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Abstract—Considering the interaction through mutual
interference of the different radio devices, the channel
selection (CS) problem in decentralized parallel multiple
access channels can be modeled by strategic-form games.
Here, we show that the CS problem is a potential game
(PG) and thus the fictitious play (FP) converges to a Nash
equilibrium (NE) either in pure or mixed strategies. Using
a 2−player 2−channel game, it is shown that convergence
in mixed strategies might lead to cycles of action profiles
which lead to individual spectral efficiencies (SE) which
are worse than the SE at the worst NE in mixed and pure
strategies. Finally, exploiting the fact that the CS problem
is a PG and an aggregation game, we present a method
to implement FP with local information and minimum
feedback.

I. I NTRODUCTION

In recent literature in wireless communications (see
[1], [2], [3]), it has been shown that channel selection
(CS) problems in decentralized parallel multiple access
channels (MAC), where each transmitter is interested in
its own spectral efficiency, can be modeled by strategic-
form games. More importantly, it has been shown in [2]
that CS problems in MAC are finite potential games
(PG) [4]. In general, finite potential games belong to
the class of games for which the existence of at least
one Nash equilibrium (NE) is ensured [4]. Moreover, it
has been shown that the iterative best-response dynamics
(BRD) and fictitious play (FP) both converge to Nash
equilibrium in potential games [5]. The BRD in CS
problems has been studied in [3]. In this paper, we
exclusively focus on the case of FP in its original version
[6]. Here, it is shown that when several NE exists in the
CS game, which is often the case at high signal-to-noise
ratio, FP might converge to (strictly) mixed strategies
and cycles of action profiles might be observed. This fact
rises the main question to be answered by this paper: is
the empirical measure of the frequency of each player’s
actions a good metric to evaluate convergence? Here, we
use a2−player2−action game to show that the actions
or mixed strategies corresponding to an NE are never
played even though a convergence of the empirical fre-
quencies of each player is observed. Surprinsingly, cycles
of action profiles might lead players to achieve expected
utilities which are worse than the worst expected utilities
at NE in pure and mixed strategies.
Finally, we also show that the CS problem is an ag-
gregation game [7]. Here, the utility achieved by a
given player does not depend directly on the actions of

all the players but on the actions of the given player
and a linear combination of all the players’ actions.
Interestingly, such a linear combination of actions in
the CS problem in MAC, is just the multiple access
interference (MAI) seen at the receiver. Thus, the MAI
observed over each channel at the receiver can be fed
back to the transmitters through a common signaling
message. Using this message, it is shown that the FP can
be implemented by relying on the fact that transmitters
are able to obtain an estimate of their own channels and
to calculate their utilities based on the above mentioned
signaling message.
This paper is organized as follows. In Sec. II, we
formalize the CS problem in parallel MAC and formulate
the corresponding strategic-form game. In Sec. III, we
present recent results on the existence and multiplicity of
the NE in the CS game. In Sec. IV, we introduce the FP
originally introduced in [6] using our notation. Therein,
it is shown that the CS game possesses the fictitious play
property and thus, FP converges to NE in the CS game.
In Sec. V, we study the convergence of the FP in a2-
player2-channel game and describe a two-action-profile
cycle. In Sec. VI, we exploit the fact that the CS problem
is an aggregation game to provide a practical way of
implementing FP with milder information assumptions
than its original version. Finally, the paper is concluded
by Sec. VII.

II. M ODELS

A. System Model
The channel selection (CS) problem in the parallel-

MAC can be described as follows. Assume that there
exist a setK = {1, . . . , K} of transmitters communicat-
ing trough a common setS = {1, . . . , S} of orthogonal
channels with a unique receiver. Channels ∈ S has
a bandwidth ofBs Hertz andB =

∑S
s=1 Bs Hertz.

