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Abstract 

On-line sensor monitoring aims at detecting anomalies in sensors and reconstructing their correct signals during operation. 
The techniques used for signal reconstruction are commonly based on auto-associative regression models. In full scale 
implementations however, the number of sensors to be monitored is often too large to be handled effectively by a single 
reconstruction model. In this paper we propose to tackle the problem by resorting to a pool (ensemble) of reconstruction 
models, each one handling an individual group of signals. This approach involves two main technical steps: firstly, a 
procedure for constructing signal groups, and secondly a procedure for combining the outputs of the reconstruction models 
associated to the groups. For the signal grouping step, a wrapper optimization search is proposed to identify the optimal 
number of groups in the ensemble and the size of the groups. For the model output aggregation step, a simple arithmetic 
average is adopted. Ensemble accuracy and robustness is achieved by promoting diversity between the signal groups 
through the use of the Random Feature Selection Ensemble (RFSE) technique in combination with the Bootstrapping 
AGGregatING (BAGGING) technique for training data selection. The individual reconstruction models are based on 
Principal Components Analysis (PCA). The proposed approach has been applied to a real case study concerning 215 
signals monitored at a Finnish nuclear pressurized water reactor. The results obtained have been compared with those 
achieved by an equivalent ensemble of models based on a grouping directly optimized by a Multi-Objective Genetic 
Algorithm (MOGA). 
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1. Introduction 

Sensors contribute to the safe and efficient operation of modern plants by conveying information on the plant state to the 
automated controls and the operators. To avoid misleading information which may lead to unsafe and/or inefficient states 
of operation, it is important to detect sensor malfunctions and possibly reconstruct the incorrect signals. This requires 
monitoring the sensor performance and has the potential benefits of reducing unnecessary sensor maintenance and 
increasing confidence in the recorded values of the monitored parameters, with important consequences on system 
operation, production and accident management [1, 2]. 

The problem of validating the signals recorded by sensors can be tackled by means of empirical models based on fuzzy 
logic [3, 4] and neural networks [5, 6]. In particular, auto-associative models have been applied to the validation of nuclear 
signals [7-9]. Nevertheless, the single-model approaches typically used for signal validation can only handle a limited 
number of signals whereas practical applications often deal with a very large number of signals [1, 2].  

In this work, a procedure is proposed for the reconstruction of signals coming from faulty sensors among a large set. The 
procedure is tailored for realistic applications where the number of measured signals is too large to be handled effectively 
by a single reconstruction model [2, 10-12]. The approach is based on the subdivision of the set of signals into overlapping 
groups, the development of a reconstruction model for each group of signals and the combination of the outcomes of the 
models within an ensemble approach [13-22] (Figure 1). 

An additional advantage of adopting ensembles of diverse models is an increased robustness of the ensemble-aggregated 
output [17, 21-26]. Indeed, the conjecture is that, when performing the ensemble signal reconstruction, if the signal 
predictions obtained by the individual models are diverse (e.g. the reconstruction errors are different in magnitude and 
sign), their opportune aggregation will provide a more accurate and robust signal reconstruction [23, 24, 26]. Theoretical 
studies have investigated the concept of diversity amongst the models of an ensemble [20-23, 25, 26] and the ways of 
appropriately aggregating the outcomes of the diverse models [19, 22, 25]. 





The selection of the signals to insert in each group should be driven by both the individual properties of the groups and the 
global properties of the ensemble. Properties individually related to a group are, for example, the mutual information 
content of the signals in the group and the reconstruction performances of the associated model [11, 12, 16]; global 
properties of the groups ensemble are, for example, the diversity among the groups and a good redundancy of the signals in 
the ensemble, i.e., an adequate number of diverse groups containing a same signal [2, 10, 17, 18]. 

Heuristic methods such as Multi-Objective Genetic Algorithms (MOGAs) [38] have proved effective in scanning the large 
search space of possible groups1 to optimize their individual properties, e.g. by maximizing the correlation of the signals in 
the groups [11, 16-18] and minimizing their reconstruction errors [12]. MOGA approaches have however shown some 
limitations in guaranteeing the mentioned global ensemble properties, e.g. diversity among the groups, adequate signal 
inclusion and redundancy, at the basis of the optimality and robustness of the performance of the ensemble [18]. 
Furthermore, the high computational cost required to run a MOGA search renders the method unfeasible for large-scale 
applications involving thousands of signals.  

