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Abstract: The health state of an electrical cable may be difficult to know, without de-

structive or very expensive tests. To overcome this, Partial Discharge (PD) measurements 

have been proposed as a relatively economic and simple-to-apply experimental technique 

for retrieving information on the health state of an electrical cable. The retrieval is based 

on a relationship between PD measurements and the health state of the cable. Given the 

difficulties in capturing such relationship by analytical models, empirical modeling tech-

niques based on experimental data have been propounded. In this view, a set of PD mea-

surements have been collected by Enea Ricerca sul Sistema Elettrico-ERSE during past 

campaigns, for building a diagnostic system of electrical cable health state. These experi-

mental data may contain contradictory information which remarkably reduce the perfor-

mance of the state classifier, if not a priori identified and possibly corrected. In the present 

paper, a novel technique based on the Adaboost algorithm is proposed for identifying con-

tradictory PD patterns within an a priori analysis aimed at improving the diagnostic per-

formance. Adaboost is a bootstrap-inspired, ensemble-based algorithm which has been ef-

fectively used for addressing classification problems. 

 

1. Introduction 

A correct diagnosis of the state of electrical equipment is fundamental for the effective 

management of power networks since it allows reliable estimation of times to failure and 

optimal maintenance planning. However, the state of components such as electrical cables 

may be difficult to diagnose unless destructive or very expensive tests are used. To over-

come this, attempts have been made to modeling the relationship between informative, 

non-destructive measurements of equipment operation and the related state. Given the dif-

ficulties of doing this with analytical models, empirical classification techniques based on 

experimental data are preferred for the estimation of the mapping function between the 

observed parameters and the discrete set of predefined classes representing health states. 

The estimate of the function (mathematically also referred to as hypothesis) is determined 

on the basis of a set of observations for which the corresponding classes are known (these 

data compose the so called training set) and is then used for classifying new observations 

(usually referred to as test patterns). 

In this work, Partial Discharge (PD) measurements are considered as indicators of lo-

calized defects in electrical cables. During past experimental campaigns, Enea Ricerca sul 

Sistema Elettrico (ERSE) has built a database containing the values of the PD measure-

ments and the corresponding health state of the cable. This database contains thousands of 

PD patterns recorded by a software tool that processes the PD measurements when these 



are performed and classified by experts on the basis of both their experience and ERSE 

guidelines; for a small number (43) of them, the classification of the degradation state is 

guaranteed based on visual inspection. This is, in fact, a very expensive task which can be 

performed only occasionally since it entails the extraction of the cable from the ground 

and it implies the unavailability of the corresponding electrical line for several hours. 

Based on these observed data, an empirical classifier can be developed for relating the 

PD measurements (input) with the health state of the cable (output, categorized into two 

classes: „Bad‟ and „Good‟). 

On the other hand, errors can occur in data collection, when processing data (e.g., tran-

scribing, transmission, omission errors, etc. [11]), when acquiring measurements (e.g., bad 

sensors, operator errors, data transferring errors etc.), when handling databases, etc. Any 

erroneous data could undermine the informational content of a database and recorded in-

coherent patterns could bias the mapping function created by training the classification al-

gorithm, thus affecting its performance.  

Incoherence in the present work is considered due to two main sources: 

1. In some cases, information relevant for cable classification is missing. This 

leads to the fact that, without knowledge of the missing information, it is 

possible that two input patterns with the same values can be associated to 

both „Good‟ and „Bad‟ cables in the dataset. For example, in the real dataset 

object of the analysis of the case study of Section 4, the information regard-

ing the insulation material of the tested cables has not been reported in the da-

tabase, although it is relevant for cable classification since it influences the 

sensitivity of the cable to the discharges. Figure 1 gives a sketch of this type 

of incoherence. For the sake of simplicity, a mono-dimensional input space is 

considered that is, a generic parameter representative of the PD measurement 

is reported in abscissa in arbitrary units. For representation purposes, it is also 

assumed that cables whose insulation material is oil-paper are characterized 

by a value of the parameter smaller than a threshold (square marker in Figure 

1) in case they are of class „Good‟ (crosses), and larger in case they are of 

class „Bad‟ (circles). If all the empirical patterns available were from oil-

paper cables, it would be possible to build a classifier specific for this family 

of cables. However, ERSE experts believe that there are few patterns in the 

database that refer to cables whose insulation material is Cross Linked Poly-

Ethylene (XLPE) or Ethylene Propylene Rubber (EPR). These families of 

cables are characterized by different relationships between the input parame-

ters and the class; in the example of Figure 1, this situation is represented by 

assuming that the threshold that distinguishes between “Good” and “Bad” 

cables has a lower value than in the case of oil-paper cables. Notice that if the 

information regarding the insulation material is not reported, then the PD pat-

terns of XLPE and EPR cables are assumed to be „oil-paper‟ and thus may re-

sult as incoherent: Figure 1 shows that this situation of missing information 

results in the projection of patterns at different ordinates (missing informa-

tion) on the ordinate of the oil-paper with the consequent introduction of 

some incoherent patterns. 