Each transmitter communicates with the receiver using
a unique channel. Limiting transmitters to use a unique
channel in decentralized networks is optimal for the
global spectral efficiency of the network (see [8], [2],
[3]). Let t ∈ N be a discrete time index. Denote by
pk(t) = (pk,1(t), . . . , pk,S(t)) the PA vector of trans-
mitter k ∈ K at time t > 0. Here, pk,s(t) represents
the transmit power of transmitterk ∈ K over channel
s ∈ S at time t > 0. The set of available PA vectors
for transmitterk are(pk,maxen)n∈S , wherepk,max is the
maximum transmit power of transmitterk anden is the
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n-th vector of the set of unitary vectors of the canonical
base of RS . Here, ∀s ∈ S, es = (es,1, . . . , es,S),
and ∀n ∈ S \ {s}, es,n = 0 and es,s = 1. For all
(k, s) ∈ K×S, gk,s represents the channel gain between
transmitterk and the receiver through channels. The
received signal at the receiver at timet, denoted by the
vectory(t) = (y1(t), . . . , yS(t))T , where∀s ∈ S, is

ys(t) =
K
∑

k=1

gk,sxk,s(t) + ws. (1)

Here, the symbols transmitted by transmitterk at timet

are denoted byxk(t) = (xk,1(t), . . . , xk,S(t))T . For all
(k, s) ∈ K × S at each timet, xk,s(t) is a realization
of a Gaussian random variable with zero mean and
variancepk,s(t), i.e., E [xk,s(t)xk,s(t)

∗] = pk,s(t). The
vector w = (w1, . . . , wS) is a S-dimensional additive
white Gaussian noise process with zero mean and co-
variance matrixdiag

(

σ2
1, . . . , σ

2
S

)

. Hence, assuming that
the receiver implements single user decoding (SUD), the
spectral efficiency of transmitterk ∈ K can be written
as

uk(p(t))=
∑

s∈S
Bs
B

log2

(

1+
pk,s(t)gk,s

σ2
s+

∑

j∈K\{k} pj,s(t)gj,s

)

. (2)

At each timet, the aim of each transmitter is to choose
the channel which maximizes its own spectral efficiency
regardless of the spectral efficiency of its corresponding
counterparts.

B. Game Theoretic Model
Assume that the strategic-form game

G =
(

K, {Ak}k∈K , {uk}k∈K
)

models the CS problem
in parallel-MAC. Here, the setK of players is the set of
transmitters, and the set of action profiles is,∀k ∈ K,

Ak = {pk,max e1, . . . , pk,max eS} . (3)

We denote byp(n)
k the PA vectorpk,max en, ∀(k, n) ∈

K × S. An action profile ofG is a super vectorp =

(p1, . . . ,pK) ∈ A, whereA
△
= A1 × . . . × AK . The

utility function uk : A → R measures the benefit that
playerk obtains when it plays a specific action given the
actions adopted by all the other players. Here, the utility
function uk is defined in (2), for allk ∈ K.
We assume the gameG is dynamic in the sense that
it is repeatedly played a large number of times. We
denote bypk(t) ∈ Ak, the PA chosen by playerk at
time t. For the ease of notation, we denoteuk(t) =
uk
(

pk(t), p−k(t)
)

. At each timet, each playerk ∈ K
chooses its actionpk(t) following a probability distri-
bution πk =

(

π
k,p

(1)
k

, . . . , π
k,p

(S)
k

)

∈ △ (Ak), where
∀(k, s) ∈ K × S, π

k,p
(s)
k

represents the probability that
playerk uses channels, i.e., for a given timet > 0,

π
k,p

(s)
k

= Pr
(

pk(t) = p
(s)
k

)

. (4)

In this paper, we refer toπk as the mixed strategy
of player k ∈ K. Our interest is to find the set of

strategy profilesπk ∈ △ (Ak), ∀k ∈ K, such that
once played, every player obtains its maximum bene-
fit (spectral efficiency) given the strategies of all the
other players. Under these conditions, no player would
be interested on changing its strategy since it would
represent a decrement of its own utility. Strategy profiles
satisfying this condition are known as Nash Equilibrium.
In general, an NE is defined as follows:

