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ABSTRACT
In this paper we study medium access control with inter-
ference management. We formulate a SINR-based dynamic
channel access as a stochastic game in which the players
adapt their retransmission scheme based on their own back-
off state. We analyze the asymptotics of the system using
mean field dynamics. Both stable and unstable behaviors
are illustrated.
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1. INTRODUCTION
Many wireless node devices, access points, WiFi-enabled
laptops, PDAs, and wireless sensors are deployed through-
out offices, streets, campuses, and city environments. All
wireless node devices using IEEE 802.11x, 802.15.4 ZigBee,
802.16 WiMAX, and Bluetooth share the IP Multimedia
Subsystem (ISM) band in the 2.45 GHz range. Due to the
shared spectrum, a wireless group of nodes affects any other
other wireless of nodes, and even small wireless node de-
vices can cause strong interference for other node devices.
Competitive channel usage causes additional volatility in
wireless links, and can lead to critical performance degrada-
tion in terms of packet delivery and probability of success.
In traditional wireless 802.11x local area networks (LAN),
pure Aloha, slotted ALOHA, CSMA (Carrier Sense Mul-
tiple Access) and TDMA (Time Division Multiple Access)
have been used to mitigate the interference of wireless de-
vices, and manage their medium access control (MAC) so
that one user’s channel access does not collide with another
user’s channel access. Because of their simplicity and robust-
ness, these protocols have been widely used to manage both
single-range intra-interference and inter-interference which
can be a dominant cause of throughput degradation. As
the usage of WLANs rapidly increases, nearby access points
must compete to access the same channels, generally without
any coordination or guiding central authority. Accordingly,
network throughput is reduced due to increased packet col-
lisions and high cost due retransmissions and thus energy
consumption.

Related work Standard Markov chain models, which have
been widely used in IEEE 802.11, very often lead to exces-

sive complications. The authors in [9] have studied power-
selection based access control and have shown that if more
than three power levels are available to each of the users then
correlation mechanisms do not improve the performance of
the system.

A mean field approach to MAC protocol have been proposed
in [2, 1, 6]. The authors in [1, 10] have pointed out that the
validity of the decoupling assumption (user’s backoff state
independence at the asymptotic regime) should be justified,
not just by a simple fixed point method but a deep study
of the stability of the differential equation is needed. This
is because the existence and uniqueness of a rest point does
not imply that the dynamics converges to this fixed point
and the differential equation may have limit cycles. To con-
struct a cycling behavior of the mean field limit we follow
the work in [5] in which the strategies of the players are
not considered. We will see in the next sections that the
strategies of the players play an important role: under some
strategies, the mean field system is convergent, and under
some other strategies the mean field dynamics has a limit
cycle (and unstable in the sense of Lyapunov).

Case of interest In this paper, we consider a mean field
stochastic game with finite number of classes (types) and
illustrate cycling behavior in an heterogeneous SINR-based
MAC protocols in wireless networks. Our contribution can
be summarized as follows. To clarify the difference between
the existing game formulations with our work, we present
both static and dynamic formulation of SINR-based MAC
interference management problem and classify them in term
of information that are available of the players. We prove
mean field convergence of SINR-based access control for spe-
cific strategies and channel state distributions and charac-
terize them in term of deterministic differential equations.
Considering a specific SINR-based admission control, the
mean field limit [10, 8] depends on the control parameters
and the uncontrolled mean field limit system can be subop-
timal depending on the performance metric. Hence, the con-
trol parameters give new insights and help in understanding
the behavior of the mean field limit dynamics. We observe
that the cycling behavior in the SINR-based MAC proto-
col can be eliminated by changing the strategy. Finally,
a differential population game is formulated at the infinite
population limit and mean field equilibria are characterized
by backward-forward optimality principle.

The rest of the paper is structured as follows. In the next



section we present we present different backoff-state depen-
dent game theoretic formulations. After that we present a
mean field convergence result and conduct a detailed analy-
sis for two types. Finally, the proof of the results are given
in the Appendix.

2. PRELIMINARIES
The signal to interference plus noise ratio (SINR) channel
access model have been widely studied in wireless litera-
ture. The SINR takes into consideration the received signal
strength, the ambient noise level N0 and the interference
from the users that are active. Let S be the set of channel
states, a subset of an Euclidean space. For a successful re-
ception, the rule requires a certain minimum signal quality
threshold βj i.e each user j has a successful packet delivery
if

SINRj(s, a) ≥ βj
where s = (h1, . . . , hn) ∈ S is the channel state profile, a is
the action profile and

SINRj(s, a) =
|hj |2p̄j1l{aj=T}

N0 + α
∑
j′ 6=j |hj′ |2p̄j′1l{aj′=T}

,

the term 1l{aj′=T} denotes an indicator function for the ac-

tivities of user j : it is equal to 1 if the link j is active (user j
is transmitting “T”) and 0 otherwise, p̄j is the power used by
j, α/n is a normalization factor taking in account the system
load. Since most of wireless environment are of incomplete
information, imperfect measurements and dynamic in na-
ture, we propose different formulation of the SINR-based
medium access control problem depending on much infor-
mation are available to the users.

2.1 Static game formulations
We start by static game formulations where the players are
the users, transmitters, nodes etc. There are n players. The
set of players is denoted by N = {1, 2, . . . , n}.

Known full channel state: Each player j ∈ N knows the
vector s = (h1, . . . , hn). Each player can choose its action in
the set {T,W} where T for “to transmit” and W for “wait”.
Each player knows the mathematical structure of the payoff
functions. The payoff function of player j is given by

r1
j (s, a) = 1l{SINRj(s,a)≥βj} − c(aj)

where aj ∈ A := {T,W}, c(aj) denotes a power consump-
tion cost, 0 = c(W ) < c(T ) < 1. A pure strategy of a player
is a function of s that maps to an element of A. We denote
this game by G1 = (N ,A, s, (r1

j (s, .))j∈N ). A Cournot-Nash
equilibrium for a given state s is a configuration such that
no player can improve its own payoff by unilateral devia-
tion. It is not difficult to see that this one-shot game G1

with perfect state monitoring (the full channel state vector
is assumed to be known by all the players) has at least one
equilibrium.