2.  There are degradation mechanisms that are not reflected in the PD measure-

ments, i.e., some cable defects cannot be diagnosed using PD measurements, 



but require other investigation techniques. This results in the presence in the 

database of cables classified as „Bad‟ on the basis of visual inspection, al-

though the obtained PD measurements do not reveal any local defect and thus 

are typical of “Good” cables. 

 
Figure 1: Example of Source of Incoherent Patterns. 

 

Both situations described above relate to missing information in the database, i.e., va-

riables related to the PD measurements which are available at the moment of the test but 

not recorded (case 1) or values of signals different from those measured in the experimen-

tal tests (case 2). The lack of such information renders some patterns of the dataset inco-

herent and contradictory, in the sense that identical or very similar values of the input sig-

nals are associated to different classes. The contradictory patterns in the dataset are 

obviously harmful for the development of empirical models that are trained on the basis of 

input-output data. 

The objective of the present work is to propose a methodology (based on the Adaboost 

technique [4]) which allows identifying the contradictory patterns in a dataset, so that they 

can be eliminated or corrected before use for training of the classifier. In the example of 

Figure 1, the EPR and XLPE contradictory patterns would be identified and removed from 

the dataset, thereby allowing the development of a classifier of oil-paper cables. 

It seems worth emphasizing that the problem here tackled differs from that of develop-

ing and using empirical classifiers in case of datasets containing missing or corrupted val-

ues, which has been largely discussed in the literature ([1], [9], [10]). Approaches to these 

“missing feature/missing data problems” exist, which involve estimating the values of the 

missing data by exploiting the presence of some patterns complete with measurements of 

the signals missing in other patterns. On the contrary, in the problem of interest in this 

work, measurements of the missing signals are not available in any pattern of the dataset, 

so that it is not possible to empirically infer them from available complete patterns. Thus, 

the solution inevitably adopted entails the removal from the dataset of the patterns that 

cannot be univocally classified, due to the missing information. This cleaning of the data-

set is expected to improve the performance of the algorithm in the diagnosis of the health 



state of those cables which can be coherently classified on the basis of the available in-

formation.  

The paper is organized as follows: in Section 2, a brief outline on the characteristics of 

PD measurements is provided; in Section 3, the key ideas underlying the Adaboost tech-

nique are explained, and a description of the proposed methodology for the identification 

of the anomalous PD patterns is provided. In Section 4, the methodology is applied on the 

available PD measurement dataset. Finally, Section 5 concludes the paper with some con-

siderations. 

2     PD Measurement 

The PD measurement is acquired through an off-line process. First, the cable under in-

spection is de-energized and disconnected from any source or load from all terminals. The 

PD measurement system, equipped with its own generator, is then connected to energize 

the cable with damped oscillatory voltages of frequency in the range 150 to 250Hz. In 

terms of signal acquisition, the system captures the high frequency signal generated by the 

partial discharges activity and conveys it to a signal conditioner unit through the coupling 

capacitor. The signal conditioner reduces the overall bandwidth of the acquired wave and 

amplifies it, thus enhancing its signal-to-noise ratio. 

Schematically, the PD measurement is performed in three successive phases corres-

ponding to three energizing voltage levels; in the first phase, the PD inception voltage Ui 

(i.e., the voltage value at which the PDs start) is reached through a stepwise or continuous 

increase of the voltage applied to the cable; at this voltage level, the following two para-

meters are collected: the PD value, i.e. the value of the discharge expressed in pC and the 

dispersion index, i.e. the length of the cable in which the discharge activity is localized.  

In the following two phases, the cable is tested at the nominal voltage level U0 and the 

maximum voltage value Umax, respectively, and the values of the above two parameters 

are measured. For convenience of data manipulation, the values of Ui, U0 and Umax are 

normalized with respect to U0.  

The three triplets of values (normalized voltage level, PD value and dispersion index) 

corresponding to the three different values of voltage, constitute a pattern of 9 features in 

which the normalized nominal voltage value U0/U0 is always equal to 1; thus, this feature 

is non-discriminating and thus it is not considered in the diagnostic analysis. A PD mea-

surement pattern is then made up of 8 feature. 

During past campaigns, a set of 43 PD measurement patterns has been collected by 

ERSE. The dataset contains 16 patterns of class „Bad‟ and 27 patterns of class „Good‟. 

The classification of the health state (diagnosis) is based on visual inspections made by 

ERSE experts who extracted from the ground and cut up a cable section after acquiring 

the PD measurement patterns. For these 43 patterns, paper reports have been prepared by 

the experts, containing photos and further information about the tested cables and the elec-

trical line which they belong to. 

A first attempt to build a diagnostic system based on the ERSE dataset has been per-

formed by using the Adaboost algorithm [1]. Only 28 patterns of the ERSE database are 

correctly classified (65%). Such low classification performance of the diagnostic system 

can be considered as a symptom of the presence of contradictory patterns in the database 

used for building the classifier. 



3     Identification of Contradictory Patterns 

Let xk, k=1,…, n, be a pattern of an empirical dataset S. The information available for 

each pattern are the values of the f features and its class ck, i.e. xk=(x1k, x2k,…, xfk, ck), 

ck=1,2, …, Ω (in the present case study Ω=2). Let us assume that in the dataset S there are 

an unknown number nc of contradictory patterns, i.e. patterns of different classes with 

very similar input values. 