Definition 1 (Nash Equilibrium): A mixed-strategy
profile π∗ is an NE if, for all playersk ∈ K and∀s ∈ S

ūk(π
∗
k, π

∗
−k) > ūk(es, π

∗
−k), (5)

where,ūk : △ (A1) × . . . ×△ (AK) → R

ūk (π) = Eπ

[

uk
(

pk, p−k

)]

. (6)

III. E XISTING RESULTS

In this section, we introduce some definitions and
existing results required in later sections. First, we in-
troduce the concept of potential games (PG). Second,
we provide elements on the existence and multiplicity
of the NE. We define a PG as follows:

Definition 2 (Exact Potential Game): Any
game in strategic form defined by the3-tuple
(

K, (Ak)k∈K , (uk)k∈K
)

is an exact potential game
if there exists a functionφ (p) for all p ∈ A such that
for all playersk ∈ K and for all p′

k ∈ Ak, it holds that

uk(pk, p−k)− uk(p
′
k, p−k) = φ(pk, p−k)−φ(p′

k, p−k).

In [2], [3], it is proven that the CS problem in parallel-
MAC is a finite PG. Hence, the existence of at least one
NE is guaranteed [4]. Moreover, it is proven in [2], that
several NE might simultaneously exist and can be easily
identified. We summarize those results in the following
proposition.

Proposition 3 (The Channel Selection game is a PG):
The channel selection game G =
(

K, {Ak}k∈K , {uk}k∈K
)

is a potential game with
potential functionφ : A → R,

φ(p) =
∑

s∈S

Bs

B
log2

(

σ2
s +

K
∑

k=1

pk,sgk,s

)

. (7)

Denote byL ∈ N the number of pure NE. Hence,1 6

L 6 SK−1.

IV. CHANNEL SELECTION GAMES AND FICTITIOUS
PLAY

In [3], it has been shown that the iterative best-
response dynamics (BRD) converges to pure NE in
the CS in parallel-MAC games. Conversely, the simul-
taneous BRD does not necessarily converge in pure
strategies. Here, we study another dynamic known as
fictitious play (FP).



A. Description of Fictitious Play
The fictitious play can be described as follows. As-

sume that transmitters have complete and perfect in-
formation, i.e., they know the structure of the gameG
and observe at each timet the PA vectors taken by
all players. Each transmitterk ∈ K assumes that all
its counterparts play independent and stationary (time-
invariant) mixed strategiesπj , ∀j ∈ K \ {k}. Under
these conditions, playerk is able to build an empirical
probability distribution over each setAj , ∀j ∈ K \ {k}.
Let fk,pk(t) = 1

t

∑t
s=1 1{pk(s)=pk}

be the (empirical)
probability with which playersj ∈ K \ {k} observe that
player k plays actionpk ∈ Ak. Hence,∀k ∈ K and
∀pk ∈ Ak, the following recursive expression holds,

fk,pk (t+1)=fk,pk (t)+ 1

t+1

(

1{pk(t)=pk}
−fk,pk (t)

)

. (8)

Let f̄k,p−k
(t) =

∏

j 6=k

fj,pj (t) be the probability with

which playerk observes the action profilep−k ∈ A−k
at timet > 0, for all k ∈ K. Let the|A−k| −dimensional
vector fk(t) =

(

f̄k,p−k

)

∀p−k∈A−k

∈ △ (A−k) be

the empirical probability distribution over the setA−k
observed by playerk. In the following, we refer to the
vectorfk(t) as thebeliefsof playerk over the strategies
of all its corresponding counterparts. Hence, based on
its own beliefsfk(t), each playerk chooses its action
at time t, pk(t) = p

(nk(t))
k , wherenk(t) satisfies that:

nk(t) ∈ arg max
s∈S

ūk (es, fk(t)) , (9)

where, for allk ∈ K, ūk is defined in (6). From (8), it can
be implied that playing FP, players become myopic, i.e.,
they build beliefs on the strategies being used by all the
other players, and at each timet > 0, players choose the
action that maximizes the instantaneous expected utility.
Hence, a natural question arises: are players always able
to build their respective beliefs?, i.e., does the learning
process (8) converges to a specific strategy profile? We
tackle these questions in the following subsection.

