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Abstract— We consider a wireless relay network with with
hybrid-automatic retransmission request (HARQ) and Rayleigh
fading channels. In this paper, we analyze the outage probability
of the multi-relay delay-limited HARQ system with opportunistic
relaying scheme in decode-and-forward mode. A simple and
distributed relay selection strategy is proposed for multi-relay
HARQ channels. Then, we analyze the performance of the
system. We first derive the cumulative density function (CDF)
and probability density function (PDF) of the selected relay
channels. Then, the CDF and PDF are used to determine the
outage probability in the l-th round of HARQ. The packet
delay constraint is represented by L, the maximum number
of HARQ rounds. Furthermore, closed-form upper-bounds on
outage probability are derived, which are used to investigate the
diversity order of the system. Based on the derived upper-bound
expressions, it is shown that the proposed schemes achieve the
full spatial diversity order of N + 1, where N is the number
of potential relays. Our analytical results are confirmed by
simulation results.

I. INTRODUCTION

Cooperation among devices has been considered to provide
diversity in wireless networks where fading may significantly
affect single links [1]. Initial works have emphasized on
relaying, where a cooperator node amplifies (or decodes) and
forwards, possibly in a quantized fashion [2], the information
from the source node in order to help decoding at the desti-
nation node [3–5]. The achieved throughput can be increased
with the integration of cooperation and coding, i.e., by letting
the cooperator send incremental redundancy to the destination
[6]. Resource allocation for space-time coded cooperative
networks has been studied in [7], where an analysis of bit
error rate is also derived.

A diversity effect can be introduced to a relay networks
by simply allowing the nodes to maintain previously received
information concerning each active message. Each time a
message is retransmitted, either from a new node or from the
same node, every node in the relay network will increase the
amount of resolution information it has about the message.
Once a node has accumulated sufficient information it will be
able to decode the message and can act as a relay and forward
the message (as in decode-and-forward [3], [8]). This diversity
effect can be viewed as a space-time generalization of the time-
diversity effect of hybrid-automatic repeat request (HARQ) as
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described in [9]. Thus, the HARQ scheme used in this paper is
a practical approach to designing wireless ad hoc networks that
exploit the spatial diversity, which is achievable with relaying.
The retransmitted packets could originate from any node that
has overheard and successfully decoded the message. Current
and future wireless networks based on packet switching use
HARQ protocols at the link layer. Hence, the performance
of HARQ protocols in relay channels has attracted recent
research interest [10–12].

In this paper, we propose an efficient HARQ multi-relay
protocol which leads to full spatial diversity. We assume a
multi-relay delay-limited network with the maximum number
of HARQ rounds L, which represents the delay constraint. The
closed-form expressions are derived for the outage probability,
defined as the probability of packet failure after L HARQ
rounds, in half-duplex. Furthermore, we obtain closed-form
upper-bounds for the outage probability in the high SNR
scenario, from which we find the diversity order of system
N + 1, where N is the number of the relays. We also
propose a distributed relay selection scheme for HARQ multi-
relay networks by using acknowledgment (ACK) or non-
acknowledgment (NACK) signals transmitted by destination.

II. SYSTEM MODEL AND PROTOCOL DESCRIPTION

Consider a network consisting of a source denoted s, one
or more relays denoted i = 1, 2, . . . , N , and one destination
denoted d. It is assumed that each node is equipped with a
single antenna. We consider symmetric channels and denote
the source-to-destination, source-to-ith relay, and ith relay-
to-destination links by f0, fi, and gi, respectively. Suppose
each link has Rayleigh fading, independent of the others.
Therefore, f0, fi, and gi are i.i.d. complex Gaussian random
variables with zero-mean and variances σ2

0 , σ2
fi

, and σ2
gi

,
respectively. As in [12], all links are assumed to be long-
term quasi-static wherein all HARQ rounds of a single packet
experience a single channel realization. Subsequent packets
experience independent channel realizations. Note that such
an assumption is applicable in low-mobility environments such
as indoor wireless local area networks (WLANs). This clearly
reveals the gains due to HARQ since temporal diversity is not
present.

In this paper, we use selection relaying, a.k.a. opportunistic
relaying [13], which selects the best relay among N available
relays. Inspired by the distributed algorithm proposed in [13],
which uses request-to-send (RTS) and clear-to-send (CTS)



signals to select the best relay, we propose the following
selection procedure for HARQ systems:

• In the first step, the source node broadcast its packet
toward the relays and the destination. Thus, relays can
estimate their source-to-relay channels.