The methodology here proposed for the identification of the contradictory patterns is 

based on the assumption that for an empirical classification algorithm it is difficult to 

learn the relationships between the input signals and the class of the patterns in those 

zones of the input space characterized by the presence of contradictory patterns. 

Different types of classification algorithms give different warnings of their difficulties 

in learning the training dataset S. This Section investigates the behavior of the Adaboost 

classification approach in the case in which a dataset S containing contradictory patterns is 

used to train the classifiers. Section 3.1 summarizes the main concepts of the Adaboost al-

gorithm, whereas in Section 3.2 an indicator of the degree of contradictoriness of the pat-

terns is introduced. In Section 3.3, the capability of the proposed indicator in distinguish-

ing contradictory patterns is verified on artificial case studies and finally in Section 3.4 the 

performance of an empirical classifier trained on a dataset which does not contain the pat-

terns identified as contradictory is analyzed. Section 3.5 analyses the sensitivity of the 

performances of the proposed methodology to the main parameters which it depends on. 

3.1     Adaboost Algorithm 

Adaboost Algorithm is one of the most influential classification algorithms in recent 

history of computational intelligence [1]; in particular, it is one of the best known ensem-

ble-based algorithms. The underlying idea of ensemble algorithms is derived from daily 

life decision making: in the hope to making a more informed decision, a number of indi-

vidual opinions are usually sought and then opportunely weighted and combined to elabo-

rate the ultimate decision [1]. In the health state classification task of interest here, a num-

ber of diverse classifiers provide different mapping functions (corresponding to the 

opinions of the daily life example) whose combination may provide a superior mapping 

function than that provided by any single classifier. A fundamental issue for the success of 

an ensemble is the negative correlation of these classifiers, i.e., their capability of erring 

on different sub-regions of the input space [12]. In this respect, notice that only a negative 

correlated ensemble allows reducing the variance and increasing the confidence of the de-

cision with respect to a single classifier. In fact, there are random aspects in classification 

(due to training data, initializations, etc.) which may lead to substantially varying deci-

sions. Then, combining the outputs of several such classifiers can reduce the risk of an un-

fortunate selection of a poorly performing classifier.  

Effective ensemble-based classification algorithms have been recently developed by 

resorting to the bootstrap method. Bootstrapping [2] is a computer-intensive re-sampling 

method whose key idea is to treat the available dataset, S={x1,x2,…,xn}, as if it were the 

entire population and then to create an opportune number, B, of alternative versions of S 

(Sb*, b=1,2,..., B) by randomly sampling from it with replacement (i.e., every sample is re-

turned to S after sampling so that a particular data point could appear multiple times in a 

bootstrap sample). In the bootstrap-inspired ensemble-based classification algorithms, a 

number B of classifiers are generated by training with bootstrap samples Sb*. 

http://en.wikipedia.org/wiki/Resampling_(statistics)


The main characteristics of the Adaboost algorithm are suggested by its name which 

stands for Adaptive Boosting. It is a boosting algorithm: a sequence of B classifiers, Cb, 

b=1,2,…B, is created by training a classifier algorithm on different bootstrap samples Sb*, 

b=1,2,…, B. The probability mass distribution, Db={pb(1), pb(2),…, pb(n)}, whose generic 

element pb(k) gives the probability of drawing pattern xk from S in the bootstrap sample 

Sb*, is opportunely altered after building a classifier in order to ensure that more informa-

tive points are drawn into the next dataset used for building the successive classifier. In 

this sense, Adaboost is adaptive because it updates the distribution D such that after a 

classifier Cb is built, the subsequent classifier, Cb+1, pays more attention to training pat-

terns that were misclassified by Cb. In particular, if pattern xk is misclassified by the ge-

neric classifier Cb, then the probability pb+1 (k) that xk is drawn when building the next da-

ta training set (Sb+1
*
) is increased with respect to pb(k); on the contrary, sampling 

probabilities of the points correctly classified are reduced. In this way, the probability that 

Sb+1
* 

will contain a larger number of patterns xk increases and this gives the classifier Cb+1 

more chances to correctly classify xk. In case xk is again misclassified, then pb+2(k) will be 

further enhanced. The increasing behavior of the sampling probability associated to xk 

ends when a classifier that is able to correctly classify xk is built. In this way, subsequent 

classifiers are tweaked in favor of those patterns misclassified by previous classifiers and 

thus tend to have higher performance on these difficult patterns. 

The classifiers are then combined through weight majority voting to obtain the final 

classification. The voting weight of a classifier is strictly dependent on its performance: 

the larger the number of patterns of S correctly classified the larger its vote.  

