
Dynamic Neural Field Optimization using the
Unscented Kalman Filter

Jeremy Fix, Matthieu Geist, Olivier Pietquin and Hervé Frezza-Buet
IMS, Supelec,

2, rue Edouard Belin, 57070 Metz
Email: Jeremy.Fix@Supelec.Fr

Abstract—Dynamic neural fields have been proposed as a
continuous model of a neural tissue. When dynamic neural fields
are used in practical applications, the tuning of their parameters
is a challenging issue that most of the time relies on expert
knowledge on the influence of each parameter. The methods
that have been proposed so far for automatically tuning these
parameters rely either on genetic algorithms or on gradient
descent. The second category of methods requires to explicitly
compute the gradient of a cost function which is not always
possible or at least difficult and costly. Here we propose to
use unscented Kalman filters, a derivative-free algorithm for
parameter estimation, which reveals to efficiently optimize the
parameters of a dynamic neural field.

I. INTRODUCTION

Dynamic neural fields have been proposed as a continuous
model of a neural tissue. They are used in computational
neuroscience to model biological functions of the primate
brain but also as a computational paradigm to control artificial
agents. In both contexts, tuning the parameters of a neural
field is a challenging issue that most of the time relies on
the knowledge of an expert and on trials and errors. The
main difficulty behind tuning these parameters relies on the
difficulty to obtain analytical results on the evolution of such
a high-dimensional non-linear dynamical system. The first
property observed on dynamic neural fields is the existence
of stable localized patterns of activity [1]. Dynamical patterns
such as traveling waves have also been obtained. These
two properties are understood analytically in a restricted
context, for a specific transfer function. Other dynamical
properties are more tricky to handle analytically, in particular
competition and working memory. These two behaviors are
important sub-functions of decision making, for instance in
cognitive robotics [2]–[6]. The former endows an artificial
agent with the ability to settle a competition between, for
example, alternative motor programs that cannot be executed
simultaneously. It may also allow targets of one motor action
to compete. The latter allows an agent keeping a trace of a
transiently presented information relevant for guiding future
behaviors, or temporarily store the spatial position of a set
of stimuli when several have to be investigated (see for
example [7]).

Using dynamic neural fields to design cognitive
architectures is a challenging problem, especially because the
functions one wants to introduce in the system result from

distributed computations within the fields. These interactions
are themselves ruled by a set of parameters that have a
non-linear influence on a neural field’s behavior. Such a
hard problem motivates finding optimization algorithms to
automatically tune neural field parameters.

So far, two optimization techniques have been applied
for automatically tuning the parameters of a neural field:
genetic algorithms [8] and genetic algorithms combined with
a gradient descent [9]. In [8], the authors apply genetic
algorithms to tune the parameters of a two-dimensional
neural field performing selection and dynamic tracking of
a moving input stimulus within noise or surrounded by
distractors. In [9], the authors combine a genetic algorithm
with a gradient-descent based method. The later requires to
compute locally the gradient of a cost function which may be
difficult or at least costly to perform.

Kalman filters are a popular collection of algorithms in
the optimal control and machine learning community for
estimating a hidden state from noisy observations, knowing
a model of the underlying process and of the observation
apparatus. There are several algorithms that have been
developed since the seminal work of Kalman [10] on
systems involving linear evolution and observation processes.
For example the Extended Kalman Filter (EKF) and the
Unscented Kalman filter (UKF) are efficient methods that
can be used for three applications. They can be used for
state estimation, i.e. estimating a hidden state observed
through noisy measurements. They can also be used for
parameter estimation, i.e. determining the parameters of
a non-linear system given noisy observations. These two
algorithms can finally be combined for performing so-called
dual estimation, i.e. estimating both a hidden state and the
parameters governing a non-linear system. The Extended
Kalman Filter requires to explicitly compute the derivatives
of the process’ equations. In some applications (like the
one we address in this article), analytically computing these
derivatives can be difficult or even impossible in some cases.
The Unscented Kalman Filter does not need to explicitly
compute these derivatives. Neural networks are a particular
case of non-linear processes and the techniques mentioned
above can be applied to tune their parameters. The Kalman
Filters reveal to be quite efficient compared to the more



popular backpropagation algorithm [11]. The derivative-free
aspect of UKF combined with its efficiency in optimizing the
parameters of neural networks motivate the study presented
in this article, where we seek to optimize the parameters of
dynamic neural fields.