B. Convergence of the Fictitious Play
The gameG =

(

K, {Ak}k∈K , {uk}k∈K
)

is said to
have the fictitious play property (FPP), if the following
holds, for allk ∈ K, and for allpk ∈ Ak,

lim
t→∞

fk,pk(t) = f∗
k,pk

, (10)

and, f̄∗
k,p−k

=
∏

j∈K\{k}

f∗
j,pj

, ∀p−k ∈ A−k, is a time-

invariant probability measure over the setA−k. When
condition (10) holds for all players, it is said that the
FP converges empirically to the probability distribution
f∗
k =

(

f̄∗
k,p−k

)

∀p−k∈A−k

, for all k ∈ K. Now, from Def.

1, the mixed strategy profileπ = (π1, . . . ,πK), with
πk =

(

f∗
k,p

(1)
k

, . . . , f∗
k,p

(S)
k

)

, for all k ∈ K, is an NE
strategy profile.

Many classes of games have been proved to have the FPP
(see [5] and references therein). In particular, potential
games have the FPP [5] and so does the CS game. Hence,
we write the following proposition

Proposition 4 (Convergence of FP in CS): The ficti-
tious play converges empirically to the set of Nash
equilibrium in the CS game in parallel-MAC.

In the following sections, we study the implications of
convergence of the FP in the CS game and the required
information assumptions.

C. Practical Limitations of Fictitious Play

As presented in its original version [6], the FP requires
complete and perfect information. This is the same as
stating that each transmitter, at each timet > 0, is aware
of the number of active transmitters in the network, their
set of actions, their utility function and moreover, it is
able to observe the action played by each one of all
the other transmitters. Clearly, this assumption is not
practically appealing since it would require a massive
signaling between transmitters, which reduces the spec-
tral efficiency of the whole network. Additionally, as we
shall see, in the high SNR regime, the CS problem has
the same structure of a potential coordination game [9].
In this kind of games, the set of probability distributions
fk, ∀k ∈ K, converges but not necessarily the actions,
i.e., fictitious play might converge to a strictly mixed
strategy profile. When FP converges to a mixed strategy,
it is possible that players cycle around a subset of action
profiles, which might lead to an expected utility which
is worse that the worst expected utility at the NE in
pure and mixed strategies. In the following section, we
present a simple study case where it is easy to evidence
this cycling effect.

V. STUDY CASE: A 2 × 2 CHANNEL SELECTION
GAME

Consider the gameG =
(

K, {Ak}k∈K , {uk}k∈K
)

,
with K = 2 and S = 2. Assume also that∀k ∈ K,
pk,max = pmax and ∀s ∈ S, σ2

s = σ2 and Bs = B
S

.
Denote bySNR= pmax

σ2 the average signal to noise ratio
(SNR) of each active communication. Note that since
G is a PG (and more importantly a Best-Response PG
[10]), the set of NE ofG is equivalent to the set of NE of
the gameG′ =

(

K, {Ak}k∈K , {φ}k∈K
)

. In the gameG′,
all players have the same interest (same utility function)
and obtain the payoffs shown in Fig. 1.

Tx1\Tx2 p2=(pmax,0) p2=(0,pmax)

p1=(pmax,0)
1
2

log2(σ2+pmax(g11+g21))

+ 1
2

log2(σ2)

1
2

log2(σ2+pmaxg11)

+ 1
2

log2(σ2+pmaxg22)

p1=(0,pmax)
1
2

log2(σ2+pmaxg12)

+ 1
2

log2(σ2+pmaxg21)

1
2

log2(σ2+pmax(g12+g22))

+ 1
2

log2(σ2)

Fig. 1. Potential function φ of the game G =
(

K, {Ak}k∈K
, {uk}k∈K

)

, with K = 2 and S = 2. Player 1
chooses rows and player2 chooses columns.



