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Abstract—Considering the interaction through mutual all the players but on the actions of the given player
interference of the different radio devices, the channel and a linear combination of all the players’ actions.
selection (CS) problem in decentralized parallel multiple |nterestingly, such a linear combination of actions in
access channels can be modeled by strategic-form gamesihe CS problem in MAC, is just the multiple access
Here, we show that the CS problem is a potential game 0 ference (MAI) seen at the receiver. Thus, the MAI

(PG) and thus the fictitious play (FP) converges to a Nash .
equilibrium (NE) either in pure or mixed strategies. Using observed over each channel at the receiver can be fed

a 2—player 2—channel game, it is shown that convergence Dack to the transmitters through a common signaling
in mixed strategies might lead to cycles of action profiles message. Using this message, it is shown that the FP can
which lead to individual spectral efficiencies (SE) which be implemented by relying on the fact that transmitters
are worse than the SE at the worst NE in mixed and pure are able to obtain an estimate of their own channels and
strategies. Finally, exploiting the fact that the CS problen  to calculate their utilities based on the above mentioned
is a PG and an aggregation game, we present a methodsjgnaling message.
to implement FP with local information and minimum  This paper is organized as follows. In Sec. Il, we
feedback. formalize the CS problem in parallel MAC and formulate
the corresponding strategic-form game. In Sec. Ill, we
|. INTRODUCTION present recent results on the existence and multiplicity of
In recent literature in wireless communications (sehe NE in the CS game. In Sec. IV, we introduce the FP
[1], [2], [3]), it has been shown that channel selectioariginally introduced in [6] using our notation. Therein,
(CS) problems in decentralized parallel multiple accegtss shown that the CS game possesses the fictitious play
channels (MAC), where each transmitter is interested pmoperty and thus, FP converges to NE in the CS game.
its own spectral efficiency, can be modeled by strategier Sec. V, we study the convergence of the FP i2-a
form games. More importantly, it has been shown in [3]layer2-channel game and describe a two-action-profile
that CS problems in MAC are finite potential gamesycle. In Sec. VI, we exploit the fact that the CS problem
(PG) [4]. In general, finite potential games belong tis an aggregation game to provide a practical way of
the class of games for which the existence of at ledsiplementing FP with milder information assumptions
one Nash equilibrium (NE) is ensured [4]. Moreover, than its original version. Finally, the paper is concluded
has been shown that the iterative best-response dynanbigsSec. VII.
(BRD) and fictitious play (FP) both converge to Nash
equilibrium in potential games [5]. The BRD in CS Il. MODELS
problems has been studied in [3]. In this paper, W@ system Model

exclusively focus on the case of FP in its original version . .
[6]. Here, it is shown that when several NE exists in the The channel selection (CS) problem in the parallel-

CS game, which is often the case at high signal-to-noi¥¥’C can be described as follows. Assume that there
ratio, FP might converge to (strictly) mixed strategie@Xist a setC = {1,..., K'} of transmitters communicat-
and cycles of action profiles might be observed. This fafd trough a common sef = {1,..., 5} of orthogonal
rises the main question to be answered by this papercfgnnels with a unique receiver. Chaniele S has
the empirical measure of the frequency of each playefsbandwidth of B; Hertz andB = 7 | Bs Hertz.
actions a good metric to evaluate convergence? Here, l&ch transmitter communicates with the receiver using
use a2—player2—action game to show that the action@ unique channel. Limiting transmitters to use a unique
or mixed strategies corresponding to an NE are newdtannel in decentralized networks is optimal for the
played even though a convergence of the empirical frglobal spectral efficiency of the network (see [8], [2],
guencies of each player is observed. Surprinsingly, cycléd). Let ¢ € IN be a discrete time index. Denote by
of action profiles might lead players to achieve expecteu(t) = (pr1(t),...,pr,s(t)) the PA vector of trans-
utilities which are worse than the worst expected utilitiewitter £ € K at timet > 0. Here, p; ,(t) represents