The Unscented Kalman Filter [12] belongs to the family
of Sigma-Point Kalman filter (SPKF) which can be used to
estimate hidden variables producing observations through a
non-linear function (therefore extending the original Kalman
filtering framework [10] applicable on linear functions).
The challenge is to estimate the parameters of this non-
linear model only from partial and noisy observations. The
Unscented Kalman Filter has already been applied on several
machine learning problems. For example, in [13], UKF is
used for supervised learning and in [14], the authors use
UKF in the context of reinforcement learning to approximate
the value function given a reward scheme which provides the
indirect noisy observations.

The paper is organized as follow: the unscented Kalman
filter algorithm is provided in section II-A, the dynamic neural
field equation and parameters are described in section II-B and
two example scenarios are studied in section III. Extensions of
the presented framework and the implications of such a method
in the context of dynamic neural fields applied to cognitive
robotics are then discussed.

II. METHODS

A. Unscented Kalman Filter (UKF)

The Unscented Kalman filter (UKF) is an efficient
derivative-free method for nonlinear filtering problems.
In particular, it can be applied to estimate the
parameters of a non-linear function. It relies on the
unscented transform (UT) [12] which allows to compute a
local linear approximation of the non-linear function. To do
so, the unscented transform introduces a set of so-called
sigma-points from which statistics of interest are computed.
We briefly sketch below the different steps involved in the
UKF for parameter estimation but a more detailed explanation
of this algorithm can be found in [13].

Basically, the parameter estimation problem is stated as:
given a non-linear function fθ parametrized by the vector θ,
given a set of input-output samples (xi, yi), find the parameter
vector θ? that best accounts for the mapping ∀i, yi = fθ(xi)+
vi in a least square sense, where vi is a white observation noise
(zero-mean and independent). Therefore, at time step i, UKF
seeks at minimizing the following cost function:

θi = argmin
θ

(

i∑
j=1

1

Pvvj
(yj − fθ(xj))2) (1)

where Pvvj is the variance of the noise vj . This cost function is
defined on the samples presented so far. The general purpose
of UKF, like Kalman filtering, is to track the hidden state

of some system given sequential noisy observations. Here, the
state is the hidden parameter vector. The associated state-space
formulation of the parameter estimation problem is given by:{

θi = θi−1 + ni

yi = fθi(xi) + vi

Using the vocabulary of Kalman filtering, the first equation
is the evolution equation: it specifies that the true parameter
vector follows a random walk, the expectation of which
corresponds to the optimal estimate of the parameters
(in a least-square sense). The evolution noise ni is white
(independent and centered) and of variance Pnni

(to be
chosen by the practitioner). This allows handling non-
stationary parameters (without harming the stationary
case), but it also allows avoiding local minima of the
cost-function (1) (its effects can roughly be understood as
simulated annealing). The second equation is the observation
equation: it links the parameters to the observations through
the parametrized function fθ. The observation noise vi is also
white and of variance Pvvi (to be chosen by the practitioner,
possibly on the basis of some physical considerations). UKF
is an incremental algorithm that improves step by step the
parameters. The idea is to obtain a Widrow-Hoff-like linear
update rule of the form θi = θi−1 + Ki(yi − ȳi) where ȳi is
a prediction of what should be the next observation yi given
the current estimate of the parameters and Ki is the so-called
Kalman gain. The UKF algorithm aims at incrementally
compute the best gain Ki, that is the one that minimizes the
cost function (1).