• Then, relays exploit the ACK or NACK signals which
is transmitted by the destination to estimate their corre-
sponding relay-to-destination channel.

• The ith relay, i = 1, . . . , N has a timer Ti which its value
is proportional to the inverse of min

{

|fi|
2, |gi|

2
}

.
• The relay with maximum amount of min

{

|fi|
2, |gi|

2
}

has a smallest Ti. Whenever the first relay finished its
timer, it broadcasts a flag packet toward the other relays
to make them silent and announce her as the selected
relay.

Let s and ŝ denote the transmitted signals from the source
and the selected relay, respectively. During the first HARQ
round, the relay and destination listen to the source transmit
block s. At the end of the transmission, the destination sends
both the source and relays a one-bit ACK or NACK indicating,
respectively, the success or failure of the transmission. The
NACK/ACK is assumed to be received error-free and with
negligible delay. As long as NACK is received after each
HARQ round and the maximum number of HARQ rounds
is not reached, the source successively transmits subsequent
HARQ blocks of the same packet. Suppose the selected relay
decodes the message after HARQ round k, while the destina-
tion has not yet decoded the message correctly. For all HARQ
rounds l > k, the source and the selected relay simultaneously
transmit s and ŝ, respectively. The Alamouti code is used to
transmit the coded symbols, hence, no interference occurs due
to the simultaneous transmissions of the source and relay. The
effective coding rate after l HARQ rounds is R/l bps/Hz,
where R is the spectral efficiency (in bps/Hz) of the first
HARQ round. The received signal y at the destination can
be written as follows:

y =

{

f0s + gr ŝ + n, if l > k,
f0s + n, if l ≤ k,

(1)

where the index r refers to the index of the selected relay and
n is a complex white Gaussian noise sample with variance
N0.

III. OUTAGE PROBABILITY ANALYSIS

The recently proposed delay-limited (DL) throughput ḠDL

is defined as [12]

ḠDL =

L
∑

l=1

R

l
[Pout(l − 1) − Pout(l)] , (2)

where Pout(l) denotes the probability that the packet is incor-
rectly decoded at the destination after l HARQ rounds. An
advantage of definition (2), which does not resort to long-
term behavior, is the ability to track slow time variations in
the channels.

In [14], the request to an automatic repeat request (ARQ)
is served by the relay closest to the destination, among those

that have decoded the message. However, distance-dependent
relay selection does not consider the fading effect of wireless
networks and leads to a maximum diversity of two. Therefore,
in this work, the request to an automatic repeat request (ARQ)
is served by the relay with the best instantaneous channel
conditions. Similar to [13], we choose the relay with the
maximum of min {γfi , γgi}, i = 1, . . . , N , as the best relay,
where γfi

= |fi|
2 and γgi

= |gi|
2. We define

γmax , min {γfr , γgr}

= max {min {γf1 , γg1} , . . . ,min {γfN
, γgN

}} , (3)

where
r = arg max

i=1,...,N
{min {γfi , γgi}} . (4)

Let χ denote the earliest HARQ round after which the relay
stops listening to the current message. The outage probability
for the relay channel after l HARQ rounds is given by [10]

Pout(l) =

l−1
∑

k=1

Pout(l |l > k) Pr[χ = k]

+

L
∑

k=l

Pout(l |l ≤ k) Pr[χ = k]. (5)

To compute Pr[χ = k], the mutual information between source
and relay for each HARQ round is given by

Ifr = log2

(

1 +
P

N0
γfr

)

, (6)

where P is the average transmit power from the source and
γfr is an exponentially distributed random variable with mean
σ2

fr
. For k = 1, . . . , l−1, χ = k if the message is successfully

decoded by the relay at the kth HARQ round, and we have

Pr[χ = k] = Pr[(k − 1)Ifr
< R, k Ifr

> R]

= Pr[(k − 1)Ifr
< R] − Pr[k Ifr

< R]

= Pr[γfr < µk−1] − Pr[γfr < µk], (7)

where

µk =
N0

P

(

2R/k − 1
)

. (8)

For k = l, . . . , L, χ = k if the relay did not decode the
message successfully after (l − 1) HARQ rounds, and thus,
we have

Pr[χ = k] = Pr[(l − 1)Ifr < R] = Pr[γfr < µl−1]. (9)

From (7) and (9), Pr[χ = k] can be calculated as

Pr[χ = k] =

{

Pr[γfr < µk−1] − Pr[γfr < µk], if k < l,
Pr[γfr

< µl−1], if k ≥ l.
(10)

A. Approximate Outage Probability

Since the index r given in (4) is dependent on channels,
γfr and γgr are not independent for N > 1. Thus, obtaining a
closed-form for PDF is not straightforward, and experimental
methods can be used for finding the CDF of γfr , which is
required in (10). However, in the following, an approximation
of the CDF of the random variable γfr is derived.