In this work, the RFSE technique is exploited to ensure good global ensemble properties of group diversity, signal 
coverage, and redundancy. The group size parameters, i.e. the number of signals in the groups and the number of groups in 
the ensemble, are determined by means of a wrapper search aimed at maximizing the ensemble performance in terms of 
minimum reconstruction error. PCA signal reconstruction models are trained on data sets constructed by BAGGING to 
inject further diversity in the models themselves. 

3. The randomized wrapper approach to signal grouping 

As previously stated, high diversity in the ensemble of models is beneficial to its performance of signal reconstruction. To 
this aim, in this work diversity is imposed onto the PCA models by randomizing the features of the groups upon which they 
are built with the RFSE technique [27] and the data upon which they are trained with the BAGGING technique [23, 24, 
27]. Optimization of the group size m  and ensemble size K , is also carried out to improve the performance of the 
ensemble. 

3.1 Injecting and verifying (input) diversity in the signal groups by RFSE 

The RFSE technique consists in randomly sampling, with replacement, from the n  available signals K  subsets kF , 
1,2,...,k K� , each constituted by m  signals. This guarantees high signal diversity in the groups upon which the PCA 

models are built and provides a much faster construction of the signal groups compared to the optimality-driven searches, 
e.g. MOGA-based [17, 18]). Indeed, RFSE is a completely random technique in which no optimization of the composition 
of the individual groups is sought, i.e. no relevance is given, for example, to the correlation between the signals in the 
groups (as in the filter MOGA search presented in [11, 16-18]) or to their capability of efficiently reconstructing one 
another (as in the wrapper MOGA search presented in [12]). The coverage of all the signals is not a priori guaranteed by 
the random nature of the RFSE approach itself; nevertheless, since the probability that a signal does not appear in any 
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, a reasonable choice of the values of the ensemble parameters m  and K  can in practice guarantee 

coverage of all the signals in the ensemble with adequate redundancy, as shown in Section 4.  

As previously mentioned, an optimal signal grouping structure should ensure on one side a good signal redundancy in the 
groups (i.e., for any signal there is a suitable number of groups containing it) but, on the other side, a diverse composition 
of the groups in terms of the signals contained. In other words, the groups must partially overlap (in order to have each 
signal included in more than one group), while being sufficiently diverse among each other. 

An empirical measure is here proposed to verify the diversity injected by the RFSE in the resulting ensemble grouping 
structure in terms of the diversity in the signal composition of the different groups (the so-called input diversity). Let us 
consider a generic ensemble of K  groups with different sizes km , Kk ,...,2,1� . The pairwise diversity between two 
generic groups 1k  and 2k  of sizes 

1km and 
2km , respectively, is computed as: 

                                                 
1 Considering n  signals, the number of possible groups of different sizes nm ,...,2,1�  that can be generated is equal to 
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3.2 Injecting diversity in the training data sets through BAGGING 

Further diversity can be injected in the ensemble of models by training them on different data sets. In this work, this is 
achieved by the BAGGING technique which has proved successful in many applications [23, 27]. 

First of all, the data set X  of N  patterns available is partitioned into a training set XTRN  (made of TRNN  patterns) and a 
test set XTST  (made of TSTN  patterns). The former is used to train the individual models, whereas the latter is used to 
verify the ensemble performance in the reconstruction task.  

In general, BAGGING amounts to generating a number BN  of bootstrapped replicates hB
trn

,X , BNh ,...,2,1�  of the training 

set trnX  by randomly sampling (with replacement) for each replicate a fraction �� �@1,0�•B�T  of the total number of training 
patterns trnN . If the fraction B�T  is large, the individual BAGGING training sets overlap significantly and the probability 
of not including a training pattern in any of the BAGGING training sets is very small, so that all the training patterns are 
likely to appear in at least one BAGGING training set and some patterns will appear multiple times in a given set; instead, 
if the fraction is small, some BAGGING training sets can be completely disjoint and some training patterns might not 
appear in any BAGGING training set. 