The algorithm we present below1 and depicted schemati-
cally on figure 1 uses the Unscented Transform for clarity
of presentation. However, it is the Scaled Unscented Trans-
form [13] that is used in practice for efficiency reasons. Both
rely on the same ideas, the Unscented Transform being shorter
to introduce, and slight variations lead to the scaled transform
which is provided in more details in [13]. In addition, the
algorithm provided below is the vectorial algorithm while
we used scalar notations previously for introducing it. The
algorithm is initialized with random parameters θ0 and a
prior on the variance of these parameters P0 (in practice, a
diagonal matrix). At step i, it first updates the covariance of
the parameters :

Pi|i−1 = Pi−1 + Pnni

Then, a set of 2p+ 1 so-called sigma-points θji , j ∈ [0..2p] (p
is the number of parameters to estimate) is introduced :

θ0i = θi−1

θji = θi−1 +
(√

(p+ κ)Pi|i−1
)
j
, 1 ≤ j ≤ p

θji = θi−1 −
(√

(p+ κ)Pi|i−1
)
j−p

, p+ 1 ≤ j ≤ 2p

1In the description of the algorithm, a matrix is written with a capital bold
letter (e.g. Pi), a vector with a bold letter (e.g. xi) and a scalar with a normal
letter (e.g. xi).



1

3

4

5

6

7

Kalman Gain

Matrix

2

Function evaluation

Pi|i−1

θi

θji

Pi

x i

y i

yji ,ȳi Ki

Weight/Measurement 

Cov. update

Update
Measurement Cov.

Update

Weight Cov.

Weight update

θi−1
Sigma Points

Pyyi

Pθyi

Fig. 1. Signal flow diagram for UKF parameter estimation. Based on a prior estimate of the parameter’s covariance P0, of the parameters θ and on a new
sample (xi, yi), UKF for parameter estimation updates the covariance matrix as well as the parameters minimizing the cost function defined by equation (1).

where
(√

(p+ κ)Pi|i−1
)
j

is the j-th column of the Cholesky
decomposition of the matrix (p + κ)Pi|i−1, and κ ≥ 0 a
parameter of the algorithm which controls the spread of the
sigma-points sampling. The image of each of the sigma-points
through the non-linear function fθ is then computed, each
sigma-point defining a specific parametrization:

yji = fθj
i
(xi),∀j

A set of weights, used to compute different statistics of interest
is then defined as:

w0 =
κ

p+ κ
and wj =

1

2(p+ κ)
,∀j > 0

From the image of the sigma-points, the set of weights previ-
ously defined and the current sigma-points, one can compute
the following statistics:

ȳi =
∑
j

wjy
j
i

Pθyi =
∑
j

wj(θ
j
i − θi−1)(yji − ȳi)

T

Pyyi =
∑
j

wj(y
j
i − ȳi)(y

j
i − ȳi)

T (2)

The last step is to update the Kalman gain Ki, the parameters
θi as well as the covariance matrix of the parameters Pi:

Ki = Pθyi · (Pvvi + Pyyi)
−1

θi = θi−1 + Ki(yi − ȳi)
Pi = Pi|i−1 −Ki(Pvvi + Pyyi)K

T
i

B. Dynamic neural fields

Dynamic neural fields have been introduced as a model of
a continuous neural tissue [1], [15], [16]. The neural field
equation (3) states that the evolution of the membrane potential
at position x and time t, depends on an input at that position
i(x, t), on a baseline h and on the lateral influence within the
field characterized by a weight function w(x, y) and a transfer
function f .