at NE in pure and mixed strategies. the transmit power of transmittér € K over channel
Finally, we also show that the CS problem is an a%-)e S at timet > 0. The set of available PA vectors
gregation game [7]. Here, the utility achieved by #or transmitterk are (pimaxen), g, Wherepy, max is the
given player does not depend directly on the actions wfaximum transmit power of transmittérande,, is the
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n-th vector of the set of unitary vectors of the canonicatrategy profilesw, € A (Ax), Yk € K, such that

base of R°. Here,Vs € S, e; = (€s1,...,€55), once played, every player obtains its maximum bene-
andvn € S\ {s}, es,, = 0 andess = 1. For all fit (spectral efficiency) given the strategies of all the
(k,s) € K xS, gi.s represents the channel gain betweegther players. Under these conditions, no player would
transmitterk and the receiver through channel The be interested on changing its strategy since it would
received signal at the receiver at timedenoted by the represent a decrement of its own utility. Strategy profiles

Veglory(1) = (11, u5(1) wherevs <., s SalNG I condie e o s Nesh Ecibru
K Definition 1 (Nash Equilibrium): A mixed-strategy
ys(t) = ng,sxk,s(t) + ws. (1) profile w* is an NE if, for all playersk € K andVs € S
k=1

Here, the symbols transmitted by transmitteat time (g, ) = Ur(es, T7), ()
are denoted byey(t) = (x1(t), ...,z s(t))" . For all _

(k,s) € K x S at each timet, x ,(t) Is a realization where, iy : & (A1) x ... x & (Ak) — R
of a Gaussian random variable with zero mean and

variancepy, s(t), i.e., E [z () 2k s(¢)*] = prs(t). The U () = B [wi (PrP)] - (6)
vectorw = (wy,...,wg) is a S-dimensional additive

white Gaussian noise process with zero mean and co- lIl. EXISTING RESULTS

variance matrixiag (o7, ..., 0%). Hence, assuming that : - - -

the receiver implements singlse user decoding (SUD), tBQm this section, we introduce some definitions and

isting results required in later sections. First, we in-
troduce the concept of potential games (PG). Second,
we provide elements on the existence and multiplicity
wrn(PE)=Y . o B2 log, [ 14—y Phes ks , 2) of the NE. We define a PG as follows:
PO ces S ( "S*Zie“\{’“}p-""““)g]*s) @) Definition 2 (Exact Potential Game): Any

At each timet, the aim of each transmitter is to choosgame in strategic form defined by thé&-tuple
the channel which maximizes its own spectral efficiendyC, (Ax),cx » (ue)rexc) S an exact potential game
regardless of the spectral efficiency of its correspondiifgthere exists a functiom (p) for all p € A such that
counterparts. for all playersk € K and for all p, € Ay, it holds that

B. Game Theoretic Model , ,

G = (K, {A}pexc » {wr} o) models the CS problem

in parallel-MAC. Here, the set of players is the set of MAC is a finite PG. Hence, the existence of at least one
transmitters, and the set of action profilesvis, € IC, NE is guaranteed [4]. Moreover, it is proven in [2], that
A = {Pkmax€1s---sDkmax €S} - (3) several NE might simultaneously exist and can be easily
’ ’ identified. We summarize those results in the following
We denote byp,(f") the PA vectorpy max en, V(k,n) € proposition.
K x S. An action profile ofG is a super vectop = Proposition 3 (The Channel Selection game is a PG):