At this point it is important to mention the constraints im-
posed by this formulation:

• The exact mathematical structure of the payoff function
is assumed to be known by all the players. They are able to
compute the requirement element and reasoning to act in the

game. These assumptions too demanding in the sense that
they may require, for example, lots of signalling, unbounded
capabilities and high complexity. In sensor networks, some
sensors (robots) may not be able to ”compute”complex func-
tions. In some scenarios, one can relax this assumption by
considering a dynamic game. In the dynamic game version
of G1, one can exploit the fact that the game G1 is an ag-
gregative game (no need to know all the actions and states,
the aggregative term should be sufficient).

• The assumption of full information is clearly too demand-
ing in many wireless networks scenarios where the topol-
ogy and network conditions are randomly varying. This
assumption may require too much feedback to the players
and signalling from receivers to transmitters or between the
receivers. The first step in relaxing this assumption is to
consider the partial state information.

Partial state information: Here, we assume that each
player j knows its own channel state hj (own-CSI) and the
distribution µ−j over the states h−j of the other players.
Each player j is able to compute the payoff function given
by

r2
j (sj , µ−j ; a) = Es−j∼µ−j

[
r1
j (s, a) | sj = hj , µ−j

]
.

Let ∆(S−j) be the set of probability measures over S−j ,
equipped with the canonical sigma-algebra. Then, µ−j ∈
∆(S−j). Note that r2

j is defined over Sj × ∆(S−j) × An
where Sj denotes the channel state space of player j. A pure
strategy of player j in this game with partial channel state
observation is a mapping from the given own-state hj , and
the distribution µ−j to the action set A. We denote the
game by G2 = (N ,A, (sj , µ−j), (r2

j )j∈N ). A pure equilib-

rium for the game G2 can be seen as a Bayesian-Nash equi-
librium, and it is characterized by σj : Sj ×∆(S−j) −→ A,
and σj(sj , µ−j) ∈ arg maxãj∈{T,W} r

2
j (sj , ãj , σ−j), ∀sj and

∀j∈ N . Note that sj is own-state and does not necessar-
ily “plays the role” of a type in the classical game theoretic
formulations because the channel state is a realization of a
certain random variable, not an endogenous element of a
player. A second remark is that the consistency relation-
ship between the types and the beliefs should be checked in
games with incomplete information.

Structural result for the Bayesian equilibria We remark that
the pure best response is a threshold strategy in the own
channel state: there exists a state h∗j such that

σ∗j (sj , µ−j) =

{
T if |sj | ≥ |h∗j |
W otherwise.

The result is immediate and follows from the fact that the
function u2

j is monotone in sj .

None of the state is known: The players do not know
any component of the current state. The distributions over
the full states are known in addition to the mathematical
structure of the payoff functions. Now each player j is able
to compute the following payoff function

r3
j (a, µ) = Es∼µ

[
r1
j (s, a)

]
,

where µ ∈ ∆(S). This leads to an expected robust game
which we denote by G3 = (N ,A,S, µ, (r3

j )j∈N ). A pure



strategy for player j in the game G3 corresponds to a func-
tion of µ that gives an element of A.

Only the channel state space is known: Now, we as-
sume that the distribution over the state is also unknown but
the state space S is known. Then, each player can adopt dif-
ferent behaviors depending on its way to see the state space.
The well-known approaches in that case are the maximin ro-
bust and the maxmax approaches (pessimistic or optimistic
approaches) and their variants. The payoff of player j in the
maximin robust game is given by

r4
j (a) = inf

s∈S
r1
j (s, a).

We denote the game by G4 = (N ,A,S, (r4
j )j∈N ). The equi-

libria of G4 are called maximin robust equilibria. Similarly,
The payoff of player j in the maximax robust game is given
by

r̄4
j (a) = sup

s∈S
r1
j (s, a).

2.2 Dynamic game without backoff state
In this section we formulate dynamic access control games
in discrete time. We assume that the channel states are
independent of the actions of the players. We distinguish
three cases:

1. Stochastic game with perfect state observation: The
channel state vector st is observed by all the players and
instantaneous payoff functions are known. In this case, one
can use the classical stochastic game framework to solve the
long-run interaction problem.

2. Stochastic game with partial state information: Each
player observes a component: Its own channel state i.e sj(t)
is observed by player j. Instantaneous payoff functions are
also known. In this case, one can use partially observable
stochastic game tools and dynamic programming over con-
tinuous state space to address the long-term problem.

Each of the above formulations can be with public or pri-
vate signals, perfect or imperfect monitoring for the actions
chosen by the others. Since wireless networks are evolving,
the assumption on observability of the other actions may
not hold. However, due to the fact that our game has an
aggregation structure, a simple signal (message) will be suf-
ficient. Next, we discuss how to deal when no own-CSI are
not available at the transmitter side.

3. Stochastic game without state information: The players
do not observe the channels (no partial component is ob-
served). The players do not known the state space. They
do not know N , they do not know the mathematical struc-
ture of the payoff functions. They do not even know if they
are in a game. However, they are not in blind environment.
We assume that they are able to discover progressively their
own action space A and we assume that each of the players is
able to observe an ACK/NACK as it is the case with the car-
rier sense multiple access (CSMA) with collision avoidance
(CA) with ACK/NACK. Now, a private history up to T ′ is a
collection of own-actions and own ACKs up to T ′. We denote
σ5
j a behavioral strategy of player j. We consider the time

average payoff of the dynamic game i.e lim infT Es(0),σ5F 5
j,T ′

where F 5
T ′ = 1

T ′+1

∑T ′

t=0 rj,t. In this case, different variants
of combined fully distributed payoff and strategy reinforce-
ment learning (CODIPAS-RL) have been developed in [7].
The CODIPAS-RL is a joint and interdependent iterative
scheme to learn both payoff function and the associated op-
timal strategies.