Proposition 1: Let γfi and γgi , i = 1, . . . , N , be set of
independence exponential random variables with mean σ2

fi
=

σ2
gi

= σ2
i . The cumulative density function of γfr

, where r is
defined as (4), can be approximated as

Pr{γfr
< γ} ≈ 1 −

√

√

√

√1 −

N
∏

i=1

(

1 − e
−

2γ

σ2
i

)

. (11)

Proof: For deriving the CDF of γfr
, we should first find

the CDF of γmax, which can be written as
Pr{γmax < γ} = Pr{γ1 < γ, γ2 < γ, . . . , γN < γ} (12)

where γi = min {γfi , γgi} is again an exponential random
variable (RV) with the parameter equal to the sum of param-
eters of exponential RV γfi and γgi , i.e., 1/σ2

fi
and 1/σ2

gi
,

respectively.
Thus, assuming that all channel coefficients are independent

of each others, we can rewrite (12) as

Pr{γmax < γ} =

N
∏

i=1



1 − e
−γ

(

1

σ2
fi

+ 1
σ2

gi

)



 . (13)

On the other hand, we have
Pr{γmax < γ} = 1 − Pr{min {γfr , γgr} > γ}

= 1 − Pr{γfr > γ, γgr > γ} ≈ 1 − Pr{γfr >γ}Pr{γgr >γ},
(14)

where the last equality is an approximation as if γfr
and

γgr are independent. For simplicity, we assume equidistance
source-relay and relay-destination links, i.e., that σ2

fi
= σ2

gi
=

σ2
i . Since we have assumed that γfi

and γgi
have the same

statistics, using (13) and (14), we have

Pr{γfr
< γ} = Pr{γgr

< γ} ≈ 1 −

√

√

√

√1 −

N
∏

i=1

(

1 − e
−

2γ

σ2
i

)

.

(15)

In Fig. 1, we have compared the approximated PDF of γfr ,
which is obtained by the derivation of CDF in (11), with the
simulated PDF of γfr . As it can be seen from Fig. 1, for the
case of a single-relay network (N = 1), the analytical and
simulated results have the same performance. This is because
of the fact that the independence assumption for γfi and γgi

becomes valid for N = 1, and the approximation in (14)
turns into equality. For the opportunistic relaying case, i.e.,
N > 1, it can be seen that the analytical curves appropriately
approximate the simulation result.

From (11), Pr[χ = k] in (10) can be approximated as

Pr[Tr = k] ≈

√

√

√

√1 −

N
∏

i=1

(

1 − e
−

2µk
σ2

i

)

−

√

√

√

√1 −

N
∏

i=1

(

1 − e
−

2µk−1

σ2
i

)

, Ω1(k), (16)

for k < l, and

Pr[Tr = k] ≈ 1 −

√

√

√

√1 −

N
∏

i=1

(

1 − e
−

2µl−1

σ2
i

)

, Ω2(l), (17)

for k ≥ l.
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Fig. 1. Wireless multihop network under m-cooperation.

Next, the conditional probabilities Pout(l |l > k) and
Pout(l |l ≤ k) in (7) will be calculated.

After correct decoding of the source packet at the relay, the
relay helps the source by simultaneous transmission according
to the Alamouti code. Hence, assuming the relay transmits the
same power P as the source, the mutual information of the
effective channel is given by

Is,r,d = log2

(

1 +
P

N0
γf0 +

P

N0
γgr

)

. (18)

Let Itot,k,l denote the total mutual information accumulated at
the destination after l HARQ rounds and when χ = k. For
k < l, the relay listens for k HARQ rounds and transmits the
message simultaneously with the source using the Alamouti
code for the remaining (l − k) HARQ rounds. For k ≥ l, the
relay does not help the source during the l HARQ rounds.
Hence,

Itot,k,l =

{

k If0 + (l − k) Is,r,d, if k = 1, . . . , l − 1,
lIf0 , if k = l, . . . , L,

(19)

where If0
is the mutual information between the source and

destination at each HARQ round and can be written as If0 =

log2

(

1 + P
N0

γf0

)

.