A The channel selection game G =
Pi,--.,Pr) € A whered = A; x ... x Ag. The . : .
Ejtility functi)on up : A — R measures the benefit that/s {Ar}iex  furlie) 1S @ potential game  with
playerk obtains when it plays a specific action given thBotential functione : A — R,
actions adopted by all the other players. Here, the utility
function uy, is defined in (2), for allk € K. B, R
We assume the gamé is dynamic in the sense that o(p) = Zflogz o2+ prsgrs |- (7)

k=1

spectral efficiency of transmitteér € K can be written
as

In [2], [3], it is proven that the CS problem in parallel-

it is repeatedly played a large number of times. We sES
denote bypi(t) € Ay, the PA chosen by player at
time ¢. For the ease of notation, we denaig(t) = Denote b1yL € IN the number of pure NE. Henceé,<

ui (py(t), p_i(t)). At each timet, each playek € k£ L < SKT.
chooses its actiomy(t) following a probability distri-

bution 7, = Tepls s M pl) ) € A (Ag), where IV. CHANNEL SELECTION GAMES AND FICTITIOUS
V(k,s) € K xS, 7, p fepresents the probability that PLAY
player k uses channel, i.e., for a given time > 0, In [3], it has been shown that the iterative best-
response dynamics (BRD) converges to pure NE in
Tl = Pr (pk(t) :pgj)> . (4) the CS in parallel-MAC games. Conversely, the simul-
ok taneous BRD does not necessarily converge in pure
In this paper, we refer tar; as the mixed strategy strategies. Here, we study another dynamic known as
of player £ € K. Our interest is to find the set offictitious play (FP).



A. Description of Fictitious Play Many classes of games have been proved to have the FPP

The fictitious play can be described as follows. AdSee [S] and references therein). In particular, potential
sume that transmitters have complete and perfect §@mes have the FPP [5] and so does the CS game. Hence,
formation, i.e., they know the structure of the gagie We Write the following proposition o
and observe at each timethe PA vectors taken by _Proposition 4 (Convergence of FP in CS): The ficti-
all players. Each transmittet € K assumes that all tious play converges empirically to the set of Nash
its counterparts play independent and stationary (tim@guilibrium in the CS game in parallel-MAC.
invariant) mixed strategiesr;, V5 € K \ {k}. Under  In the following sections, we study the implications of
these conditions, player is able to build an empirical convergence of the FP in the CS game and the required
probability distribution over each set;, Vj € £\ {k}. information assumptions.

Let fip (t) = 130 1 1y (5)=p,} DE the (empirical) _ S o
probab”lty with which playerg’ c K \ {k} observe that C. Practical Limitations of Fictitious Play
player k plays actionp, € Ai. Hence,vk € K and  ag presented in its original version [6], the FP requires
Vpy, € Ay, the following recursive expression holds, complete and perfect information. This is the same as
_ e B stating that each transmitter, at each tiime 0, is aware
Frm U D=Fem 0+ 25 (Lpy 0oy ~frm ) (8) of the number of active transmitters in the network, their
I _ . o . set of actions, their utility function and moreover, it is
Let frp (1) = waj (t) be the probability with 2. " " obccne the action played by each one of all
. J#k . , the other transmitters. Clearly, this assumption is not
which playerk observes the action profile_, € A practically appealing since it would require a massive
attimet > 0, forall & € K. Let the|A_,[ —dimensional sjgnaling between transmitters, which reduces the spec-
vector f,.(t) = (fk,p,. c A(A_;) be tral efficiency of the whole network. Additionally, as we
o TR/ Yp_ €A shall see, in the high SNR regime, the CS problem has
the empirical probability distribution over the sgt . the same structure of a potential coordination game [9].
observed by playek. In the following, we refer to the |n this kind of games, the set of probability distributions
vector f,.(¢) as thebeliefsof playerk over the strategies ¢, vk e K, converges but not necessarily the actions,
of all its corresponding counterparts. Hence, based P@ fictitious play might converge to a strictly mixed
its own beliefs f,(¢), each playert chooses its action strategy profile. When FP converges to a mixed strategy,
at timet, p;,(t) = p."*""), whereny(t) satisfies that: it is possible that players cycle around a subset of action
- profiles, which might lead to an expected utility which
n(t) € arg max g (es, fx(?)) (9) is worse that the worst expected utility at the NE in
5€ pure and mixed strategies. In the following section, we
where, for allk € KC, uy, is defined in (6). From (8), it can present a simple study case where it is easy to evidence
be implied that playing FP, players become myopic, i.&his cycling effect.
they build beliefs on the strategies being used by all the
other players, and at each time- 0, players choose the \/ stUpy CASE: A 2 x 2 CHANNEL SELECTION