2.3 Stochastic game with backoff state
In the above formulation, the number of retransmission for
the same packet was not taken into consideration. In this
subsection, we formulate the stochastic game with finite
number backoff state per player. Each player j of type θj
can retransmit at most Kj < +∞ times for the same packet.
Assume that each player has a saturated queue. Time is dis-
crete (slotted) and time space is the set of natural numbers.
Assume that the backoff slots are synchronized. The backoff
process in IEEE 802.11 is governed by a decision process if
the duration of per-stage backoff is taken into account:

• every player j in backoff state yj attempts transmission
with probability σ̃nj for every time-slot t;

• If SINRj(s(t), a(t)) ≥ βj the player j succeeds and its
backoff state ynj,t changes to 0;

• otherwise, ynj (t) changes to ynj (t+ 1) = ynj (t) + 1 modulo
(Kj + 1). The number of retransmission by player j for the
same packet is up to the maximum stage Kj .

Note that, depending on the parameters (channel states, ac-
tions, and the thresholds β) several players can be accepted
at the same slot if the admission control conditions are met,
in that case their state goes to zero and their backoff pro-
cesses restart with another packet in the queue.

Next, we describe the evolution of backoff process of each
player. The backoff state process of each player is influ-
enced by the decision of all the active users (to transmit or
not). Depending on the information that are available to the
player, the decision process of player j can be based on the
number of active users, their backoff states, past decisions
and channel states.

In order to have a Markovian backoff state process we ask
the decision process to be Markovian (discrete time 1-step
Markov process). Thus, the class of Markovian strategies
give a Markov decision process with Markov property for
states and strategies. Note that these strategies can be
time-dependent and congestion dependent (we allow time-
inhomogeneous Markov). Each player can count its num-
ber of retransmission which corresponds to its own backoff
stage. Thus, the strategy of player j at time t depends on
n, xj , t. We denote it by unj,xj (t). Next, we define the tran-

sition kernel of the backoff of player j, Qnj (t, s(t), un(t)) =
[qnj,xj ,x′j

(t, s(t), un(t))](xj ,x′j)∈Xj×Xj The probability that a

player j does not succeed under the strategy un is the out-
age probability i.e

qnj,yj ,yj+1(t, s(t), un(t)) = unj,yj (t)×

∑
an−j

∏
j′ 6=j

unj′,t(a
n
j′)

P
(
SINRj(s(t), a

n
−j) < βj)| un(t), anj =T

)



The probability that the player j moves from backoff state
yj < Kj to 0 is the probability of successful reception i.e

qnj,yj ,0(t, s(t), un) = unj,xj (t)×

∑
an−j

∏
j′ 6=j

unj′,t(a
n
j′)

P
(
SINRj(s(t), a

n
−j) ≥ βj)|un(t), anj =T

)
,

and qnj,yj ,yj = 1− qnj,yj ,yj+1 − qnj,xj ,0.

3. MFSG FOR SINR-BASED MAC
In this section, we describe the mean field stochastic game
for SINR-based MAC protocol in large-scale wireless net-
works. Time is discrete (t ∈ N). There are n players
(n ≥ 2). There is a set of channel states are represented
by sn(t) ∈ S = Hn. For every player j, Xj is its own state
space. An individual state has two components as follows:
the type of the player and its backoff state. The type is a
constant during the game. The state of player j at time t is
denoted by x̄nj (t) = (snj (t), xnj (t)) where xnj (t) = (θj , y

n
j (t))

is the type, and ynj (t) is the backoff state of player j at time
t. The set of possible types Θ and backoff states is finite. The
maximum number of retransmission for a player with type θ
is denoted by Kθ. For every player j, Ãj = {T,W} is the set

of actions of that player. Aj : Sj×Xj −→ 2Ãj is a set-valued
map (correspondence) that assigns to each (s, xj) ∈ S × Xj
the set of actions Aj(s, xj) = Aj(sj , xj) = Aj(xj) = {T,W}
that are available to player j. The action of player j at
time t is denoted by anj (t). The global state of the sys-
tem at time t is (sn1 (t), xn1 (t), ..., snn(t), xnn(t)). Denote by
an(t) = (an1 (t), . . . , ann(t)) the action profile at time t. The
system (sn(t), xn(t)) is Markovian once the action profile
an(t) are drawn under Markovian strategies (depends only
on t and the current state). We denote the set of Markovian
strategies by U . We assume that there is no differentiation
in the service and the coefficient p̄j , βj are identical with
the same type. The players are coupled not only via their
instantaneous payoff function r(sn(t), xn(t), an(t)) but also
via the state evolution xn(t) i.e the evolution of xnj (t) de-
pends on the states and the actions of the other players. We
denote by xnj [u](t) the state of player j under the strategy
u.

Define Mn[u,m0](t) to be the current population profile
under the strategy u starting from m0 i.e Mn

x [u,m0](t) =
1
n

∑n
j=1 1l{xnj [u](t)=x}. At each time t, Mn[u,m0](t) is in

the finite set {0, 1
n
, 2
n
, . . . , 1}|X|, and Mn

x [u,m0](t) is the
fraction of players who belong to population of individual
state x. For a subset X1 ⊆ X , define Mn[u,m0](t)(X1) :=
1
n

∑n
j=1 1l{xnj [u](t)∈X1}. M

n[u,m0](t) is also called occupancy

measure under u,m at time t.

Denote by Bnt be the set of players that are in the system at
time t. Each player such that j ∈ Bnt takes part in a one-shot
interaction at time t, as follows. First, each selected player
j ∈ Bnt chooses an action aj,t ∈ A(xj) with probability
u(aj | sj , xj , t) where (sj , xj) is the current state of that
player. The stochastic array u can be interpreted as the
strategy profile of the population. Note that in the standard
model of IEEE 802.11 the strategy is fixed and corresponds
to the exponentially decreasing retransmission probabilities
i.e uθ,yθ = 1

2yθ b0
for some constant b0 > 0.