→ u?(., ti)

(a)

→ u?({xi, ti})

(b)

Fig. 2. Two sampling methods are considered. In (a), a time is randomly
chosen, and the activity of the whole field at that time is presented to the
algorithm, i.e. the samples are (ti,u

?(., ti)). In (b), a set of time and
space positions are randomly chosen. Therefore, the samples at time i are
({xji , t

j
i}, {u

?(xji , t
j
i )})

τ
∂u

dt
(x, t) = −u(x, t) +

∫
y

w(x, y)f(u(y, t))dy

+ i(x, t) + h (3)

To be properly defined, the previous equation also requires
an initial condition u0 = {u(x, 0),∀x}. In order to cast the
optimization of the parameters of a neural field into a Kalman
filtering problem, one needs to parametrize the neural field
equation and specify how it is sampled. To parametrize the
neural field, we first discretize equation (3) both in space
and time using an Euler scheme. The following equations are
therefore specific for the Euler scheme but could be easily
adjusted to other schemes. The discrete neural field equation
therefore reads:

u(x, t+ ∆t) = (1− ∆t

τ
)u(x, t)

+
∆t

τ

∑
y

w(x, y)f(u(y, t))

+
∆t

τ
(i(x, t) + h) (4)

We will consider in the following a specific transfer function



and a specific weight function. The transfer function is defined
as a sigmoidal function parametrized by (a, b, x0):

f(x) =
a

1 + exp(b(x− x0))
(5)

The weight function is defined as a difference of gaussians
parametrized by (A+, σ+, A−, σ−):

w(x, y) = A+ exp

(
− (x− y)2

2σ2
+

)
+A− exp

(
− (x− y)2

2σ2
−

)
(6)

This symmetric weight function is suitable for the neural
field scenarios we consider in the following. However,
we may have easily considered other weight functions
such as the asymmetrical one used in [17] in order to
obtain traveling patterns of activity. Given the previous
parametrization, our problem is to optimize 9 parameters:
θ = (τ, h, a, b, x0, A+, σ+, A−, σ−). Now, we need to specify
the samples that are presented to the algorithm (inputs xi)
and the constraints that specify the optimization problem
(outputs yi).

The optimization problem is defined by providing both
the input feeding the neural field and a rough estimate of
the desired mean firing rate (called desired output in the
following). We use the mean firing rate f(u(x, t)) instead of
the membrane potential u(x, t) since it is bounded and easier
to specify a desired firing rate than a desired membrane
potential. This constraint is just introduced for practical
reasons but could be dropped if necessary. A given input and
desired output define a neural field scenario. Two example
scenarios are shown on figures 3a,b and 4a,b. These figures
illustrate space/time representations of two scenarios: a
competition scenario and a working memory scenario. Given
these scenarios, a sample (the pairs (xi, yi) we introduced in
section II-A) can be defined in several ways. We consider in
this article two sampling methods, illustrated on figure 2. The
first sampling method selects randomly a time and the whole
neural field activity at that time is presented to the algorithm.
The second sampling method selects randomly pairs of times
and positions and presents the neural field activity at these
times and positions. The performance of the algorithm with
these two sampling methods will be compared in the Results
section and others will be discussed in conclusion. The
first sampling method is probably the most natural of the
two for sampling the state of a dynamical system but the
second makes the algorithm faster to converge. Given we
used an Euler scheme for discretizing in time equation (3),
we consider only temporal samples that are multiple of the
time-step ∆t.

To state the optimization of neural fields’ parameters as a
Kalman filtering problem, we must define the evolution and
observation equations. The evolution equation states that the
parameters follow a random walk, with a white independent
noise ni. The observation equation links the parameters with
the observations. To define this equation, we need to introduce

an additional notation. Let’s denote u(., t) the activity of
the whole neural field at a given time t and denote gθ the
parametric function linking u(., t+ ∆t) with u(., t):

u(., t+ ∆t) = gθ(u(., t))

gθ(u) = (1− ∆t

τ
)u+

∆t

τ
W · f(u)

+
∆t

τ
(i+ h) (7)

where W denotes the weight matrix, f(u) denotes the vector
whose components correspond to the components of u on
which f is applied. The state of the neural field at a certain
time t, multiple of ∆t, is defined as the repeated composition
of gθ applied on the initial condition u0:

u(., j∆t) = gθ(gθ(...gθ(u0)...))