3.3 Verifying (output) diversity in the ensemble of models 

Figure 3 illustrates the combination of the RFSE and BAGGING techniques to inject diversity in the ensemble. As a result 
of the RFSE, K  signal-diverse groups are identified, upon which K  PCA models are constructed; BAGGING then 
proceeds to sampling (with replacement) a number BN K�  of different training sets kB

trn
,X , 1,2,...,k K� , each constituted 

by a fraction B�T  (equal for all the BAGGING subsets) of the original number of training patterns trnN , i.e.  B
trn B trnN N�T� ; 

finally, the generic k -th model based on the signals of group k , randomly selected by RFSE, is trained with the set of data 
kB

trn
,X , randomly sampled by BAGGING, for 1,2,...,k K� . 

 

Figure 3. Combined scheme of the RFSE and BAGGING techniques to inject diversity in the ensemble 

The total amount of diversity injected in the ensemble, hereby called output diversity, is the result of the combination of the 
RFSE and BAGGING randomizations.  
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The optK  groups, each one constituted by optm  signals, are then generated resorting to the RFSE technique and the 

corresponding PCA-based reconstruction models are BAGGING-trained. 

Figure 5 sketches the scheme of the overall algorithm for devising and verifying the ensemble of models for signal 
reconstruction. 

 

Figure 5. Sketch of the ensemble algorithm for signal reconstruction 

3.5 Combination of the outcomes of the models in the ensemble 

The combination of the outcomes of the ensemble of models is performed by simple averaging [13, 22, 23]. This way of 
combining the models outputs can be seen as an extension to a regression problem of the Simple Voting (SV) technique 
adopted in classification problems to combine the class assignments of the single classifiers constituting the ensemble [14, 
28].  

When the TSTN  patterns of the test set are fed in input to the generic k -th PCA model, based on the optm  signals of group 

k  and trained on the B
TRNN  BAGGED patterns, this gives in output the predictions �Ö( )k

if t , 1,2,..., TSTt N� , optmi ,...,2,1� 

. The ensemble reconstruction of the TSTN  patterns of the generic i -th signal, �Ö( )E
if t , 1,2,..., TSTt N� , 1,2,...,i n� , is then 

obtained by averaging of the predictions �Ö( )k
if t  of the iK  groups including signal i : 
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To evaluate the ensemble performance, first the absolute signal reconstruction error is computed as3: 

                                                 
3 In the application that follows, each signal of the validation set has been previously normalized in the range [0.2, 1], for 
convenience. 
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Table 1. Pre-defined, desired values for optR , corresponding ensemble sizes optK  and actual redundancies R . 

The results of the joint optimization of optK  and B�T  are reported in Figure 7 in terms of ensemble accuracy, i.e. 

reconstruction errors on undisturbed signals (top graph), and robustness, i.e. reconstruction errors on disturbed signals 
(bottom graph). 

 

Figure 7. Results of the joint optimization for determining the optimal ensemble size optK  and bagging fraction B�T  in case 

of undisturbed (top graph) and disturbed (bottom graph) signals. 

Concerning the ensemble size, in general, high signal redundancy and, correspondingly, large numbers of groups guarantee 
better accuracy and robustness. Nevertheless, using a large number of groups in the ensemble leads to a considerable 
increase in the computational cost of training and testing the models, with only a slight improvement of the ensemble 
performances.  

Indeed, the error scales are small (especially for the undisturbed signals,) and the error bars (which have not been inserted 
for visual clarity) are superposed. Nevertheless, from an operative point of view, a decision on how many groups to use 
and which bagging fraction to adopt must be made. For this reason, 25� optR  is the value chosen for the desired signal 

redundancy and, correspondingly, 142� optK  is the fixed ensemble size. This choice allows having good ensemble 

performances with a low computational cost and furthermore it allows having an honest comparison with the genetic 
algorithm-based optimized grouping [18] which is presented in Section 4.4. 