With respect to the choice of the classification algorithm, weak learner algorithms cha-

racterized by a performance slightly more accurate than the random guessing are used 

within the Adaboost scheme. Typically, a weak learner is obtained by applying a short 

training session to empirical algorithms such as Neural Networks (NN), Multi-Layer Per-

ceptron (MLP), Radial Basis Function (RBF), naïve Bayesian decision trees and k-Nearest 

Neighbors (KNN) [13]. In this work, the Evolutionary Fuzzy C-Means (EFCM, see [7]) 

has been considered as base classifier of the Adaboost algorithm. The use of this algo-

rithm in combination with the Adaboost scheme is a novelty. EFCM is a supervised clas-

sification algorithm that uses the knowledge of the class of the patterns for finding for 

each class an optimal Mahalanobis metric that defines a geometric cluster as close as 

possible to the a priori known class. The Mahalanobis metrics are defined by the matrices 

whose elements are identified by the supervised evolutionary algorithm so as to minimize 

the distances between the patterns of each class and the center (also referred to as cluster 

prototype) of the corresponding cluster. Since the EFCM iteratively searches for an op-

timal Mahalanobis, it is possible to obtain a weak learner classifier characterized by a 

short training time by reducing the number of iteration performed during the search. 

More details about the Adaboost algorithm and its pseudo-code are given in Appendix 

2, whereas further details on the EFCM algorithm can be found in [7] and [8]. 

3.2     Degree of Contradictoriness 

Within an Adaboost classification approach, contradictory patterns are expected to be 

among the patterns that are misclassified by the ensemble classifiers and thus with an as-

sociated high value of the probability mass functions pb(k), b=1, 2,…, B. The idea is thus 



to consider as indicator of the degree of contradictoriness of pattern xk, k=1, 2,…, n, the 

quantity:  
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  (1) 

Given the updating dynamics of the distribution D, a pattern xk which is correctly clas-

sified by all classifiers Cb, b=1,…,B, is associated to low values of pb(k), b=1,…,B. On the 

contrary, the probability masses pb(k) associated to patterns which are difficult to be clas-

sified have the oscillating behavior described in Section 3.1; thus, the mean value wk of 

the probability masses associated to these patterns tends to be larger: the contradictory 

patterns of S are then expected to occupy the first positions of the ranking of the values 

w1, w2,…,wn.  

3.3     Simulation Results 

The capability of the proposed indicator wk in identifying the contradictory patterns is 

firstly verified with respect to artificial datasets. The artificial dataset A considered is 

formed by n=43 patterns of 2 classes (16 of class “Bad” and 27 of class “Good”), in anal-

ogy to the PD measurement dataset. Patterns are randomly drawn from 3-dimensional 

Gaussian distributions whose centers and standard deviations are reported in Table 1. 

Three features instead of the 8 features of the PD dataset have been considered, in order to 

allow visualization. A dataset S containing nc contradictory patterns is obtained by ran-

domly selecting from A nc patterns that are associated to the wrong class, i.e., if the pat-

tern selected is classified as “Bad” in A, then it is forced to “Good” in S and vice-versa. 

The set of nc contradictory patterns will be called Sc. The number of nc=5 contradictory 

patterns (approximately 10% of the entire dataset) has been suggested by ERSE experts. 

In order to compute the degree of contradictoriness of the patterns, S has been used as 

training dataset for the Adaboost algorithm with a number of classifiers B=30. The com-

putational time required by the Adaboost algorithm has been of about 15 minutes, on an 

Intel Centrino
® 

CPU, 1.20 GHz, with 1GB RAM. Since the identification of the outliers 

using the Adaboost algorithm is performed off-line before the development of the final 

classification, the computational time is acceptable. 

Table 1: Clusters Centers and Standard Deviations. 

 Bad Good 

Center [0.7 0.65 0.9] [-0.3 0.3 0.3] 

Std. Deviation [0.3 0.2 0.25] [0.7 0.25 0.25] 

Table 2: Methodology Performances. 

ni/nc Σ 

0.71 0.17 

 

Once the mean values of wk, k=1,2,..,n, of the degrees of contradictoriness of (Equa-

tion 1) have been computed, the contradictory patterns are identified by fixing a threshold 

value T for wk: all the nr patterns with wk larger than T form the set Ŝc={k |wk≥T } and are 

removed from the dataset. The threshold T has been defined by: 



VWT 

 

being W and V the mean and standard deviation of the vector {w1, w2,…, wn}, respective-

ly. In this way, the patterns with very high degrees of contradictoriness with respect to 

those of the other patterns of A are the most plausible candidates to be contradictory. 

In order to cross-validate the results, 50 different datasets randomly obtained from the 

Gaussian distribution of Table 1 have been generated. In each dataset, 5 contradictory pat-

terns have been randomly selected. Table 2 reports the mean fraction ni/nc of the contra-

dictory patterns correctly identified by the proposed criterion and the standard deviation σ 

of the 50 collected values of ni/nc. In practice, almost 70% of the contradictory patterns 

are correctly identified.  