= gjθ(u0)

We can now define the so-called state-space description of the
system, for a certain input xi = (k, j∆t), k ∈ [0, n[:{

θi = θi−1 + ni

yi = gjθi(u0)(k) + vi

The previous state-space description is given for a pair
of spatial/temporal position and should be slightly adjusted
to correspond to the previous definition of a sample. We
do not specify it further to avoid unreadable equations. One
should note that the previous definition of the Kalman filtering
problem is not dependent on the specific choice of the weight
function and transfer function. Given that UKF is a derivative-
free algorithm, we do not even need to use derivable functions.
This is in contrast to gradient-descent-based methods such as
in [9] which require to compute derivatives. The simulations
of the neural field and the UKF algorithm were written in
C++/GSL.

III. RESULTS

We applied the UKF algorithm on two classical scenarios
of dynamic neural fields: competition and working memory.
In the first scenario (fig. 3), several regions of a 1D neural
field are locally excited and we want to find the parame-
ters of the neural field settling a competition between these
excited regions so that the field’s activities converge to the
representation of only one of the excited regions. Figures 3a,b
illustrate the input feeding the neural field as well as the
desired firing rate. The input consists in two locally excited
regions with relatively close magnitudes (1.0 and 0.75), mixed
with a random noise. As an output, we want the neural field
to produce a competition between these two regions leading
to the selection of the stimulus with the highest amplitude.
Intuitively, this competition relies on lateral inhibition where
both regions are inhibiting each other. A proper range and
amplitude for the lateral inhibition term has to be found in
order to get this competition. Figure 3c illustrates the firing
rate obtained after 233 iterations of the algorithm showing that



Ti
m
e

0

20

40

Space 40

(a)

Ti
m
e

0

20

40

Space 40

(b)

Ti
m
e

0

20

40

Space 40

(c)

Fig. 3. Competition scenario. (a) Space/time representation of the input exciting the neural field. The two localized excitations are gaussians with an
amplitude of 1.0 and 0.75, a standard deviation of 4.0, mixed with a uniform random noise of a maximal amplitude of 0.1 (b) The desired membrane
potential seeks to produce competition between the two excitation regions, the one with the highest amplitude being the winner. (c) Obtained neural field
after 233 iterations of the algorithm and a RMS error of 0.05. The algorithm converged to the following parameters: a = 0.93, b = −4.99, x0 =
0.59, A+ = 1.53, σ+ = 31.68, A− = 1.50, σ− = 47.74, τ = 0.56, h = 0.02. The neural field, involving 40 neurons, is simulated synchronously
during 40 seconds with a time-step ∆t = 0.1s.. The parameters of the scaled UKF (see [13] section 3.2.2 for the meaning of these parameters) were :
α = 0.3, β = 2.0, κ = 0,P0 = 0.1.I,Pnni = 0.0,Pvvi = 0.1.I. The membrane potentials ranging from 0.0 to 1.0 are represented with a graded color
from white to black. A video of the optimization algorithm is available at http://jeremy.fix.free.fr/demo.php?demo=CCMB2011 .

the algorithm has found a proper set of parameters allowing
this behavior. To compare the two sampling methods and to
get an idea of the time it takes for the algorithm to converge,
we repeated 1000 times the optimization procedure. It took
on average respectively 260 steps and 52 steps to converge
(to reach a RMS error of 0.1) for the two sampling methods.
The algorithm reached a local minima 13% of the trials for
the sampling in time, and 3.5% of the trials for the sampling
in time and space. The evolution of the mean RMS, through
the iteration of the algorithm, is shown on figure 5a. In
addition, some local minima reached by the algorithm with
their respective RMS are shown. Sampling randomly in both
time and space clearly leads to a faster convergence.