Therefore, for k ≥ l, we have

Pout(l |l ≤ k) = Pr[lIf0 < R] = 1 − exp

(

−µl

σ2
f0

)

. (20)

From (19), the conditional probability Pout(l |l > k) can be
calculated as



Pout(l |l > k) = Pr[Itot,k,l < R]

= Pr

{

log2

[

(

1+
P

N0
γf0

)k(

1+
P

N0
γf0

+
P

N0
γgr

)l−k
]

< R

}

= Pr











γgr
<

2R/(l−k)

P
N0

(

1 + P
N0

γf0

)k/(l−k)
− γf0

−
N0

P











=

∫ µl

γf0
=0

∫ β(γf0
)

γgr =0

e
−

γf0
σ2

f0

σ2
f0

pγgr
(γgr

) dγf0
dγgr

, Υ(l, k),

(21)
where β(γf0

) = 2R/(l−k)N0

P
(

1+ P
N0

γf0

)k/(l−k) − γf0
− N0

P . Due to

symmetry, the PDF of random variable γgr
, i.e., pγgr

(γ),
is same as the PDF of random variable γgr , with perhaps
different mean. Thus, the PDF of γgr

can be found by the
derivation of Pr{γgr < γ} in (15) as

pγgr
(γ) ≈

1
√

√

√

√1 −

N
∏

i=1

(

1 − e
−

2γ

σ2
i

)

N
∑

i=1

e
−

2γ

σ2
i

σ2
i

N
∏

j=1
j 6=i

(

1− e
−

2γ

σ2
j

)

.

(22)
By substituting pγgr

(γ) from (22) into (21), Pout(l |l > k)
is obtained. Therefore, using (10), (20), and (21), the outage
probability in the lth stage of HARQ process can be achieved
as

Pout(l) ≈

l−1
∑

k=1

Ω1(k)Υ(l, k) +

L
∑

k=l

Ω2(l)

(

1 − e

−µl
σ2

f0

)

. (23)

B. Upper-Bound on Outage Probability

For calculating the minimum diversity gain of HARQ wire-
less relay networks when selection strategy in (4) is used, it
is enough to derive an upper-bound on the outage probability
Pout(l).

The random variable γfr
, which is corresponding the

source-relay channel of the selected relay, can be bounded
as

γmax ≤ γfr ≤ γs
max, (24)

where γmax is given in (3) and γs
max is defined as

γs
max = max

i=1,...,N
{γfi} . (25)

The CDF of γs
max can be written as

Pr{γs
max < γ} = Pr{γf1 < γ, γf2 < γ, . . . , γfN < γ}

=

N
∏

i=1

(

1 − e
−

γ

σ2
fi

)

. (26)

Thus, it is easy to show that the CDF of γs
max can be written

as
Pr{γs

max < γ} ≤ Pr{γfr < γ} ≤ Pr{γmax < γ}. (27)

Therefore, an upper-bound on Pr[χ = k] will be obtained
as follows: Combining (10) and (27), we have

Pr[χ = k] ≤ Pr[γmax < µk−1] − Pr[γs
max < µk], (28)

for k < l. From (13), (26), and (28), Pr[χ = k] for k < l can
be calculated as

Pr[χ = k] ≤

N
∏

i=1



1 − e
−µk−1

(

1

σ2
fi

+ 1
σ2

gi

)



−

N
∏

i=1

(

1 − e
−

µk
σ2

fi

)

, Λ1(k). (29)

For k ≥ l, by combining (10), (13), and (27), we have
Pr[χ = k] ≤ Pr[γmax < µl−1]

=

N
∏

i=1



1 − e
−µl−1

(

1

σ2
fi

+ 1
σ2

gi

)



 , Λ2(l). (30)

Next, Pout(l |l > k) in (21) can be upper-bounded as
Pout(l |l > k)

≤ Pr











γmax <
2R/(l−k)

P
N0

(

1 + P
N0

γf0

)k/(l−k)
− γf0

−
N0

P











=

∫ µl

γf0
=0

∫ β(γf0
)

γmax=0

e
−

γf0
σ2

f0

σ2
f0

pγmax
(γmax) dγf0

dγmax. (31)

The PDF of random variable γmax, i.e., pγmax(γ) can be
found by the derivative of Pr{γmax < γ} in (13). Thus, we
have

pγmax
(γ) =

N
∑

i=1

(

1

σ2
fi

+
1

σ2
gi

)

e
−γ

(

1

σ2
fi

+ 1
σ2

gi

)

×

N
∏

j=1
j 6=i



1 − e
−γ

(

1

σ2
fj

+ 1
σ2

gj

)



 . (32)

Therefore, by substituting Pr[χ = k] from (29) and (30),
and Pout(l |l ≤ k) and Pout(l |l > k) from (20) and (31),
respectively, in (5), an upper-bound on outage probability the
lth stage of HARQ process, i.e., Pout(l) can be achieved.