To further delve into the proposed methodology, a detailed analysis of its application 

on one of the 50 considered Gaussian datasets is illustrated in details. Figure 2 shows the 

position of the patterns in the input space, the set Sc of the contradictory patterns and the 

set Ŝc of the patterns identified as contradictory by applying the selection criterion. This 

identifies 3 of the 5 contradictory patterns of Sc; the remaining 2 contradictory patterns of 

Sc which have not been identified are at the border between the classes „Good‟ and „Bad‟ 

in a zone of the input space with a low density of patterns. Thus, when training a classifi-

cation algorithm on these data, a mapping function which assigns these points to the class 

„Bad‟ could be built, as well as one which assigns them to the class „Good‟. Notice that, 

the considered criterion identifies as contradictory a pattern in the top right part of Figure 

3 which does not belong to Sc but is close to a pattern of Sc. This pattern of Sc and some 

patterns of class „Good‟ that are in this zone of the input space are difficult to classify; the 

Adaboost algorithm tends to assign to them an high value of the probability pb(k) of being 

drawn in the bootstrap samples Sb*. Thus, the corresponding classifier Cb is forced to 

build a mapping function that assigns the class „Good‟ also to the neighbors of these pat-

terns that are „Bad‟ and thus tend to misclassify them; in the next iteration of the Adaboost 

algorithm, a larger value of pb+1(k) is assigned to the misclassified patterns with the con-

sequent oscillating behavior of the probabilities pb(k) associated to the patterns of this 

zone, which results in large values of the degree of contradictoriness. 

3.4     Developing a Classifier on Coherent Patterns Only 

For illustration purposes, it is assumed that errors are introduced when collecting data, 

so that the training datasets contain contradictory patterns; if no action of removing or cor-

recting the contradictory patterns is performed, then all the patterns are used to train the 

corresponding classifiers. In general, this results in building classifiers with low perfor-

mances since all the contradictory information concurs in creating biased mapping func-

tions.  

On the contrary, the methodology here proposed adjusts the given dataset by removing 

the nr patterns of the set Ŝc identified according to the selection criterion. In this respect, 

the evaluation of the performances of a classifier trained with the set S’ of the n-nr re-

maining patterns constitutes a useful tool to assess the effectiveness of the proposed me-



thodology. Since our objective is to develop an empirical classifier able to correctly classi-

fy the patterns that do not belong to contradictory zones of the training space, the perfor-

mance of the methodology is evaluated with respect to the ratio between the number r of 

non-contradictory patterns correctly classified and the total number of non-contradictory 

patterns (in the considered case study n-nc=43-5=38): 

                                                               nc-n

r
erfP   (2) 

 
Figure 2: Dataset S: „+‟ indicates patterns of class „Bad‟; „x‟ indicates patterns of class „Good‟; ◊ 

indicates contradictory patterns: when it contains a „+‟ marker, then it refers to patterns of class 

„Good‟ in A but of class „Bad‟ in S; on the contrary, when ◊ contains a „x‟ marker, then it refers to 

patterns of class „Bad‟ in A but of class „Good‟ in S. „Ο‟ indicates the patterns selected by the consi-

dered criterion. 

Notice that the classification of the contradictory patterns is not taken into account since 

the empirical model has not been trained with patterns in these zones of the input space. 

In order to cross-validate the results, this classification performance is computed in a LOO 

scheme. Basically, an a priori known non-contradictory pattern xk is omitted from the set 

S’ of the patterns considered by the criterion as non-contradictory; the remaining patterns 

of S’ are used to train a classifier which predicts (correctly or incorrectly) the class of the 

omitted instances xk. The process is repeated for all the a priori known non-contradictory 

instances in S’. 

For example, with reference to the dataset considered in Figure 2, the selection crite-

rion removes from the original dataset the nr=4 patterns with the circle marker so that the 

remaining set S’ contains the n-nr=39 points not marked by circles. Figure 3 shows the 

points of S’ in the input space. 

In the reference case of Figure 2 and Figure 3 ni=3, i.e., 3 contradictory patterns of Sc 

are in the removed group Ŝc, thus nc-ni=2 contradictory patterns of Sc are still among the 

39 patterns of S’ (diamond markers in Figure 3) and nr-ni=1 non-contradictory pattern 

does not belong to S’. In order to compute r in Equation 2, the following procedure is 

adopted: 



1) The (n-nr)-(nc-ni)=37 non-contradictory patterns of S’ (i.e., the number of patterns 

in S’ minus the number of patterns of Sc not removed from S) are tested in a LOO 

approach: one of these patterns is omitted from the training set, the classifier is 

built and the omitted pattern is classified. The process is repeated for all the 37 

non-contradictory patterns and the total number of correctly classified patterns 

gives r1. Figure 3 shows that there are 3 points misclassified (indicated by star 

markers). In this case r1 is equal to 34. 

A classifier is trained using all the patterns in S‟ and tested using the nr-ni =1 non-

contradictory pattern not belonging to S’; in general, r2 is given by the number of the nr-ni 

patterns correctly classified. In the reference dataset, there is only one point which is cor-

rectly classified so that r2=1. 

Finally, r is given by r1+r2; in the reference case study, r=35. 

The performance obtained in the classification of non-contradictory patterns by apply-

ing the considered selection criterion is compared to the performances obtained in the fol-

lowing two reference cases: 

all the contradictory patterns are a priori known and thus the classifier is trained by us-

ing all the non-contradictory patterns. In general, this corresponds to the best possible 

situation since all the contradictory information is not used to train the classifier. 

a) all the available patterns of S are used to train the classifier. In general, this corres-

ponds to the worst possible case since all the contradictory information is used to 

train the classifier.  