Concerning the BAGGING procedure, in general the results show that injecting diversity by training the models on 
different data sets improves the ensemble performances. Furthermore, the reconstruction errors decrease (especially for 
disturbed signals) if the fraction of sampled training patterns B

trnN  in the bagging training sets becomes smaller. In fact, by 
so doing, many BAGGING training sets are completely disjoint and therefore highly diverse.  

The minimum reconstruction error is obtained for 1.0� B�T  in the case of undisturbed signals and 02.0� B�T  in the case of 
disturbed data. The remarkable decrease of the ensemble error on the disturbed signals when choosing 02.0� B�T  instead 
of 1.0� B�T  leads us to retain 02.0� B�T  as the optimal fraction, despite a slight worsening of the ensemble performances 







Enhancing input diversity with the RFSE approach improves the robustness of the ensemble on disturbed signals ( *E�K , 

Figure 9) and corresponds to an increase of the output diversity on disturbed signals ( *
out�G , Figure 10). Nevertheless, the 

output diversity on undisturbed signals ( out�G , Figure 10) of the RFSE groups without BAGGING is lower and 

correspondingly the performance is worse ( E�K , Figure 9). This performance degradation can be explained by the fact that, 
while in the MOGA the signals in the groups are selected based on their mutual correlation (a characteristic conjectured to 
be related to their capability of regressing one another [11, 12, 16-18]), the signals in the RFSE groups are randomly 
selected regardless of their mutual correlation or any other criterion for optimizing their reconstruction capabilities. 

The robustness of both RFSE and MOGA ensembles ( *E�K , Figure 9) is considerably improved when BAGGING is 

applied as indicated by the increase of the corresponding ensemble output diversities on disturbed signals ( *
out�G , Figure 

10).  Nevertheless, when performing BAGGING on the RFSE ensemble, the increase of the output diversity on undisturbed 
signals ( out�G , Figure 10) is not followed by an increase on the reconstruction performances on undisturbed data ( E�K , 
Figure 9). In general, performing BAGGING degrades the model accuracy in reconstructing undisturbed signals.  

Finally, notice that BAGGING slightly contributes to RFSE at increasing the undisturbed error E�K , whereas the effect on 
E�K  due to RFSE is more evident when comparing RFSE with MOGA. This means that too much diversity randomly 

introduced in the groups does not improve the capability of reconstructing undisturbed signals, which instead comes from 
having highly correlated signals (as in the MOGA groups); on the other hand, a robust signal reconstruction in case of 
disturbances is due to high models diversity (as in the RFSE and MOGA approaches with BAGGING). 

The robustness of the RFSE and MOGA ensembles has been then specifically tested for comparison on the reconstruction 
of faulty signals in case of multiple sensor failures. Ten signals have been chosen as objects of the analysis. 
Approximately, the first half of the signals has been left undisturbed as in the normal operation, while, in order to simulate 
a sensor failure, a linear drift decreasing the values of the signals up to 25% of their real values has been introduced in the 
remaining test values. The validation set has been linearly divided into training and test only once, i.e. without cross-
validation. 

Figure 11 shows the results of the reconstruction of signal 214 (electrical power) obtained by the RFSE and the MOGA 
approaches both trained with BAGGING procedure ( 0.02B�T � ). When the signal is undisturbed the highly correlated 
signals of the (less diverse) MOGA groups allow for a more accurate reconstruction, whereas as soon as the drift begins the 
more diverse RFSE groups are capable of providing a more robust signal reconstruction. 

Finally, in order to give an overview of the advantages and limitations of the two approaches, Table 2 summarizes the 
characteristics of the signal grouping structure and the ensemble reconstruction performances obtained by the RFSE and 
MOGA approaches, respectively.  



 

Figure 9. Comparison of the MOGA and RFSE approaches to signal grouping in terms of the ensemble reconstruction 
errors on undisturbed ( E�K ) and disturbed ( *E�K ) signals, with and without performing BAGGING 

 

Figure 10. Comparison of the MOGA and RFSE approaches to signal grouping in terms of the ensemble output diversity 
measured when regressing undisturbed ( out�G ) and disturbed ( *

out�G ) signals, with and without performing BAGGING 



 

Figure 11. RFSE (dots) and MOGA (stars) ensemble reconstruction of signal 214 (light line) when partly affected by a 
linear drift (dark line) 
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so that titi fX � , miNt ,...,2,1 ,,...,2,1 � � , is the i -th component of tf  in the original basis. 