Denoting the current set of active players by Bnt = {j1, . . . , jk},
and given the actions aj1 , ..., ajk drawn by the k players, we
draw a new set of individual states (x′j1 , ..., x

′
jk

) and the
channel state moves to s′ with probability wns;s′ . Under the
above assumptions, the transition kernel Ln is invariant by
any permutation of the index of the players within the same
type if the Markovian strategy satisfy this property. This
implies in particular that the players are only distinguish-
able through their individual state and type. Moreover,
this means that the process Mn[u,m0](t) is also Marko-
vian. Given any Markov strategy and any vector m of ∆(X ),
where ∆(X ) is the space of probability distributions over
X , the channel state generates an independent process with
distribution ωs. Let Fnt = σ(sn(t′), xn(t′), an(t′), t′ ≤ t)
be the filtration generated by the sequence of states and ac-
tions up to t. The evolution of the system depends on the
decision of the interacting players. Given a history ht =
(sn(0), xn(0), an(0), . . . , sn(t) = s, xn(t), an(t)). xn(t + 1)
evolves according to the transition probability Ln(x′;x, u, s) =
P (xn(t+ 1) = x′ | ht) . The marginal of Ln relatively to player
j is denoted by qnx,x′(u,m, s) and the expected probability
relatively to the channel state is q̃nx,x′(u,m).

3.1 Detailed analysis
In this subsection we analyze in detail the case where the
SINR is reduced to N−1

0 p̄j | h̄j,t |2 1l{aj,t=T} where hj,t = h̄j
corresponds to a good channel state for player j. In this
particular case the system can accept only one player at a
time slot when the channel state of this particular player is
good. Otherwise the player is not accepted due bad chan-
nel states or due to interference from the others. Then, the
blocking probability is the probability that the correspond-
ing player transmits times the probability that at least one
of the others transmits at the same slot in the same inter-
ference range (same class or other classes). If the current
population is observed, a feedback strategy at time t is a
function of m i.e a strategy of a generic player j at time t
has the form g(x, n, t,m). Denote by 1 − ξnxj (u

n,m, s) the
probability that at least one of the others transmits at the
same slot in the same interference range when the generic
user backoff is at level xj = x and the channel state is s. We
assume that the probability that the channel state is h̄ is
ωh̄. Then, the transition kernel of a generic user is detailed
in Appendix. We take the probability of retransmission in

the form unx(t) =
unx (t)

φ(n)
. For the channel state h̄, one gets

ξnx (t, un(t),m(t), h̄) = (1−unx(t))nmx(t)−1
∏
x′ 6=x

(1−unx′(t))nmx′ (t).

We study the process Mn[u,m0](t) in two different ways
represented by the diagram below:

Mn[u,m0](t)
t −→ +∞- $n[u,m0]

m[u,m0](t)

n −→ +∞

? t −→ +∞ - ?

n −→ +∞

?

Figure 1: Non-commutativity of the double limit



For a specific scenario of SINR based access control, we show
that Mn[u,m0](t) converges in probability, as n goes to in-
finity, to m[u,m0](t). This limit may have cycles when t
goes to infinity. Since the limit cycle is different than the
invariant measure of the process $n[u,m0] as n goes to ∞,
we conclude that the two double limits may not coincide.
This leads to a non-commutative diagram (figure 1).

The stationary points under u are the zeros of the function
m 7−→ f̃(u,m). Due to the invariance of the system over the

simplex and the regularity of f̃ , the system has at least one
zero (Poincaré) i.e there exists m∗(u) zero of f̃(u, .). The
question now is to know if such m∗(u) is unique. Since we
are considering types, the stationary points can be reduced
to a singleton for some value of the strategy. Even in the
singleton case, the problem remains because the uniqueness
of a stationary point of the ODE does not imply convergence
to this stationary point. Consider Θ = {1, 2}. In figure 2 we
plot the trajectories of m1,m17,m0 for the strategy (τ = 4

5
)

(u1,0, u1,1, . . . , u1,20) = (
1

2400
,

1

480
,

1

40
,
τ

40
, . . . ,

τ19

40
),

and

(u2,0, u2,1, . . . , u2,20) = (
1

3840
,

1

64
,

1

64
, . . . ,

1

64
)

We denote this strategy by σ1
∗.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Occupancy measure for stage 0 (K=0)

O
cc

up
an

cy
 m

ea
su

re
 fo

r 
st

ag
es

 1
 a

nd
 1

7 
(K

=
1 

&
 K

=
17

)

 

 
K=1
K=17

Figure 2: Limit cycle

As mentioned before, the double limit need not to be com-
mutative i.e

lim
n

lim
t
Mn[u](t) 6= lim

t
lim
n
Mn[u](t).

This phenomenon is in part due to the fact that the station-
ary distribution of the process ωn is unique under irreducibil-
ity conditions but the dynamics can lead to a limit cycle. As
a consequence, many techniques and approaches based on
stationary regime (such as fixed-point equation techniques,
limiting of frequencies state-actions approaches in sequence
of stochastic games, replica methods, interacting-particle
systems, statistical independence in large-scale interaction
etc) need some justification. The non-commutativity phe-
nomenon suggests to be careful about the use of stationary

population state equilibria as the outcome prediction and
the analysis of equilibrium payoffs since this equilibrium may
not be played. Limit cycles are sometimes more appropriate
than the stationary equilibrium approach.

Proposition 1. The process Mn
(θ,yθ)(nt) converges in prob-

ability to mθ,yθ (t) which is the solution of the system of
ODEs:

ṁθ,0 = ωh̄ [ūθ(t)(1−γ(t))− uθ,0(t)mθ,0 + uθ,Kθ (t)mθ,Kθγ(t)]
+(1− ωh̄) (−uθ,0(t)mθ,0 + uθ,Kθ (t)mθ,Kθ )

ṁθ,yθ = ωh̄ [uθ,yθ−1(t)mθ,yθ−1γ(t)− uθ,yθ (t)mθ,yθ ]
+(1− ωh̄) (uθ,yθ−1(t)mθ,yθ−1 − uθ,yθ (t)mθ,yθ ) ,

yθ ∈ {1, ...,Kθ}, θ ∈ Θ

where uθ,yθ (t) is the strategy of a player from class θ at

time t in backoff state yθ, ūθ(t) =
∑Kθ
yθ=0 uθ,yθ (t)mθ,yθ (t)

and γ(t) = 1− e−
∑
θ ūθ(t) for θ ∈ Θ, .