 

 
Figure 3: Representation of the Points of S‟ in the Input Space. 

Both in a) and b) the results are cross-validated in a LOO scheme. In order to verify 

that the results do not depend on the particular Gaussian distribution of the data nor on the 

particular choice of the 5 contradictory patterns, 50 different datasets have been consi-

dered. Table 3 reports the mean values and standard deviations of the obtained perfor-

mances. It can be noted that the chosen performance indicator of the criterion is between 

those of the best and the worst case. 



Table 3: Mean and Standard Deviation of Perf Indicator. 

 Mean Std 

Selection Criterion  0.919 0.053 

Best Case 0.928 0.053 

Worst Case 0.897 0.070 

3.5     Sensitivity Analysis 

The performances of the proposed methodology depend on some parameters such as 

the number of classifiers, the distance between the centers of the two clusters and the 

number of contradictory patterns contained in the dataset. A sensitivity analysis is per-

formed in this Section in order to evaluate their importance. In particular, a local approach 

in which these parameters are varied one at a time [5] is applied. This investigation also 

resorts to the creation of artificial datasets in order to increase the confidence on the esti-

mation of the parameters of interest (i.e., ni and nr). 

Figure 4 shows that both the number ni of patterns correctly identified and the number 

nr of patterns removed by the considered criterion are not sensitive to variations of the 

number B of classifiers used by the Adaboost algorithm. In particular, Figure 4 left, shows 

that the ratio between the number ni and the number nc of contradictory patterns con-

tained in the original dataset (which is an indicator of the effectiveness of the considered 

selection criterion) remains approximately constant when B varies. Figure 4 right, reports 

an indicator of the efficiency of the selection criterion: the larger the ordinates the smaller 

the number of patterns incorrectly removed; this efficiency indicator is also nearly con-

stant when B varies. This is due to the fact that in the considered case the probability mass 

functions Db evolve so that the degrees of contradictoriness wk of few patterns are outside 

the interval W+V.  

Figure 5 describes the behavior of the parameters of interest (nr and ni) when the 

number nc of contradictory patterns contained in the original dataset varies. In particular, 

the parameter ni is very sensitive to the variation of nc: the larger nc the lower the perfor-

mances in identifying incoherent patterns. This can be explained by considering that if the 

number of contradictory patterns increases, then the classification performances tend to 

decrease with a generalized enhancement of the degrees of contradictoriness wk associated 

to the patterns. Thus, also recognizing the contradictory patterns among the correct ones 

becomes very difficult. 

 

Figure 4: Sensitivity of the Selection Criterion to the Number of Classifiers B. 

 



 
Figure 5: Sensitivity of the Selection Criterion to the Number nc of Contradictory Patterns con-

tained in the Dataset. 

 

Figure 6 confirms this aspect; it shows that the standard deviation of the degrees of 

contradictoriness wk decreases when the number of contradictory patterns contained in the 

dataset increases. This also leads to the fact that the number of patterns incorrectly re-

moved decreases when nc increases (Figure 5). For example, if nc=1, then there are on 

average nr=2.55 patterns with very large degrees of contradictoriness which are removed; 

among these patterns there is always the contradictory one (ni=1); thus, there are 1.55 pat-

terns incorrectly removed from the dataset. On the contrary, when nc=15, then 

nr=6.55<<nc=15 and ni=4.75: there is a large probability (0.72) that in the few removed 

patterns there are the contradictory ones. In conclusion, the selection criterion distinguish-

es the correct and the contradictory patterns only when the corresponding mean weights 

wk are really far from those of the other patterns. 

 

Figure 6: Mean Values and the Corresponding 68% Confidence Intervals of the Degrees of Contra-

dictoriness of the Patterns for Different Values of nc. 

 



Figure 7 shows that the number nr is quite sensitive to the distance between the two 

clusters representative of the health state classes. The abscissa of Figure 7 is an index of 

the distance between the cluster centers with 1 representing the largest considered dis-

tance, 4 the distance relative to the clusters considered in Table 1 and 7 the smallest con-

sidered distance. In practice, the more the two classes are distinct, the larger are the per-

formances of the selection criterion. This is also an expected result: when the two clusters 

are more overlapped there is a generalized increment of the degrees of contradictoriness 

wk associated to the patterns which makes more difficult the classification. This affects al-

so the capability of the selection criterion to distinguish the contradictory patterns. Figure 

7 also shows that when the clusters are very distant, then the criterion is very efficient be-

cause it identifies more than 60% of anomalous patterns with a small number of incorrect 

removals of patterns. This effectiveness decreases when the clusters are more overlapped 

because of the generalized enhancement of the weights wk associated to the patterns which 

increases the probability that a non-contradictory pattern has a large value of wk. 

Finally, a further analysis has been performed in order to investigate the behavior of 

the proposed methodology in case of more populated training datasets that contain the 

same percentage (almost 12%) of contradictory patterns. It can be noted (Figure 8) that 

the larger the number n of patterns the larger the fraction of contradictory patterns correct-

ly identified. This is due to the fact that when the cardinality of the training dataset is larg-

er, the shapes of the two clusters are better defined and thus it is easier to recognize pat-

terns that are contradictory. The counterpart is that outlier patterns have more chances to 

be selected among the nr patterns that are candidates to be contradictory, and this results 

in a loss of information. 