action that maximizes the instantaneous expected utility. GAME
Hence, a natural question arises: are players always able
to build their respective beliefs?, i.e., does the learningConsider the game&f = (K, {Ax} i {urtrex)

process (8) converges to a specific strategy profile? Wi&h K = 2 and S = 2. Assume also thatk € K
tackle these questions in the following subsection. Dhmax = Pmax @andVs € S, 02 = ¢% and B, = %
P Denote bysnr=rmg< the average signal to noise ratio
B. Convergence of the Fictitious Play , _ (SNR) of each active communication. Note that since
The gameG = (K, {Ai}rex s {urtrex) is said to G is a PG (and more importantly a Best-Response PG
have the fictitious play property (FPP), if the following10]), the set of NE ofj is equivalent to the set of NE of
holds, for allk € K, and for a”pk € Ay, the gam@/ — (/C, {Ak}kelC ’ {d)}kng In the gam@/,
Hm fp (t) = fi (10) @all players have the same interest (same utility function)
t—o0 " Pk kP and obtain the payoffs shown in Fig. 1.

and, f; = fi ., ¥p_, € A_p, is a time-

k?p—k JEICH\{]C} ]7pj k T:Bl\Tibz pzz(pmm“o) pzz(o’pmax)
invariant probability measure over the sdt ;. When | p,=(puax.0) %1°g2(°21+flmx<gzu+gzl>) %11<:g2(022+mxgu)
condition (10) holds for all players, it is said that the __+3 ;gz(o ) 4 og;(ﬁ +Pmax922)
FP converges empirically to the probability distributionp,=(0,pu.x) 51“’%2(” 2+pmaxm) L1oga (o 1+rma»c<s;n+szz>)
fi=(f ) for all k € K. Now, from Def +ilotalo b omaont) +3 oaa()

k — kvp—k ’ . y .
i Bl ler — ; Fig. 1. Potential function ¢ of the game ¢ =
1, the mixed strategy profiler = (my,...,7x), with (A} ron s (0} ), with &~ 2 and § = 2. Player 1
T = (f: (1),...,f; (s)), for all £k € K, is an NE chooses rows and playerchooses columns.
p 7pk

strategy profile.



1) Nash Equilibria: We identify the NE in pure gﬁ
strategies of the gam@’ (and thusg) in the following :
proposition:

Proposition 5 (Nash Equilibria in pure strategies):

Let the PA vectop™ = (pj,p5) € A be one NE in P(g21)
the gamed. Then, depending on the channel gains )
{gk:S}V(las)eleS’ the NEp* can be written as follows :

(pmagvf’d)

Prdx,

1

o Equilibrium 1: wheng € H, with 1
P(g22)
1
B . . . I R
B <1 g,
* * 0" s = = 921
then,p1 = (pmaxao) and Dy = (Q;pmax)- N 922

« Equilibrium 2: Wheng € Hs, with

Fig. 2. Nash equilibriu(m action profiles) as a function of the channel
realization vectorg = (gi1, g12, g21, g22) for the two-player-two-
He={g € Ri : % > 1 +SNRg.; and 12 channel game&;. Here, the functiony : R, — R, is defined as
92 > 1 +SNRgu, } (12)  foliows: 1(z) = 1 +snre. Note that it has been arbitrarily assumed
g22 = b that go1 > g11 andgiz > gao.