A more difficult scenario is proposed on figure 4. A work-

ing memory should be able to maintain the representation
of an information despite the presence of distractors, and
this as soon as some signals triggered the entrance of this
information into the working memory. The input and desired
output shown on figures 4a,b illustrate this behavior. There,
the neural field is fed with two locally excited regions of
initially weak amplitude. A transient increase of the amplitude
of the input stimuli, reflecting some kind of selection or gating
for the entrance in working memory, triggers the emergence
of the stimulus in working memory. Removing the gating
signal leads to decrease the amplitude of the selected stimulus
back to its initial and weak value. Despite this decrease in
amplitude, the stimulus should stay in the working memory.
There are mainly three critical parameters allowing to get this

Ti
m
e

0

40

60

Space 40

15

(a)

Ti
m
e

0

40

60

Space 40

15

(b)

Ti
m
e

0

40

60

Space 40

15

(c)

Fig. 4. Working memory scenario. (a) Space/time representation of the input feeding the neural field. The two localized excitations are gaussians with an
initial amplitude of 0.3, transiently increased up to 1.0, and a standard deviation of 2.0. A uniform random noise of amplitude 0.1 is added to the input. The
transient increase of the stimuli’s amplitude reflects some kind of selection, allowing a target to enter the working memory. (b) The desired firing rate specifies
a working memory behavior: when the amplitude of the input reaches a threshold, the stimulus enters the working memory and stays there until the input
is completely suppressed. (c) Obtained neural field after 1000 iterations and a RMS error of 0.077. The algorithm converged to the following parameters:
a = 0.92, b = −1.93, x0 = 1.12, A+ = 1.21, σ+ = 2.11, A− = 0.34, σ− = 5.28, τ = 0.5, h = −0.5. The neural field, involving 40 neurons, is
simulated synchronously during 60 seconds with a time step ∆t = 0.1s.. The parameters of the scaled UKF (see [13] section 3.2.2 for the meaning of these
parameters) were : α = 0.3, β = 2.0, κ = 0,P0 = 0.1.I,Pnni = 0.0,Pvvi = 0.1.I. The firing rates ranging from 0.0 to 1.0 are represented with a
graded color from white to black. A video of the optimization algorithm is available at http://jeremy.fix.free.fr/demo.php?demo=CCMB2011 .



(a) (b)

Fig. 5. Mean RMS error curves for the scenarios shown on figure 3 and 4. For each figures, the curves show the evolution of the RMS through the iteration
of UKF for the two sampling methods shown on figure 2 : sampling the whole state of the neural field at a random time or sampling randomly both time
and space positions. The filled regions represent the standard deviation. The mean and standard deviation of the RMS are computed for the trials that did not
converge to a local minima, defined by a threshold on the RMS. This threshold is set to 0.1 for the competition scenario and 0.12 for the working memory
scenario. For both scenarios, we also show illustrations for some local minima with their respective RMS. a) The algorithm converged in a local minima 13%
of the trials for the sampling in time, and 3.5% of the trials for the sampling in time and space. b) The algorithm converged to a local minima 42% of the
trials for the sampling in time and 32% of the trials for the sampling in time and space.

behavior: the baseline, the lateral excitation and the lateral
inhibition. The baseline allows to set up the threshold above
which a stimulus will enter the working memory. The lateral
excitation allows to maintain a stimulus in working memory
when the input’s amplitude is set back to its initial value.
This lateral excitation compensates the decrease of the input
drive. Usually, this lateral excitation is much stronger than in
the competition scenario. Given the strength of this recurrent
term, it may propagate over the whole field and saturate it
completely. Lateral inhibition prevents this spread by somehow
constraining the size of the excited regions within the field.
Given the strength of the lateral excitation, the neural field
may also become insensitive to the input somehow becoming
saturated as soon as the input reaches a threshold. One may
need that a stimulus gets removed from working memory
when it disappears from the input, a behavior that cannot
be guaranteed if lateral excitation is too strong. Therefore, a
proper balance of lateral excitation/inhibition must be found.
This additional constraint is added to the scenario by requiring
the firing rate of the neural field to go back to the resting
level as soon as the input stimuli disappear, which we see
for the last time steps on figures 4a,b . Figure 4c shows the
neural field obtained after 1000 iterations of the algorithm.
Repeating the optimization procedure on 1000 trials, it took
on average respectively 256 steps and 130 steps to converge
(to reach a RMS error of 0.12) for the two sampling methods.
The algorithm got trapped in a local minimum respectively
42% and 32% of the trials. The stopping criterion used in
the simulations relied on the RMS error between the desired
and obtained neural field activities. The bound at which the
algorithm is stopped is defined qualitatively since it depends on
the level of noise in the input, that remains in the neural field
activities, but also on the level of noise introduced by defining
a desired neural field activity. This desired activity profile is
only a rough estimation of the state the neural field can reach.
Therefore, a proper bound for the RMS error can only be