Let mmm �ƒ�•�{   ),(P  be a matrix constituted by m  orthonormal column vectors mimi ,...,2,1 ),1,( � �{p  built from the 
data set X  according to an optimality criterion to be defined later and representing an orthonormal basis for the data set: 
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so that mjmipP ijij ,...,2,1 ,,...,2,1 , � � �  is the j -th component of ip  in the original basis and, for the orthonormality of 

the basis vectors, ijj
T
i �G� � p̃p  or m

T IPP � �˜ , where mI  is the unit matrix of order m . 

In the orthonormal basis, let tiu  be the component of tf  along T
ip , so that 
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where Ntmt ,...,2,1 ),,1( � �{u , is the t -th m-dimensional pattern constituted by the m  signal values at time t  in the 
orthonormal basis. 

Right multiplying Eq. (A4) by P  yields,  

Pfu �˜� tt            (A5) 

and in matrix form 

 PXU �˜�            (A6) 

where ),( mN�{U  is the matrix whose N  rows ),1( mt �{u  are the coordinates of tf , Nt ,...,2,1� , in the orthonormal 
basis. 

The data set has now two representations: when intended in the original basis, the t -th pattern is the vector tf  with 
components tif ; when intended in the orthonormal P  basis, the same t -th pattern is a vector tu  with component tiu  
along ip . In this view, once the orthonormal P  basis has been fixed, Eq. (A5) provides tu  as a function of tf . To get the 

inverse relation, we right multiply by TP  and we obtain the data set X  in the original basis, viz.: 
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In this view, Eqs. (A6) and (A7) represent the transformation laws of the observation patterns X  between the original 
reference system and the orthonormal basis. Notice that up to this point the equations are exact and the data values are 
transformed in both senses without any loss of information. 



The PCA approximation consists in mapping the observation vectors tf  in a subspace m�ƒ�•�ƒ�O  identified by m���O  
vectors chosen according to a criterion explained later among the mii ,...,2,1 , � p .  

Without loss of generality, assume that the basis vectors are ordered in such a way that the selected �O vectors are the first 
ones in P , i.e. �� ���Oppp  ...  21 . Correspondingly, the matrices P  and U  are partitioned as follows: 

 �� ���O�O ��� mPPP   and �� ���O�O ��� mUUU   

where �� ���O�O ,m�{P  and �� ���O�O ,N�{U  are the submatrices constituted by the first �O columns of P  and U , respectively, 
and �� ���O�O ���{�� mmm ,P  and �� ���O�O ���{�� mNm ,U  are the submatrices constituted by the last �O��m  columns of P  and U , 

respectively. The column vectors in �OP  and �O��mP  constitute the bases of the two mutually orthogonal subspaces �O�ƒ  and 
�O���ƒm  in which m�ƒ  has been divided. In terms of the above submatrices, Eq. (A7) can be rewritten as: 
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where we define X  as: 
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The t -th row of X , namely tf
~

, is the orthonormal projection of tf  onto �O�ƒ  and then it may be expressed by as a linear 
combination of the vectors of the �OP  basis, viz.: 
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and 
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is the j -th component, mj ,...,2,1� , of tf
~

 in the original basis in m�ƒ  expressed through the components tiu  and ijp , 

�O,...,2,1� i  of  tu  and jp  in �O�ƒ . 

If all the information about the data set X  essentially lies in a �O-dimensional space �O�ƒ  (apart from small components in 
�O���ƒm  given by T

mm �O�O ���� � P̃U  as stated in Eq. A8), then the data analysis can be performed in �O�ƒ  reducing the dimension 

of the data set to handle by a factor m/�O . To this aim, each observation vector m
t �ƒ�•f  is approximated by its 

orthonormal projection �O�ƒ�•tf
~

 plus a residual vector in �O���ƒm  which is postulated to be independent of t , viz., 
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The best residual vector is that one which, on the average, minimizes the absolute value of the square error between the 
real �^ �`tf  and approximated �^ �`appx

tf
~

 data patterns, i.e.: 
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By combining Eqs. (A4), (A10) and (A12), the error between the two vectors can be written as: 
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and 
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The expression for the error becomes then, 
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The best constants are those that minimize the error and are determined by the conditions 
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Since the constants ib , mi ,...,1��� �O , do not depend on t , using Eq. (A4) we can write, 
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where the vector f  is the arithmetic average of the observation vectors, i.e. the average value of the signals. In particular, 
the i -th component of f  is the arithmetic average of the i -th column of X . 