thenapT: (pmaxa 0) and p; = (pmaxa 0)
« Equilibrium 3: wheng = (911, 912, 921, g22) € A3, Hi N Hy and,

with o(p2).p0) —o(p2 @

A= ™ 2 @) 0@ s M) g (D o) —a (5@ @) (15)
Hs={g€Ri: 00 < g @4 gy  Cltd) B ) 16
921 ¢ 1+SI\1]R 2= 50 @) 1 6(p@ p ) g (0,50 4 (p@ @)’ (16)
g22 g12 ¢(p(1)1p(2)),¢(p(2),p(2)) (17)

LERSY ey e @ 50 o (p p() o(p@ pD)

then_,_p’{_: (07.pmax) andp; = (_07pmax)- R )+:((:<2> :(1>;—:(2<1>:<1>)) o
« Equilibrium 4: wheng € H,4, with n;g:¢(p(1)1p(2))M(p(z)’m(l})_q&(p(l)Y’p(l))_qs(p(z)’p(z)). (18)

_ 4. gu Note that under the assumptigne H; N Hy, it holds
Ha={geRys §. STHsNRee AN ) thatw(h, 5) € K x S, 77, > 0, and thus, the game’ (
92s © THSNRois } and sogG) possesses two NE in pure strategies and one
NE)in mixed strategie]gs.h ] X
* x _ 2) Convergence of the FPIn the case the NE is
then, pi = (0, Pmax) andp? (pn?“’o)' unique in the CS game;, the FP converges to the
The proof of Prop. 5 follows immediately from Def. lynique NE in pure strategies (Prop. 4). Nonetheless,
and Fig. 1. The sets(,, ..., H, are plotted in Fig. 2, in when several NE simultaneously exist, the FP converges
order to provide an insight on the different types of equip the NE either in pure strategies or mixed strategies. In
librium. Note that regardless of the channel realizagon the following, we show a case of convergence in mixed
there always exists an NE. Moreover, for certain channgtategies using the FP.
realizations, whery € H; N Ha, bothpt = (p), p(?) ~ Assume that both players starts the game with the
and pit = (p@ pM) with p) = (0,pma,) and initial beliefs f;(to) = (f;.p0 (t0), fjpe (to)), such
P? = (pmax,0), are both NE. In fact, it is shown in [3]that f; ,o)(to) = 1_% and f; pe (to) = ﬁ with
that at high SNR, it is highly probable thate 71 NHy 0 < ¢; < 1, for all j € K. Hence, based on these beliefs,
and two NE in pure strategies are always observed. pqin players coincide choosing the actipf) att = .

Now, following the result in [11], it can be implied Following (8), it yields,Vk € K, andVn € {1,..., 00},
that when there exist two NE in pure strategies, there

exists a third NE in mixed strategies. When, there exists a Fop (to2n=1) = i (2tl=d
unique NE in pure strategies, the NE in mixed strategies foo (tot2n—1) = A (=Diutn
coincides with the NE in pure strategies. We summarize J;” (for2m) = "t trtg e (19)
this observation in the following proposition. Fp (0 - QTEM:S?ZMS

Proposition 6 (NE in Mixed Strategies): Let be a Fope (tot2n) = 5o T,
probability measure over the sedy, Vk € K. Then,  Here, as long as the following condition holds € K
7w = (m},..., ™) is an NE in mixed strategies of theand a givem € {1,..., 00},

gameG = (K, {Ax},cxc» {urtrex), if and only if, the
channel realizations{gk,s}v(

. n(epr)—1 _o(P@pM)—o(p@p3) _u(41)1es
k,S)EICXS Sa.t|Sfy thatg (S "(5k+1)*§k < ¢(P(1)»P(Q))*¢(P(1)1P(l)) \”(5k+1)*§k7 (20)



then, the following outcomes are observed, and a linear combination of the actions of all the other
players are known as aggregation games [7].

Hence, if the receiver is able to broadcast the veg{oy

and each transmitter can estimate its own channel gains

pr2n—1)=p" and p;(2n) =p®.