Here ūθ(t) is the mean field limit of the average attempt
rate, γ(t) is the blocking probability and ωh̄ is the probabil-
ity of having a good channel. A detailed proof is given in
Appendix.

The equations of the system of ODEs can be intuitively un-
derstood. For each channel configuration, the first term and
second term on the right-hand side are respectively the in-
flow caused by blocking probability in the yθ − 1 backoff
stage and the outflow caused by attempts in the yθ back-
off stage times the probability of the corresponding channel
state.

The fixed-point equations of the SINR-based access control
with several classes of users are obtained by solving the rest
point relation of the above system (by letting the right hand
side equal to zero, the stationary points give a fixed point
relation between γ and v). The decoupling assumption or de-
coupling property consists to say that when the size n goes
to infinity, the users becomes mutually independent. Note
that this assumption may not hold in general in stationary
regime, see the work [5] for IEEE 802.11. This observation
concludes the conjectures made in [1, 6] but does not con-
clude the performance analysis of access control networks.
In contrast it opens new questions.

Q1: What are the cases under which the fixed-point
equations and the decoupling assumptions are valid?

Clearly, if the ordinary differential equation has a unique
global attractor, then the fixed-point equations and the de-
coupling assumptions are valid, and the diagram (the double
limit) is well-defined and is commutative.

The problem is that the rest point (even when it is unique)
may not be an attractor. It is because the uniqueness of
rest point (also called stationary point, equilibrium states,
steady states etc) does not necessarily implies the stability of
this stationary point. One may have limit cycle and oscillat-
ing behaviors. In this configuration, the rest point is linearly
unstable (the Jacobian of the system of ODE is not negative
definite at the rest point) for some value of the strategy and
the system has a limit cycle that contains the rest point at



this relative interior. The phenomenon is related to what
is known in evolutionary game dynamics where cycling be-
havior can be observed. A typical example is the class of
Rock-Paper-Scissor games.

The presence of a limit cycle does not allow us to work with
the stationary point because the system will never be at
this state if the starting point is different. This says that the
statistical independence hypothesis between the users state at
the limit does not hold in stationary regime. Note that the
classical law of large numbers cannot be used here because
even if the users act separately, they are correlated via the
interaction. Thus, we need a more elaborated result that
exploit the specific structure of our interaction problem to
show the convergence. The blocking transmissions from one
user is due to a transmission from another user’s at the same
time slot or it is due bad channel conditions. The blocking
transmissions affect the backoff state evolution of both of
them. Thus, the individual states are interdependent.

Q2: What about the validity of the performance
metrics at the limit?

In presence of limit cycle, we suggest to consider the time
average performance i.e

lim
t→+∞

1

t

t∑
t′=1

rn(t′),

where rn(t′) is the instantaneous performance metric at time
t′ when there are n users. If the limit is not well-defined we
replace by lim inf or lim sup in the above definition.

In some scenarios, the time-average of the trajectory of m(t)
may converge to the rest point m∗ but the convergence
does not hold in general. This is because the time-average
of the cross-products differs from the product of the time-
average of each of them i.e limt

1
t

∫ t
0
mx(s)mx′(s) ds 6=(

limt
1
t

∫ t
0
mx(s) ds

)(
limt

1
t

∫ t
0
mx′(s) ds

)
.More generally,

lim
t

1

t

∫ t

0

(
k∏
l=1

mxl(s)

)
ds 6=

k∏
l=1

(
lim
t

1

t

∫ t

0

mxl(s) ds

)
The above relation can be seen in some sense as a violation of
propagation of chaos property at the mean field limit. That
is, in order to write the performance along the full trajec-
tory, the convergence needs to be proved. In particular, if
one would like to work with stationary distributions of the
controlled Markov process or the fixed-point equation then
a deep convergence/stability analysis is needed.

Q3: Is it possible to stabilize the system?

The answer to this question relies on the existence of strat-
egy such that the resulting mean field limit is asymptotically
stable. We observed that the system can be stabilized by
only changing the strategy u to be

(u1,0, u1,1, . . . , u1,20) = (
1

2400
,

1

480
,

1

40
,
τ

40
, . . . ,

τ19

40
),

and

(u2,0, u2,1, . . . , u2,20) = (
1

3840
,

1

64
,

1

64
, . . . ,

1

64
)

with τ = 1
2

and the linearly stability property of the result-
ing stationary point can be easily checked by looking the
real part of the eigenvalues. We denote this strategy by σ2

∗.
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Figure 3: Stable behavior

These observations open several directions. Since we have
seen that the system can be globally stable under some
strategies, it is natural to ask what is the set of strategies un-
der which the resulting mean field limit has a unique global
attractor.

The answer to this question is very important because it
leads to the validity domain of the decoupling assumptions
and the fixed-point equations. The question Q3 is redefined
as follows. LetD be the set of stationary controls u such that
the mean field dynamics ṁ = f(u,m) is globally convergent.

We are not able to determine completely the domain D but
we have the following results:

• The domain D is not empty because it contains the size-
independent strategy with geometric law. Also the strategy
σ2
∗ is in the domain D.

• D ( U : D is a subset of U but different than U because
σ∗1 is not in D.

Following the same line, we define

D′ = {u ∈ U , ṁ = f̃(u,m) has no limit cycle}

Since the original problem is to optimize the performance in
an autonomous manner, the dynamic optimization problem
becomes

sup
u∈D′

perf(u,m).

A strategy u∗, solution of this problem give a maximal per-
formance under the non-cycling conditions and stationary
strategies. The obtained performance can be less than the
value of maxu∈U perf(u,m). In order to have a connection
between the stability and efficiency, one can compare the
quantity | supu∈D′ perf(u,m)−maxu∈U perf(u,m)| which we
refer to the price of stabilization of the fixed-point analysis.



Remark Our setting can be extended to the path loss
case. In place of |hj |2, we can consider the path loss model:

1
dα
j,AP

where dj,AP =‖ (xj , yj , zj)−(xAP , yAP , zAP ) ‖2 is the

distance from the node j located at (xj , yj , zj) to the AP (at
(xAP , yAP , zAP )), α ≥ 2 is the pathloss exponent. When the
players move around the coverage region, the components
xj , yj will be random variables.