Then, from Eq. (A12), the expression for the PCA approximation of the data pattern tf  is given by: 

 �¦
��� 

�˜��� 
m

i

T
iit

appx
t

1

~~

�O

ppfff     (A19) 

or in matrix form, 
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Coming to the problem of model learning, the Principal Components Analysis exploits the information in the m -
dimensional data set to generate an orthonormal basis P  in m�ƒ  constituted by m  eigenvectors. These represent the result 
of the learning phase of the PCA model.  

In this respect, let V  be the covariance matrix of the data set. The problem to tackle at this point is how to choose an 
orthonormal basis P  in m�ƒ  and how to select among the m  columns ip  of P  the �O vectors which constitute the basis of 

�O�ƒ . As demonstrated and explained in details in [28, 29, 39], by substituting Eqs. (A4) and (A18) into Eq. (A16), we can 
write the minimum error corresponding to the coefficients ib , mi ,...,1��� �O , as: 
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where V  represents the covariance matrix of X  eventually positive definite (so that its eigenvalues are real and positive) 
[28] and can be written as, 
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In order to find the �O vectors which will constitute �OP , let us minimize minE  with respect to �O��mP  by resorting to the 
Lagrange multiplier approach [28]. The purpose is to find those �O��m  vectors which minimize minE  subject to the 
constraint of being orthonormal. The Lagrange function in terms of the submatrix �O��mP  can be written as: 
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where �� ���� ���O�O�O �����{�� mmm��  is the matrix of the Lagrange coefficients, namely ij�/ , and �O��mI  is the unit matrix of order 

�O��m . 

Differentiating L  with respect to �O��mP  and setting to zero the result we obtain [28]: 

 �O�O�O ������ �˜� �˜ mmm ��PPV     (A24) 

One solution to this equation is to choose �O��m��  to be diagonal, i.e. �� �� ijiijm �G�O �˜� �� ���� , so that the columns of �O��mP  are 

the eigenvectors of V  corresponding to the eigenvalues mii ,...,1 , ��� �/ �O . Notice that since the eigenvalues have been 
supposed simple, the eigenvectors are orthogonal and may be normalized.   

By substituting (A24) into (A23) we obtain that the required minimum of the Lagrangian is 
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In principle, any set of �O��m  eigenvectors can constitute the orthonormal basis in �O���ƒm , but from Eq. (A25) it appears 
that the best choice is to select the smallest �O��m  eigenvalues among the m  possible eigenvalues in V . To this aim, we 
rank the m  eigenvalues in decreasing order so that 

 m�/�!�!�/�!�/ ...21  

The eigenvectors are correspondingly ranked and we choose for the basis �OP  of �O�ƒ  the first �O eigenvectors and for the 

basis �O��mP  of �O���ƒm  the remaining �O��m  ones. The amount of information lost by considering appxX
~  instead of X  may 

be quantified for the individual observations by the differences appx
tt ff

~
��  or globally by the fraction of neglected 

eigenvalues, namely �¦
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Finally, coming to the problem of signal validation and reconstruction by means of a PCA-based model, in order to 
simplify the calculations, the time trends of the signals have been previously normalized so that their mean is zero and their 
standard deviation equals 1. This allows to skip the computation of the residuals, since 0f �  and, according to Eq. (A19), 

t
appx

t ff
~~

� .  

Furthermore, coming to the problem of using the PCA as a signal reconstruction model, for each group k  constituted by 

km  signals, the eigenvectors constituting the orthonormal basis �OP , have been obtained by Eq. (A24) from the covariance 
matrix V  of the pairwise signal correlations between the km  signals in the group. 

 