tuned qualitatively. When setting this bound in the working
memory scenario, we usually observed that a RMS error of
0.12 corresponds to a neural field activity that was relatively
close to the desired profile (at least, all the trials that ended
with such a RMS corresponded to a satisfactory solution from
a visual inspection). When it was larger, it usually corresponds
to a neural field which maintains only one of the two stimuli as
shown on figure 5b. This illustration also shows the evolution
of the RMS during the iteration of the algorithm. Again, we
observe a tendency for sampling in space and time to converge
more fastly and more reliably to the solution.

IV. DISCUSSION

The Unscented Kalman Filter is an efficient statistical
learning method that can be used for parameter estimation.
We have shown here that it can be used efficiently for
optimizing the parameters of a dynamic neural field, given
a desired behavior (an input and a desired firing rate) has
been specified and regardless the complexity of the neural
field equation. In particular, non-linear or even non-derivable
functions can be introduced in the equation. This derivative-
free optimization algorithm is particularly efficient and makes
it a good candidate to automatically tune the parameters of
a neural field, which is a critical issue when one wants to
apply dynamic neural fields to control artificial agents.

The major advantage of UKF compared to the previous
works [8], [9] is its derivative-free aspect which does not
restrict to the usage of derivable functions (e.g. a Heaviside
function is also a classical transfer function). In terms of
complexity, the genetic algorithms require to compute the
fitness over the whole time horizon of all the individuals,
i.e. an order of O(NI nT n

2
x) computations, where NI is the

number of individuals, nT the number of time steps and nx
the number of space positions. They also require to update
the parameters but given that there are much less parameters



than the number of space and time positions (i.e. p� nx and
p� nT ), this step has a low impact on the overall complexity.
The gradient-descent-based method used in [9] requires an
order of O(p nT n

2
x) computations. UKF involves different

operations such as matrix inversion, Cholesky decomposition,
etc. . However, for the same reason as before (i.e. p� nx and
p� nT ), the complexity of UKF is only dependent on 2p+1
evaluations of a neural field (when computing the image of
the sigma-points). Therefore, a single UKF update requires
an order of O(p nT n2x) computations. The complexity of
UKF and a gradient-descent are similar but one should expect
that UKF converges faster since UKF belongs to the family
of Sigma-Point Kalman Filters (SPKF) which are an online
form of a modified Gauss-Newton method which is a variant
of natural gradient descent (see [13], ch. 4.5). More than
just estimating the complexity of a single step, one would
also need to perform benchmarks of the three algorithms to
determine the number of steps they require to converge in
order to provide a fair comparison. In addition, we discuss
below some improvements of the proposed method to make
UKF even faster to converge.

Two improvements of the presented method are currently
investigated. The first one is to propose a more efficient
sampling method for speeding up the convergence of the
algorithm. In particular, one can use the information on the
covariance of the output (equation 2) to bias the sampling of
the inputs. Instead of the random sampling used so far, we
could use a probabilistic draw biased by the covariance of the
output of the non-linear function. It would speed up the con-
vergence by presenting the samples where the uncertainty on
the predictions (of the observations) is higher. This uncertainty
depends both on the uncertainty on the value of the parameters
and also on the sensitivity of the non-linear function respect
to the parameters. A second improvement is also based on
the way the neural field is sampled. In particular, instead of
evaluating the whole neural field until a certain time, one could
use transitions from, say state u(t) to u(t+ 1) given that u(t)
is provided by the desired output. Given the desired output is
only a rough estimation of the state that the dynamic neural
field can reach, or said differently that the desired output is a
noisy observation of a reachable output starting from a given
initial condition, one can introduce additional equations in the
state-space formulation to consider that the neural field state is
also part of the evolution equation. These improvements would
allow to scale up more easily the algorithm to deal with two
or higher dimensional neural fields which are more common
in practical applications.