 
Figure 7: sensitivity of the selection criterion to the distance between the two clusters. 

 

 
Figure 8: Performances of the considered Selection Criterion when varying the Number of Patterns 

in S. 



4     Application to the Erse Pd Measurement Dataset 

The present Section reports the results obtained by applying the methodology proposed 

above for the classification of contradictory patterns to the ERSE PD measurement dataset 

described in Section 2.  

The proposed methodology identifies as contradictory 7 patterns out of the 43 of the 

dataset (Table 4). For confirmation, these patterns have been further analyzed by resorting 

to expert opinions supported by the available paper reports describing the results of the 

visual inspection of the cable.  

Table 4: Patterns Identified as Contradictory by the Proposed Methodology 

Ui/U0 PD val-

ue 

disp 

ID 

PD val-

ue 

disp 

ID 

Umax/U0 PD val-

ue 

disp 

ID 

Visual insp. 

classification 

1 905 3 905 3 1.5 4202 3.5 Good 

0.88 2000 2 8750 2.5 1.38 10500 4.5 Good 

1 349 2.5 349 2.5 1.56 990 2 Good 

0.63 560 3 894 4 1 894 4 Bad 

0.63 6631 7.5 12291 7.5 1 12291 7.5 Good 

0.81 5051 3.5 8453 2 1.19 11546 3 Good 

0.88 3385 3 7500 3.5 1.19 11157 4.5 Good 

 

It turns out that (Table 5): 

a) Three of the seven patterns (rows 2, 4, 5 of Table 4) can be really considered contra-

dictory since the information provided by the PD measurements is not sufficient for 

their correct classification. In particular, one of these patterns (row 4 of Table 4) is 

associated to a joint which belongs to a part of an electrical line made up of XLPE 

cables. Notice that this information on the cable insulation material is omitted in the 

digital PD measurement dataset whose other available patterns refer to oil-paper 

cables for which different relationships between the PD measurements and the health 

state arise. Thus, it seems correct to consider this pattern as contradictory. Two other 

contradictory patterns (rows 2 and 5) refer to PD measurements acquired in a test 

characterized by high dispersion of the discharges along the cables. This fact indi-

cates that the discharges were not due to a localized defect, as in the other considered 

patterns, but to other causes. Also in this case, due to the missing information on the 

discharge dispersion not provided by the PD measurements, the patterns can be cor-

rectly considered contradictory. 

b) The classification reported in the ERSE dataset for two other patterns (rows 6 and 7 

of Table 4) identified as contradictory seems not justified considering the informa-

tion available in the paper reports. Thus, the experts indicate also these two patterns 

as contradictory.  

Finally, no apparent anomalies are found in the remaining two patterns (rows 1 and 3 of 

Table 4) identified as contradictory by the algorithm. Thus, these patterns seem incorrect-

ly identified as contradictory by the proposed methodology. 

Table 5: Expert Judgment on the Patterns identified as Contradictory by the proposed Methodology. 

Number of selected patterns nr 7 



Number of contradictory patterns for the experts 3 

Number of patterns whose classification in the dataset 

seems not justified. 

2 

Number of non-contradictory patterns for the experts 2 

Notice that, expert opinions on the contradictoriness of the patterns selected by the 

proposed methodology are not expected to be available in future applications, and one can 

only remove the identified patterns from the training set of the classifier and verify its 

classification performance. If the classifier trained without considering the patterns identi-

fied as contradictory outperforms the classifier trained with all the patterns, the analyst 

can be confident on the correctness of the identification of the contradictory patterns.  

In this case study, once the nr=7 selected patterns have been removed from the given 

dataset, a classifier is trained on the set S’ of the remaining 36 patterns in order to provide 

ERSE with the final diagnostic system for oil-paper electrical cables. In this respect, the 

Adaboost algorithm has been adopted as classification algorithm, as its classification per-

formance is generally higher than that of other classification algorithms based on a single 

classifier (e.g., EFCM; see Section 3.1 and related references). The results obtained have 

been compared with those obtained by an Adaboost algorithm trained with the set S of all 

43 available patterns (worst case). In particular, the comparison is made considering S’ as 

test set since the Adaboost classifiers are not trained on the removed patterns. 

In order to get a reliable estimation of the classification performance, the LOO cross 

validation scheme introduced in Section 3.3 has been applied to provide an unbiased esti-

mation of the true error of the classifier. The LOO scheme also allows detecting over-

fitting; indeed, over-fitted classifiers are characterized by high training performance and 

generally low test performance, i.e., they learn by heart the classes associated to the points 

of the training set, but are not robust enough to correctly classify points different from 

those of the training set. In the present case study, the very high classification perfor-

mance in testing by all the 36 different classifiers (trained on 36 different sets), makes us 

confident that there is no over-fitting. Furthermore, empirical results have shown that 

Adaboost is resistant to the phenomenon of the over-fitting, as explained on the basis of 

margin theory [1]. 

Table 6 summarizes the performance obtained in test: the removal of the patterns iden-

tified as contradictory by the proposed methodology results in a remarkable increase of 

the performance of the diagnostic system, which in the present case becomes infallible. 