1) Nash Equilibria: We identify the NE in pure
strategies of the gameG′ (and thusG) in the following
proposition:

Proposition 5 (Nash Equilibria in pure strategies):
Let the PA vectorp∗ = (p∗

1, p
∗
2) ∈ A be one NE in

the gameG. Then, depending on the channel gains
{gk,s}∀(k,s)∈K×S , the NEp∗ can be written as follows :

• Equilibrium 1: wheng ∈ H1, with

H1 = {g ∈ R
4
+ : g11

g12
>

1
1+SNRg22

and
g21
g22

6 1 +SNRg11},
(11)

then,p∗
1 = (pmax, 0) and p∗

2 = (0, pmax).
• Equilibrium 2: Wheng ∈ H2, with

H2 = {g ∈ R
4
+ : g11

g12
> 1 +SNRg21 and

g21
g22

> 1 +SNRg11 },
(12)

then,p∗
1 = (pmax, 0) and p∗

2 = (pmax, 0).
• Equilibrium 3: wheng = (g11, g12, g21, g22) ∈ A3,

with

H3 = {g ∈ R
4
+ : g11

g12
6

1
1+SNRg22

and
g21
g22

6
1

1+SNRg12
}

(13)

then,p∗
1 = (0, pmax) and p∗

2 = (0, pmax).
• Equilibrium 4: wheng ∈ H4, with

H4 = {g ∈ R
4
+ : g11

g12
6 1 +SNRg12 and

g21
g22

>
1

1+SNRg12
},

(14)

then,p∗
1 = (0, pmax) and p∗

2 = (pmax, 0).

The proof of Prop. 5 follows immediately from Def. 1
and Fig. 1. The setsH1, . . . ,H4 are plotted in Fig. 2, in
order to provide an insight on the different types of equi-
librium. Note that regardless of the channel realizationg,
there always exists an NE. Moreover, for certain channel
realizations, wheng ∈ H1 ∩H4, both p† =

(

p(1), p(2)
)

and p†† =
(

p(2), p(1)
)

with p(1) = (0, pmax) and
p(2) = (pmax, 0), are both NE. In fact, it is shown in [3]
that at high SNR, it is highly probable thatg ∈ H1∩H4
and two NE in pure strategies are always observed.

Now, following the result in [11], it can be implied
that when there exist two NE in pure strategies, there
exists a third NE in mixed strategies. When, there exists a
unique NE in pure strategies, the NE in mixed strategies
coincides with the NE in pure strategies. We summarize
this observation in the following proposition.

Proposition 6 (NE in Mixed Strategies): Letπ∗
k be a

probability measure over the setAk, ∀k ∈ K. Then,
π∗ = (π∗

1, . . . ,π
∗
K) is an NE in mixed strategies of the

gameG =
(

K, {Ak}k∈K , {uk}k∈K
)

, if and only if, the
channel realizations{gk,s}∀(k,s)∈K×S satisfy thatg ∈

0

g11
g12

g21
g22

1
ψ

(
g
1
2
)

1
ψ

(
g
2
2
)

1

ψ
(
g
1
1
)

ψ
(
g
2
1
)

1
ψ(g12)

1
ψ(g22)

1

ψ(g11)

ψ(g21)

p1 = (pmax, 0)
p2 = (0, pmax)

p1 = (pmax, 0)
p2 = (pmax, 0)

p1 = (0, pmax)
p2 = (pmax, 0)

p
1

=
(0
,
p
m

a
x
)

p
2

=
(0
,
p
m

a
x
)

Fig. 2. Nash equilibrium action profiles as a function of the channel
realization vectorg = (g11, g12, g21, g22) for the two-player-two-
channel gameG. Here, the functionψ : R+ → R+ is defined as
follows: ψ(x) = 1 +SNR x. Note that it has been arbitrarily assumed
that g21 > g11 andg12 > g22.

