presented in this work is based
on Kalman filtering, which is robust and well known. Other
studies has reported a prediction algorithm using a neu-
ral network (29) to make an adaptive trigger delay for free
breathing coronary MRA. As neural networks are super-
vised learning models, the training was made using all RR
intervals recorded during the navigator preparation phase
(around 30 sec). Therefore, such a method is not directly
usable to our specific application. However, it is conceiv-
able to train the model during a breath-hold and then apply
the trained model for the acquisition, but this will reduce
the efficiency of the examination. Recall that the prediction
algorithm converges in two or three RR intervals, which is
adapted to acquisitions in breath-hold. This can be seen as
if training, and use of the model are performed in a single
frame. An interesting alternative solutions to predict RR
interval is to use a mix approach of neural network such as
a multilayer perceptron and Bayesian or Kalman filtering
to online estimate parameters of the perceptron (32,33).

The RR interval linear modeling used in this work has
several advantages. Its linear formulation is well adapted
to Kalman filtering, holds for everybody and for both free
breathing and breath-hold. In addition, the modeling could
be more adapted to the physiology of a specific patient
thanks to some tuning parameters. This particular point
needs further investigations in breath-hold and free breath-
ing on a large population including both healthy volunteers
and patients with heart disease.

Several cardiac models have been proposed in the lit-
erature, and most of them are based on the QT interval
and give its length as a function of the RR interval (34,35).
All these models are suitable for end-systolic MR imag-
ing. Additional analysis (34) has shown that some tuning
parameters are desirable to adapt cardiac models to the

subject being studied depending on age, gender, and the
presence of potential heart disease.

To overcome the oversimplified assumption that cardiac
cycles are reproducible, a two-step prediction algorithm
has been chosen, but numerous alternatives are conceiv-
able. The use of a one-step prediction algorithm and a
patient specific cardiac model of the RT interval of the
form RTn+1 = f (RRn) (36) is also an acceptable solution.
This model has been initially proposed to adapt the trig-
ger delay for coronary MRA. Unfortunately, this model
requires several parameters, such as RTmax, which are usu-
ally not available in MR scanners and require an extra ECG
recording. This model could be integrated in the Kalman
framework as well, with a one-step prediction. The cardiac
model used in this work has the advantage of being a sim-
ple function of the RR interval but is not patient specific.
Consequently, a patient-adapted cardiac cycle model, such
as those suggested by Roes et al. (28) and by Liu et al. (36),
could potentially be integrated in the Kalman framework.
An extra ECG acquisition, inside or outside the MR bore,
could be used to compute patients specific parameters.

The short axis view has been chosen to observe both left
and right ventricles, as this study was not focused on a spe-
cific ventricle. However, a recent study (12) focused on the
right ventricle suggests acquiring the mid-ventricular axial
view of the heart to get a better visualization of the wall.
The proposed method has not yet been tested in the axial
plane, but the visualization of the right ventricle could be
improved as it is thicker in end-systolic rest. In this work,
the same cardiac cycle model has been used for the left
and right ventricles with the underlying hypothesis that
both ventricles have the same rest periods. As each ven-
tricle could have slightly different rest period, it could be
useful to tune a cardiac cycle model for each ventricle to
observe ventricles separately in axial view.

A potential problem of the presented method comes
from the DIR preparation, which is performed in diastole,
whereas data are acquired in end-systolic rest. The heart
is thus in two different positions between preparation and
acquisition and this could potentially lead to signal loss.
To minimize this effect, the DIR thickness has been made
three times larger than the slice thickness. Some losses
are still noticeable as depicted on Fig. 8c. The DIR thick-
ness was 18 mm and no specific optimization was made.
A larger DIR thickness can remove this problem, but a
too large DIR thickness will lead to a partial noncancel-
lation of the blood signal. This particular problem requires
further investigations. The motion tracking between prepa-
ration and acquisition proposed by Keegan et al. (37) can
be an interesting alternative. This tracking method requires
the acquisition of two cine sequences with labeling pre-
pulses for the determination of the imaging plane motion
throughout the cardiac cycle. These additional acquisi-
tions would lengthen the examination but enhance image
quality. Another organ tracking method based on standard
physiological sensors could also be used (38), but would
also require a calibration step.