3.2 Differential population game
In this subsection we provide a mean field equilibrium char-
acterization of the differential population game [8] where
each generic react to the mean field for a finite horizon [0, T ].
We first start by a payoff of the form r̄(u,m).

(∗) sup
u

[ḡ(mT ) +

∫ T

t

r̄(u(t′),m(t′)) dt′]

subject to the mean field dynamics

ṁ(t) = m0 +

∫ t

0

f̃(u(t′),m(t′)) dt′.

Definition 1.We say the pair of trajectories (u∗(t),m∗(t))t≥0

constitutes a consistent mean field response if u∗(t) is an
optimal strategy to be above problem (*) where m∗(t) is
the mean field at time t and u∗(t) produces the mean field
m[u∗,m0](t) = m∗(t)

A consistent mean field response is characterized by a backward-
forward equation

v̄(T,m) = ḡ(m)

−∂tv̄(t,m) = supu

{
r̄(u,m(t)) + 〈∇mv̄(t,m), f̃(u,m)〉

}
m(t) = m0 +

∫ t
0
f̃(u∗(t′),m(t′)) dt′

Next, we consider a individual state-dependent payoff r(x, u,m).
Define

F 1
T (x, u,m) = g(mT ) +

∫ T

t

r(x(t′), u(t′),m(t′)) dt′

where g is a terminal payoff.

(∗∗) sup
u

[g(mT ) +

∫ T

t

r(x(t′), u(t′),m(t′)) dt′]

subject to the mean field dynamics

ṁ(t) = m0 +

∫ t

0

f̃(u(t′),m(t′)) dt′.

Recall that x(t) = x[u](t) is a continuous time jump Markov
process under u. We denote by q̄ the infinitesimal generator
of x[u](t).

Definition 2.We say the pair of trajectories (u∗(t),m∗(t))t≥0

constitutes a mean field equilibrium if {u∗(t)}t≥0 is a mean
field response to be above problem (**) where m∗(t) is the
mean field at time t and u∗(t) produces the mean field
m[u∗,m0](t) = m∗(t)

Proposition 2. Consider differential population game prob-
lem a single type. Assume that there exists a unique pair
(u∗,m∗) such that

(a) there exists a bounded, continuous differentiable function

ṽx : [0, T ] × R|X|, ṽ∗x(t,m) = v(t, x,m) and differentiable

function m∗ : [0, T ] −→ R|X|, m∗(t) = m[u∗,m0](t) solu-
tion to the backward-forward equation:

v(T, x,m) = gx(m),

−∂tv(t, x,m) = supu

{
r(x, u,m) + 〈∇mv(t, x,m), f̃(u,m)〉

+
∑
x′∈X q̄xux′(m)v(t, x′,m)

}
m(t) = m0 +

∫ t
0
f̃(u∗(t′),m(t′)) dt′

x(t) = x ∈ X ,m(t) = m,m0 ∈ ∆(X )

(b) u∗(x) maximizes of the function

r(x, u,m(t))+〈∇mv(t, x,m), f̃(u,m)〉+
∑
x′∈X

q̄xux′(m)v(t, x′,m)

where q̄xux′(m) is the transition of the infinitesimal genera-
tor of x(t) under the strategy u and m,

∑
x′ q̄xux′(m) = 0,

the term
∑
x′∈X q̄xux′(m)v(t, x′,m) is∑
x′ 6=x

q̄xux′(m)(v(t, x′,m)− v(t, x,m)),

m[u∗,m0](t) = m∗(t)

Then, (u∗(t),m∗(t))t≥0 with m∗(t) = m[u∗,m0](t) consti-
tutes a mean field equilibrium and ṽ∗x(t,m∗) = v(t, x,m∗) =
FT (u∗,m∗).

Similarly, for multiple types the systems becomes

vθ(T, yθ,m) = gθ,yθ (m),

−∂tvθ(t, x,m) = sup
uθ

{
rθ(yθ, uθ,m)+〈∇mvθ(t, x,m), f̃(u,m)〉

+
∑
y′
θ
q̄yθuθy′θ (m)vθ(t, y

′
θ,m)

}
mθ(t) = mθ

0 +
∫ t

0
f̃θ(u∗(t′),m(t′)) dt′

yθ(t) = yθ,m(t) = m,m0 ∈ ∆(X ), θ ∈ Θ.

Note that this result has limited applications because in gen-
eral the arg max may not be reduced to a singleton. How-
ever, for some specific cases such as a particular case of drift
limit and strictly monotone payoff, the Proposition can be
applied.

Invader strategy Consider now that a new player j enters
in the infinite population and adopts a strategy u′ different
than u. Assume that the (instantaneous) payoff function has
the form r(x(t), u′(t),m[u,m0](t)) after taking expectation
over the channel states. Note that u′ is not in m[u,m0] be-
cause the “effect” of player j is negligible in the infinite pop-
ulation. However, the individual state behavior of player j
is influenced by m and u. Namely, the infinitesimal genera-
tor is q̄xu′x′(u,m). Then, an optimal response to (u,m) for
finite horizon T is a strategy u′ such that

u′ ∈ arg maxFT (u′, u,m)

where

FT (u′, u,m) = E
(
g(xj(T ),m(T ))

+

∫ T

0

r(xj(t), u
′
j(t),m[u,m0](t))dt | xj(0),m0

)
.



In particular a strategy u which is optimal response to itself
and which produces m is an appropriate equilibrium con-
figuration. Now, if the fraction of invader increases: the
fraction of players which uses u′ is size ε > 0 and still u is
resilient, one gets the notion of RID (resilient to invasion by
small fraction of deviants).

4. CONCLUSIONS
In this paper, we have studied mean field asymptotics of
SINR-based access control in wireless networks. We have
shown that if the strategies are in order of O( 1

n
) and if chan-

nel states and SINR-thresholds are well-chosen such that the
second moment of the number of backoff state jumps remains
bounded then a mean field dynamics is observed. The mean
field dynamics may have a limit cycle for some strategy and
the cycle disappears for some other strategies. Finally, we
have derived mean field equilibrium characterization under
specific payoff function at the infinite population limit.
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APPENDIX

Proof. of the Proposition 1: To prove the mean field
convergence, we use the following steps: To simplify the no-
tations, we will omit the dependency in s at many places.
• Compute the blocking probability for a generic player in
each class: Show that this is the probability that the corre-
sponding user’s channel is good times the probability that
he/she transmits times the probability that at least one of

the others transmits at the same slot in the same interference
range (same class or other classes).