This implies that transmitters will cycle around the, ' """/ < "each transmittek is able to calculate the
outcomes(pV), pV) and (p'?, p). Note that if following térms
¢(p@ V) (@ ,p)=¢(p™ p@)—4(pM ,p"),  (21) Qr,s (1) =Qr s (1) 725 (Vk (P maxes ¥(1) = Qr.s (1), (23)

then, the beliefs of each player convergeno, = % LetT : A — R® be defined as follow§’ (pk,p_k) =

for all (k,s) € K x S and players perpetually iterate(T, (p, . p_,),....Ts (p..p_.)), where, for alls € S
between actiongp”), pll)) and (p?, p?)). Here, even (01 (PP ) (i P-))

thoughm, = (3,1), for all & € K, is an NE in mixed K
strategies acc%ré?ng to Prop. 6, the achieved expected Ly (plmp—k) =)+ Zpk,s Gk,s- (24)
utility can be worse than the worst expected utility at k=1
NE in pure and mixed strategies. This can be explain ;
by the fact that the( g)ur(e)strategies corr?s)po?gling %tgom (23), it holds thaty(k, s) € K€ x S,
the NE, i.e.,pT = (pl,pz) andp” = (pQ,pl), _ (s)
are never played. Hence, if the channel realizations arerﬁ(t) a Z Trp () Vs (p’“ T (p‘k)>
those such that sharing the same chann(e)l is(a!ways worse P €A
than using orthogonal channels, i.e.(p!*,p)) >> _ fom () ug (P
’ = P PP
¢ (p(”,p@)? and¢ (p),p?) >> ¢ (pV, p!), then, » ZE;U Y (#1794
a worse utility than the worst NE either in pure or mixed -
strategies is observed. = U (es, fk,p,k(t)> . (25)

Interestingly, if the differences ¢ (p®,p)) —
¢ (p®,p?) and ¢ (pM,p@) — ¢ (pM,p)) are  Hence, the myopic response in (9)is(t) = p{"™*",
sufficiently close, then, a large number in (20) where,

is required for the FP to quit the cycle mentioned ni(t) € argmax Qy, s(t), (26)
above. This implies that a long time is required ses

for players to play the four actions profiles and,qv

thus,h obtain the expected utility corre5||oondin 1.s(t) requires only the knowledge of the channel real-
to the NE in mixed strategies. Here, as long 3gations over the respective transmitter and the capypbilit

o(p* ) —6(p?),p?)#£6(p",p? ) —6(p"),pV), there ot calculating the utility function based on the message
always exists amy < oo, such thatvn > ng, condition

(21) does not hold, and thus, the cycling effect is n&(ﬂ'
longer observed. VII. CONCLUSIONS

VI. ON THE INFORMATION ASSUMPTIONS _In this paper, we have shown that fictitious play (FP)
is a feasible and simple algorithm to tackle the prob-

In this section, we assume that transmitters do nieim channel selection in decentralized multiple access
observe the actions taken by all the other transmitteftworks. It has been shown that FP always converges
All the knowledge about the other transmitters’ actiong Nash equilibrium (NE) in the CS game either in
is given by a common message sent by the receiverggre strategies or mixed strategies. Whenever there exist
all the transmitters. Such a messagé) € R° consists several NE in the CS game, the FP might converge to
on a linear combination of the actions of all transmittergyixed strategies and cycles of action profiles might be

(k,s) € K x S attimet > 0, the calculation of

i.e., () = (n(t),...,7s(t)), wherevs € S, observed. Using @ x 2 game, it is shown that such
cycles might lead to a performance which is worse than
vs(t) = 03 + ij75<t)gj75, the worst performance achieved at NE in pure and mixed
jek strategies for both players. Finally, we show that the CS

. _ _ problem has the structure of an aggregation game, which
which is simply the multiple access interference at thgcilitates the implementation of FP requiring only local

receiver over channel at timet.. information and minimum feedback.
Let us re-define the utility function as follows, : A x
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