ACKNOWLEDGMENT

This work has been supported by the Région Lorraine.

REFERENCES

[1] S. Amari, “Dynamics of pattern formation in lateral-inhibition type
neural fields.” Biol Cybern, vol. 27, no. 2, pp. 77–87, 1977.

[2] J. Fix, N. Rougier, and F. Alexandre, “A dynamic neural field approach
to the covert and overt deployment of spatial attention,” Cognitive
Computation, pp. 1–15, 2010, 10.1007/s12559-010-9083-y. [Online].
Available: http://dx.doi.org/10.1007/s12559-010-9083-y

[3] G. Schoner, “Dynamical systems approaches to cognition.” in Cam-
bridge handbook of computational cognitive modeling. Cambridge
University Press, 2007.

[4] W. Erlhagen and E. Bicho, “The dynamic neural field approach to
cognitive robotics.” J Neural Eng, vol. 3, no. 3, pp. R36–54, 2006.

[5] J. Spencer and G. Schoner, “An embodied approach to cognitive sys-
tems: A dynamic neural field theory of spatial working memory.” in
Proceedings of the 28th Annual Conference of the Cognitive Science
Society (CogSci 2006), 2006, pp. 2180–2185.

[6] J. Vitay, N. P. Rougier, and F. Alexandre, “A distributed model of spatial
visual attention.” in Biomimetic Neural Learning for Intelligent Robots,
ser. Lecture Notes in Computer Science, S. Wermter, G. Palm, and
M. Elshaw, Eds., vol. 3575. Springer Berlin / Heidelberg, 2005, pp.
54–72.

[7] J. Fix, J. Vitay, and N. Rougier, “A distributed computational model of
spatial memory anticipation during a visual search task.” in Anticipatory
Behavior in Adaptive Learning Systems, ser. Lecture Notes in Computer
Science, M. Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre, Eds., vol.
4520. Springer Berlin / Heidelberg, 2007, pp. 170–188.

[8] J. Quinton, “Exploring and optimizing dynamic neural fields parameters
using genetic algorithms,” in Proceedings of IEEE World Congress on
Computational Intelligence, IJCNN 2010, 2010.

[9] C. Igel, W. Erlhagen, and D. Jancke, “Optimization of dynamic neural
fields,” Neurocomputing, vol. 36, no. 1–4, 2001.

[10] R. Kalman, “A new approach to linear filtering and prediction problems,”
ASME Journal of Basic Engineering, pp. 35–45, 1960.

[11] S. Haykin, Kalman filtering and neural networks. John Wiley and Sons,
Inc., New York, 2001.

[12] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation.”
in Proceedings of IEEE,, vol. 94, no. 3, 2004, pp. 401–422.

[13] R. van der Merwe, “Sigma-point kalman filters for probabilistic infer-
ence in dynamic state-space models.” Ph.D. dissertation, OGI School
of Science & Engeneering at Oregon Health & Science University,
Portland, OR, USA, 2004.

[14] M. Geist and O. Pietquin, “Kalman temporal differences.” Journal of
artificial intelligence research, vol. 39, pp. 483–532, 2010.

[15] H. Wilson and J. Cowan, “A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue.” Kybernetik, vol. 13,
no. 2, pp. 55–80, 1973.

[16] J. Taylor, “Neural bubble dynamics in two dimensions: foundations.”
Biol Cybern, vol. 80, pp. 393–409, 1999.

[17] K. Zhang, “Representation of spatial orientation by the intrinsic dynam-
ics of the head-direction cell ensemble: a theory.” J Neurosci, vol. 16,
no. 6, pp. 2112–26, 1996.