• Denote by 1 − ξn,θx (u,m, s) the probability that at least
one of the others transmits at the same slot in the same
interference range when the generic user backoff is at level s.
Then, the transition probabilities qn,θx,x′(u,m, s) of the backoff

state of a generic user is given by

for x = 0 :
qn0,1(t, un(t),m(t), h̄) = un0 (t)(1− ξn0 (t, un(t),m(t), h̄))

qn0,0(t, un(t),m(t), h̄) = 1− un0 (t) + un0 (t)ξn0 (t, un(t),m(t), h̄)

x ≥ 2, qn0,x(t, un(t),m(t), h̄) = 0

for x ∈ {1, . . . ,K − 1} :
qnx,x+1(t, un(t),m(t), h̄) = unx(t)(1− ξnx (t, un(t),m(t), h̄))

qnx,x(t, un(t),m(t), h̄) = 1− unx(t)
qnx,0(t, un(t),m(t), h̄) = unx(t)ξnx (t, un(t),m(t), h̄)

x′ /∈ {0, x, x+ 1}, qn
x,x′ (t, u

n(t),m(t), h̄, h̄) = 0

for x = K :
qnK,0(t, un(t),m(t), h̄) = unK(t)

qnK,K(t, un(t),m(t), h̄) = (1− unK(t))

x /∈ {0,K}, qnK,x(t, un(t),m(t), h̄) = 0

unx(t) =
unx (t)

φ(n)

ξnx (t, un(t),m(t), h̄) = (1− unx(t))nmx(t)−1
∏
x′ 6=x

(1− unx′ (t))
nmx′ (t)

•We take the function φ(n) in order of n. For example, the
family of sequences

φε1,ε2,ε3(n) = ε1n+ ε2 log(n) + ε3, ε1 > 0, ε2, ε3 ≥ 0

is appropriated. Using the fact that (1− uθ,yθ
n

)n −→ e−uθ,yθ ,

we can prove that ξn,θx (u,m, s) has a limit when n goes to
infinity. For un = u

φε1,ε2,ε3 (n)
the limit is given by

e−
∑
x ux(t)mx(t) = e

−
∑
θ∈Θ

∑
yθ
uθ;yθ

(t)mθ,yθ
(t)
.

Define block-diagonal the matrix

Qn(u,m, s) = diag[Qn,θ(u,m, s)]θ∈Θ;

It is easy to see that n[qnx,x′(u,m, s) − 1l{x=x′}] has a limit
when n goes to infinity. In addition, the resulting function
is Lipschitz. We deduce that nm[Qn(u,m, s)−I] has a limit
which is denoted by f(u,m, s). The vector f(u,m, h̄) is given
by fθ,0 = ūθ(t)(1−γ(t))− uθ,0(t)mθ,0(t) + uθ,Kθ (t)mθ,Kθ (t)γ(t)

fθ,yθ = uθ,yθ−1(t)mθ,yθ−1(t)γ(t)− uθ,yθ (t)mθ,yθ (t),
yθ ∈ {1, ...,Kθ}, θ ∈ Θ

The vector f̃ is obtained by taking the expectation over the
channel state distribution.

• Following similar lines as in the Kurtz’s theorem, we show
that Mn(xnty) converges in probability to m[u,m0](t) and
for any T ′ > 0 and ε > 0,

P

(
sup

t∈[0,T ′]
‖Mn(nt)−m[u,m0](t)‖ > ε

∣∣∣Mn(0)=m0, u
n(t)=u

)
goes to 0 when n goes to infinity, where

d

dt
mθ,yθ (t) = f̃θ,yθ (u(t),m(t)), m(0) = m0.



Since Mn(.) is a discrete Markov decision process over a
finite set, we denote by Λn the set of all the possible jumps
of Mn(t). An element of Λn has the form m′ − m where
Mn(t) = m. Then, for a given s, Mn(t) can be written as a
function of the jumps:

Mn(t) = Mn(0) +

t−1∑
k=0

∑
λn∈Λn

λn1l{Mn(k+1)−Mn(k)=λn}.

Let LMn(k),λn be the probability to have a jump λn from
Mn(k). Then, Mn(t) can be rewritten as

Mn(t) = Mn(0) +

t−1∑
k=0

∑
λn∈Λn

λn1l{Mn(k+1)−Mn(k)=λn}

+

t−1∑
k=0

∑
λn∈Λn

λnLMn(k),λn −
t−1∑
k=0

∑
λn∈Λn

λnLMn(k),λn

= Mn(0) +

t−1∑
k=0

ςn(k) +

t−1∑
k=0

fn(u,Mn(k))

where

ςn(k) =
∑

λn∈Λn

λn[1l{Mn(k+1)−Mn(k)=λn} − LMn(k),λn ]

and fn(u,m, s) is the expected drift under the strategy u.
Let Fnt = σ(Mn(0), . . . ,Mn(t)). It is clear that the con-
trolled process zn(t) =

∑t−1
k=0 ςn(k) is a martingale with

respect to Fnt .

• Substituting t by xnty we get

Mn(xnty) = Mn(0) + zn(xnty) +

xnty−1∑
k=0

fn(u,Mn(k)).

• Using the fact that nfn(u,m, s) = nm[Qn(u,m, s) − I]
converges to f where the function m 7−→ f(u,m, s) is local-
ity Lipschitz in m and u, we have that the Cauchy problem
associated to the ordinary differential equation (ODE){

ṁ(t) = f(u(t),m(t))
m(0) = m0 ∈ ∆(X )

has a unique solution which is m(t) := m[u,m0](t).

Next, we evaluate the gap betweenMn(xnty) andm[u,m0](t).