H1 ∩H4 and,

π∗
1,1=

φ(p
(2),p(1))−φ(p

(2),p(2))
φ(p

(1),p(2))+φ(p
(2),p(1))−φ(p

(1),p(1))−φ(p
(2),p(2))

, (15)

π∗
1,2=

φ(p
(1),p(2))−φ(p

(1),p(1))
φ(p

(1),p(2))+φ(p
(2),p(1))−φ(p

(1),p(1))−φ(p
(2),p(2))

, (16)

π∗
2,1=

φ(p
(1),p(2))−φ(p

(2),p(2))
φ(p

(1),p(2))+φ(p
(2),p(1))−φ(p

(1),p(1))−φ(p
(2),p(2))

, (17)

π∗
2,2=

φ(p
(2),p(1))−φ(p

(1),p(1))
φ(p

(1),p(2))+φ(p
(2),p(1))−φ(p

(1),p(1))−φ(p
(2),p(2))

. (18)

Note that under the assumptiong ∈ H1 ∩ H4, it holds
that ∀(k, s) ∈ K × S, π∗

k,s > 0, and thus, the gameG′ (
and soG) possesses two NE in pure strategies and one
NE in mixed strategies.

2) Convergence of the FP:In the case the NE is
unique in the CS gameG, the FP converges to the
unique NE in pure strategies (Prop. 4). Nonetheless,
when several NE simultaneously exist, the FP converges
to the NE either in pure strategies or mixed strategies. In
the following, we show a case of convergence in mixed
strategies using the FP.

Assume that both players starts the game with the
initial beliefs f j(t0) =

(

fj,p(1)(t0), fj,p(2)(t0)
)

, such
that fj,p(1)(t0) = ξj

1+ξj
and fj,p(2)(t0) = 1

1+ξj
, with

0 < ξj < 1, for all j ∈ K. Hence, based on these beliefs,
both players coincide choosing the actionp(1) at t = t0.
Following (8), it yields,∀k ∈ K, and∀n ∈ {1, . . . ,∞},















f
k,p(1)(t0+2n−1) = 1

2n−1

(

nξk+(n−1)

1+ξk

)

f
k,p(2)(t0+2n−1) = 1

2n−1

(

(n−1)ξk+n

1+ξk

)

f
k,p(1)(t0+2n) = 1

2n

(

(n+1)ξk+n

1+ξk

)

f
k,p(2)(t0+2n) = 1

2n

(

(n−1)ξk+n

1+ξk

)

. (19)

Here, as long as the following condition holds∀k ∈ K
and a givenn ∈ {1, . . . ,∞},

n(ξk+1)−1

n(ξk+1)−ξk
6
φ(p

(2),p(1))−φ(p
(2),p(2))

φ(p
(1),p(2))−φ(p

(1),p(1))
6
n(ξk+1)+ξk
n(ξk+1)−ξk

, (20)



then, the following outcomes are observed,

pk(2n − 1) = p(1) and pk(2n) = p(2).

This implies that transmitters will cycle around the
outcomes

(

p(1), p(1)
)

and
(

p(2), p(2)
)

. Note that if

φ(p
(2),p(1))−φ(p

(2),p(2))=φ(p
(1),p(2))−φ(p

(1),p(1)), (21)

then, the beliefs of each player converge toπk,s = 1
2 ,

for all (k, s) ∈ K × S and players perpetually iterate
between actions

(

p(1), p(1)
)

and
(

p(2), p(2)
)

. Here, even
thoughπk =

(

1
2 , 1

2

)

, for all k ∈ K, is an NE in mixed
strategies according to Prop. 6, the achieved expected
utility can be worse than the worst expected utility at
NE in pure and mixed strategies. This can be explained
by the fact that the pure strategies corresponding to
the NE, i.e.,p† =

(

p(1), p(2)
)

and p†† =
(

p(2), p(1)
)

,
are never played. Hence, if the channel realizations are
those such that sharing the same channel is always worse
than using orthogonal channels, i.e.,φ

(

p(2), p(1)
)

>>

φ
(

p(2), p(2)
)

andφ
(

p(1), p(2)
)