Table 6: Performance of the Diagnostic System. 

Training Set Performance on Test Set S’ (36 patterns) 

S (43 patterns) 0.611 

S’ (36 patterns) 1 

5    Conclusions 

Errors in data collection can result in databases containing contradictory patterns which 

could bias the mapping function created by training a classification algorithm; this can 

significantly affect the classification performance.  

An original methodology which allows recognizing contradictory patterns has been 

proposed here and its performance evaluated on some artificial case studies. The metho-



dology has then been applied with satisfactory results to the PD measurements dataset col-

lected by ERSE for diagnosing the health state of electrical cables. 
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Appendix 1  

In supervised classification, we are given a training dataset S={x1,x2,…,xn}. where Xxi   is the i-th in-

stance in the f-dimensional feature space X. A class ic and },....,{ 21  ccc  is assigned to every xi. 

An unknown mapping function m: X→Г assigns to each point of S the corresponding true class. A classifier C 
trained on S produces a mapping function (also referred to as hypothesis) h: X→Г which is an estimate of m(x). 

When building a classifier, it is very important to estimate its performances in classifying previously unseen field 
data. In this respect, the probability that an instance drawn from the input space is misclassified by C, also re-

ferred to as the true error, is an unknown value that needs to be estimated. An unbiased estimator of the true error 

is provided by the Leave-One-Out (LOO) approach.  
In the LOO approach, an instance is omitted from the training sample; when the classifier is built, the pre-

diction (correct or incorrect) for the omitted instances is obtained; the process is repeated for all the instances in 

the training sample; the estimation of the true error is given by the proportion of instances incorrectly classified. 
This estimator has low bias but its variance tends to be large. 

Appendix 2 

In this Appendix, the pseudo-code of Adaboost.M1 [1], [4], the most popular Adaboost‟s variation, is de-

scribed and commented (see Figure 9).  



Inputs for Algorithm: 

  Training dataset S={x1,x2,…,xn}, with correct classes ci ( ic  and },....,{ 21  ccc ) assigned to every 

xi. 

 Weak learning algorithm EFCM.  

 Number of classifiers B 

 

Initialization: D1(i)=1/n; i=1,…n 

 
Do for b=1,2,….B 

1. Draw bootstrap training data subset Sb
* according to current distribution Db. 

2. Train EFCM algorithm with Sb
*; the hypothesis hb is provided in output. 

3. Calculate the error of hb by: 

)()( ib

n
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otherwise
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Adaboost algorithm requires that the error b  be smaller than one half [3]; this requirement has its root in the 

Jury Condorcet Theorem [6]. 

4. If εb >0.5 Then  

Repeat point 3 

End if  

5. Calculate normalized error 
b

b
b









1
 

(Notice that 10  b ). 

6. Update distribution Db 



 
 


otherwise

cxh if

Z

xp
xp
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b

i1b
i1b

1

)()(
)(


 

where Zb is the normalization constant chosen so that Db+1 is a proper probability mass function. 

 

End Do loop 

Test 

1. Obtain total vote received by each class: 




}c{b|h b

j

jb

)
β

(V
1

log
 j=1,2,…,Ω 

2. Choose the class that receives the highest total vote as the final classification 

 

 
Figure 9: Block Diagram of Adaboost. 

Legend 

A=Gaussian dataset with no contradictory pattern. 

B=number of classifiers created by the Adaboost algorithm. 
Cb=b-th classifier (b=1,…,B). 

Db=probability mass function used to create the b-th bootstrap sample Sb*, b=1,…,B. 



EFCM=Evolutionary Fuzzy C-Means 

f=number of features of the patterns. 
hb=b-th mapping function b=1,…,B. 

LOO=Leave One Out 

n=number of patterns in the original training dataset S. 

nc=number of contradictory patterns contained in S. 

ni=number of patterns correctly identified. 

nr=number of removed patterns according to the considered selection criterion. 
pb(k)=sampling probability associated to the k-th pattern at the b-th iteration of the Adaboost Algorithm 

(b=1,…,B and k=1, 2,…, n). 

Perf=performance indicator. 
r=number of non-contradictory patterns correctly classified. 

r1=number of patterns correctly classified among the a priori known non-contradictory patterns which are 

not selected by the considered selection criterion. 
r2=number of patterns correctly classified among the a priori known non-contradictory patterns which are 

selected by the considered selection criterion. 

S‟=dataset obtained by removing the patterns identified by the selection criterion from S 
S=working dataset. 

Sb*=b-th bootstrap sample created according to the distribution Db, b=1,…,B. 

Sc=set of the contradictory patterns contained in S. 
Ŝc=estimation of Sc made by a selection criterion (i.e., the set of the patterns identified by a selection crite-

rion as candidates to be contradictory). 

T = threshold on wk. 
Ui= the voltage value at which the PDs start. 

U0= the ominal voltage value. 

Umax= maximum voltage value. 
wk=degree of contradictoriness associated to the pattern xk, k=1, 2,…, n. 

xk=k-th patterns of S, k=1, 2,…, n. 
Ω=number of classes. 
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