A tractable definition of the diversity gain is [15, Eq. (1.19)]

Gd = − lim
ρ→∞

log (Pout)

log (ρ)
, (33)

where ρ = P
N0

. Thus, in the following, we investigate the
asymptotic behavior and diversity order of Pout(l) in (5).

From (32), an upper-bound for pγmax
(γ) can be found as

pγmax(γ) ≤ NγN−1
N
∏

i=1

(

1

σ2
fi

+
1

σ2
gi

)

, (34)

which is a tight bound when γ → 0. Note that in high SNR
scenario, the the behavior of the fading distribution around
zero is important (see, e.g., [16]).

Using (34) and the fact that the exponential distribution is
a decreasing function of γf0

, Pout(l |l > k) in (31) can be
further upper-bounded as
Pout(l |l > k)

≤

∫ µl

γf0
=0

∫ β(γf0
)

γmax=0

1

σ2
f0

γN−1
max

N
∏

i=1

(

1

σ2
fi

+
1

σ2
gi

)

dγf0
dγmax

≤
µl

σ2
f0

µN
l−k

N
∏

i=1

(

1

σ2
fi

+
1

σ2
gi

)

, Ψ(l, k). (35)



Combining (5), (20), (29), (30), and (36), a closed-form upper-
bound for the outage probability after l HARQ round can be
obtained as

Pout(l) ≤

l−1
∑

k=1

Λ1(k)Ψ(l, k) +

L
∑

k=l

Λ2(l)

(

1 − e

−µl
σ2

f0

)

. (36)

Furthermore, using (16), and (17), another closed-form
approximation for Pout(l) can be obtained as

Pout(l) ≈

l−1
∑

k=1

Ω1(k)Ψ(l, k) +

L
∑

k=l

Ω2(l)

(

1 − e

−µl
σ2

f0

)

. (37)

Proposition 2: Assuming a HARQ system with N poten-
tial relays nodes, the relay selection strategy based on (4) can
achieve the full diversity order of N + 1.

Proof: From a Taylor series expansion, it can be shown
that the first term in (36) is O(1/ρ2N+1). From (36), and by
representing the factor µk in terms of the SNR ratio ρ, the
outage probability in high SNR can be written as

Pout(l) ≤
∆(l)

ρN+1
, (38)

where

∆(l) =
(

2
R
l − 1

)(

2
R

l−1 − 1
)N L − l + 1

σ2
f0

N
∏

i=1

(

1

σ2
fi

+
1

σ2
gi

)

.

Hence, observing (38), the diversity order defined in (33) is
equal to N + 1, which is the full spatial diversity for N + 1
transmitting nodes.

IV. NUMERICAL ANALYSIS

In this section, the performance of the proposed relay-
selection HARQ system is studied through numerical results.
We used the equal power allocation among the source and
the selected relay. Assume the relays and the destination have
the same value of noise power, and all the links have unit-
variance Rayleigh flat fading, i.e., σ2

fi
= σ2

gi
= σ2

f0
= 1. It

is also assumed that rate R is normalized to 1. We compare
the transmit SNR P

N0
versus outage probability performance.

The block fading model is used, in which channel coefficients
changed randomly in time to isolate the benefits of spatial
diversity. The simulation result is averaged over 3’000’000
transmitted symbols (channel realization trials).

Fig. 2 confirms that the analytical results attained in Sec-
tion III for the outage probability have an accurate perfor-
mance as the simulation results. We consider the maximum
number of HARQ rounds to be L = 5. The outage probability
at the 2nd HARQ round, i.e., Pout(l = 2), is compared for
two different number of relays N = 2, 4. One can see the
approximate outage probability derived in (23) has the similar
performance as the simulated curved for all values of SNR. In
addition, the closed-form outage probability expression in (37)
well approximates the simulated results, especially in medium
and high SNR conditions. Furthermore, Fig. 2 shows that the
upper-bound expression in (36) is a tight upper-bound.
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Fig. 2. The outage probability curves of delay-limited HARQ networks
employing opportunistic relaying with 2 and 4 relays, when R = 1, l = 2,
and L = 5.
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