>> φ
(

p(1), p(1)
)

, then,
a worse utility than the worst NE either in pure or mixed
strategies is observed.
Interestingly, if the differences φ

(

p(2), p(1)
)

−

φ
(

p(2), p(2)
)

and φ
(

p(1), p(2)
)

− φ
(

p(1), p(1)
)

are
sufficiently close, then, a large numbern in (20)
is required for the FP to quit the cycle mentioned
above. This implies that a long time is required
for players to play the four actions profiles and
thus, obtain the expected utility corresponding
to the NE in mixed strategies. Here, as long as
φ(p

(2),p(1))−φ(p
(2),p(2))6=φ(p

(1),p(2))−φ(p
(1),p(1)), there

always exists ann0 < ∞, such that∀n > n0, condition
(21) does not hold, and thus, the cycling effect is not
longer observed.

VI. ON THE INFORMATION ASSUMPTIONS

In this section, we assume that transmitters do not
observe the actions taken by all the other transmitters.
All the knowledge about the other transmitters’ actions
is given by a common message sent by the receiver to
all the transmitters. Such a messageγ(t) ∈ R

S consists
on a linear combination of the actions of all transmitters,
i.e., γ(t) = (γ1(t), . . . , γS(t)), where∀s ∈ S,

γs(t) = σ2
s +

∑

j∈K

pj,s(t)gj,s,

which is simply the multiple access interference at the
receiver over channels at time t.
Let us re-define the utility function as followsvk : Ak×
R
S
+ → R+,

vk(pk(t),γ(t))=uk(p(t))=

S
∑

s=1

log2

(

1+
pk,s(t) gk,s

γs(t)−pk,s(t) gk,s

)

. (22)

The games where the utility function of playerk ∈ K
can be written as a function of the actions of playerk

and a linear combination of the actions of all the other
players are known as aggregation games [7].
Hence, if the receiver is able to broadcast the vectorγ(t)
and each transmitter can estimate its own channel gains
gk,1, . . . , gk,S , each transmitterk is able to calculate the
following terms

Qk,s(t+1)=Qk,s(t)+
1

t+1
(vk(pk,maxes,γ(t))−Qk,s(t)). (23)

Let Γ : A → R
S be defined as followsΓ

(

pk, p−k

)

=
(

Γ1

(

pk, p−k

)

, . . . ,ΓS
(

pk, p−k

))

, where, for alls ∈ S

Γs
(

pk, p−k

)

= σ2
s +

K
∑

k=1

pk,s gk,s. (24)

From (23), it holds that,∀(k, s) ∈ K × S,

Qk,s(t) =
∑

p−k∈A−k

fk,p−k
(t) vk

(

p
(s)
k , Γ

(

p−k

)

)

=
∑

p−k∈A−k

fk,p−k
(t)uk

(

p
(s)
k , p−k

)

= ūk

(

es, fk,p−k
(t)
)

. (25)

Hence, the myopic response in (9) ispk(t) = p
(nk(t))
k ,

where,
nk(t) ∈ arg max

s∈S
Qk,s(t), (26)

and ∀(k, s) ∈ K × S at time t > 0, the calculation of
Qk,s(t) requires only the knowledge of the channel real-
izations over the respective transmitter and the capability
of calculating the utility function based on the message
γ(t).

VII. C ONCLUSIONS

In this paper, we have shown that fictitious play (FP)
is a feasible and simple algorithm to tackle the prob-
lem channel selection in decentralized multiple access
networks. It has been shown that FP always converges
to Nash equilibrium (NE) in the CS game either in
pure strategies or mixed strategies. Whenever there exist
several NE in the CS game, the FP might converge to
mixed strategies and cycles of action profiles might be
observed. Using a2 × 2 game, it is shown that such
cycles might lead to a performance which is worse than
the worst performance achieved at NE in pure and mixed
strategies for both players. Finally, we show that the CS
problem has the structure of an aggregation game, which
facilitates the implementation of FP requiring only local
information and minimum feedback.
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