No parallel imaging such as Sensitivity Encoding (39)
has been used in this study, but this could have various
potential benefits. The first one, as suggested by Pruess-
mann et al. (39), is the acquisition of undersampled k-space
to reduce scan time or to increase spatial resolution. The
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undersampling could also be used to reduce echo train
length, to get it shorter than the systolic rest. The sec-
ond potential benefit is to retrospectively remove k-space
lines from a fully sampled data set that were not accu-
rately acquired in the end-systolic rest by using the method
described by Odille et al. (40) for cardiac MRI using
segmented acquisitions.

The echo train length was set short and the bandwidth
large leading to an acquisition window of 85 msec, which
could still be larger than the end-systolic rest for some
volunteers. A fast and accurate automated method to deter-
mine the length of the end-systolic rest period could
be developed to adapt acquisition parameters to the rest
period of each patient.

CONCLUSION

The results presented in this contribution indicate that the
timing of a black blood FSE is a major concern for imag-
ing the morphology of the heart in end-systolic rest. Based
on an adaptive prediction algorithm and a cardiac cycle
model, a novel method has been described and compared
to a simple fixed delay method. Results show the robust-
ness of the adaptive method in terms of trigger delay error
and image quality compared to the fixed delay method.
A potential interest of end-systolic rest imaging has been
demonstrated for the depiction of the right ventricular wall
thanks to an image comparison done by an experienced
radiologist, and especially for the free wall. End-systolic
black blood FSE with the adaptive method should provide
additional diagnostic information to that given by the stan-
dard black blood FSE in mid-diastolic rest. A large patient
population study has to be conducted to demonstrate the
diagnostic interest of the proposed method.
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APPENDIX

Kalman Filter

Let consider a linear, time-discrete dynamical system
described by the following pair of equations:

xn+1 = Fnxn + un [A1]

yn = Gnxn + vn· [A2]

The state vector xn, is defined as the sufficient set of vari-
ables that describes the dynamics of the system. Typically,

the state vector is unknown and then a set of observed data,
denoted by yn the observation vector, is used to estimate it.
Equation A1, also called the process equation, represents
the evolution of the state vector using the transition matrix
Fn. Equation A2 describes the observation process with
the measurement matrix Gn. un and vn represent, respec-
tively, the process and measurement noises and describe
the uncertainty of the modeling. They are both Gaussian
distributed with zero mean and constant covariance. The
covariance of these two noises is generally set empirically
depending on the reliability of observed data yn and on the
reliability of process equation.

When xn is assumed to have a Gaussian distribution,
the optimal solution to this problem has been presented
by Kalman (14) and is since well-known as Kalman Fil-
ter. It consists of an iterative prediction-correction process,
in which the sufficient statistics of mean and state-error
correlation are calculated and propagated. The recur-
sive computation is composed by the following series of
equations:

Kn = FnQe
n,n−1GH

n

(
GnQe

n,n−1GH
n + Qv

n

)−1,

αn = yn − Gnx̂n|y1..yn−1 ,

x̂n+1|y1..yn = Fnx̂n|y1..yn−1 + Knan, [A3]

Qe
n = Qe

n,n−1 − FnKnGnQe
n,n−1,

Qe
n+1,n = FnQe

nFH
n + Qu

n ,

where Qu
n and Qv

n are, respectively, the correlation matrix
of noises un and vn. Qe

n,n−1 is the correlation matrix of the
error between xn and x̂n|y1..yn−1 , which is the estimate of
xn knowing observed data y until time n − 1. Qe

n is the
correlation matrix of the error between xn and x̂n|y1..yn . Kn

is denoted by Kalman gain and αn by innovation vector.
x̂n+1|y1..yn is the estimate of xn+1 knowing observed data,
and is a prediction of the state vector at time n + 1. Once
the prediction of the state vector has been computed, the
prediction of the next observed data can be easily computed
using the measurement matrix:

ŷn+1|y1..yn = Gnx̂n+1|y1..yn .
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