Mn(xnty)−m(t) = Mn(0)−m0 + zn(xnty)

+

xnty−1∑
k=0

fn(u,Mn(k))−
∫ t

0

f(u,m(t′))dt′

= Mn(0)−m0 + zn(xnty) +Bn,t.

where

Bn,t =

xnty−1∑
k=0

fn(u,Mn(k))−
∫ t

0

f(u,m(t′))dt′.

The stochastic term Bn,t can be decomposed in three parts:

Bn,t =

3∑
j=1

Bjn,t

where

B1
n,t =

xnty−1∑
k=0

fn(u,Mn(k))−
xnty−1∑
k=0

1

n
f(u,Mn(k)),

B2
n,t =

xnty−1∑
k=0

1

n
f(u,Mn(k))−

xnty−1∑
k=0

1

n
f(u,m(

k

n
)),

B3
n,t =

xnty−1∑
k=0

1

n
f(u,m(

k

n
))−

∫ t

0

f(u,m(t′)) dt′.

We estimate each of the processes Bjn,t.

• Bound for the first term B1
n,t. Let ε̄ > 0. Using the

fact nfn converges to f, for n sufficiency large, one has

‖ nfn(u,Mn(k))− f(u,Mn(k)) ‖≤ ε̄.

Thus,

‖ B1
n,t ‖ =‖

xnty−1∑
k=0

fn(u,Mn(k))−
xnty−1∑
k=0

1

n
f(u,Mn(k)) ‖

≤
xnty−1∑
k=0

‖ fn(u,Mn(k))− 1

n
f(u,Mn(k)) ‖

=
1

n

xnty−1∑
k=0

‖ nfn(u,Mn(k))− f(u,Mn(k)) ‖

≤ 1

n
ε̄ xnty

Hence, ‖ B1
n,t ‖≤ ε̄ xntyn , ∀t.

• Bound for the third term B3
n,t. To estimate the term

B3
n,t, we combine Lipschitz property of the function f rela-

tively to m. Recall that f is c0−Lipschiz in m if ∀(m,m′), ‖
f(u,m) − f(u,m′) ‖≤ c0 ‖ m − m′ ‖ . This implies most
linear growth i.e there exists c′0 > 0 such that ‖ f(u,m) ‖≤
c′0(1+ ‖ m ‖), and the Cauchy problem starting at m0 has
a unique solution.

‖ B3
n,t ‖ =‖

xnty−1∑
k=0

1

n
f(u,m(

k

n
))−

∫ t

0
f(u,m(t′)) dt′ ‖

≤‖ −
∫ t

xnty
n

f(u,m(t′)) dt′

+

xnty−1∑
k=0

1

n
f(u,m(

k

n
))−

∫ k+1
n

k
n

f(u,m(t′)) dt′ ‖

≤‖
∫ t

xnty−1
n

f(u,m(t′)) dt′ ‖

+

xnty−1∑
k=0

‖
1

n
f(u,m(

k

n
))−

∫ k+1
n

k
n

f(u,m(t′)) dt′ ‖

There is c3(T ) > 0 such that the first part is less than c3(T )
n

by Lebesgue integrability of f and Lipschitz. The term in

the sum of the second part is less than
c′3(T )

n2 . By summation,
one gets:

‖ B3
n,t ‖≤

c′3(T )

n2
× xnty +

c3(T )

n
−→ 0.

• Bound for the second term B2
n,t. We use the Lipschitz



property to estimate the norm of B2
n,t.

‖ B2
n,t ‖ =‖

xnty−1∑
k=0

1

n
f(u,Mn(k))−

xnty−1∑
k=0

1

n
f(u,m(

k

n
)) ‖

≤
xnty−1∑
k=0

1

n
‖ f(u,Mn(k))− f(u,m(

k

n
)) ‖

≤ c0
n

xnty−1∑
k=0

‖Mn(k)−m(
k

n
) ‖

• Consider the term ‖Mn(xnty)−m(t) ‖ .

‖Mn(xnty)−m(t) ‖

=‖Mn(xnty)−m(
xnty
n

) +m(
xnty
n

)−m(t) ‖

≥‖Mn(xnty)−m(
xnty
n

) ‖ − ‖ m(
xnty
n

)−m(t) ‖

The expression ‖ m( xnty
n

)−m(t) ‖ is in order of c2(T )
n

. Sup-
pose that Mn(0) −→ m0 in probability. Then, for n suffi-
ciently large, ∀t ∈ [0, T ], one has,

Mn(xnty)−m(xnty) = Mn(0)−m0 + zn(xnty) +Bn,t.

The norm can be bounded as

‖Mn(xnty)−m(t) ‖≤ ε̄+ ‖ zn(xnty) ‖ + ‖ Bn,t ‖

≤ 4ε̄+ ‖ zn(xnty) ‖ +
c0
n

xnty−1∑
k=0

‖Mn(k)−m(
k

n
) ‖

Next, we estimate the norm of the process zn(t) by using
Burkholder inequality [3, 4] for zero-mean martingales.

E

(
sup
t∈[0,T ]

‖ zn(xnty) ‖2
)

= E

(
sup
[0,T ]

‖
xnty−1∑
k=0

ςn(k) ‖2
)

≤ c1(T )

xnty−1∑
k=0

E ‖ ςn(k) ‖2

(1)

We check that for our SINR-based access control if each
player strategy un is in order of O( 1

n
) then, we distinguish

two classes: (i) number of jumps after a successful transmis-
sion, (ii) number of jumps after a collision.

E‖ςn(k) ‖2= E ‖
∑

λn∈Λn

λn[1l{Mn(k+1)−Mn(k)=λn}−LMn(k),λn ] ‖

≤‖
∑

λn∈Λn

λn[1l{Mn(k+1)−Mn(k)=λn} ‖
2 + ‖

∑
λn∈Λn

LMn(k),λn ‖
2

‖
∑

λn∈Λn

λn[1l{Mn(k+1)−Mn(k)=λn} ‖
2 + ‖ fn(Mn(k)) ‖2

By taking the conditional expectation relatively to Fnt , each

of the terms is in order of
c′1(T )

n2 . By combining with (1), we
get:

E

(
sup
t∈[0,T ]

‖ zn(xnty) ‖2
)
≤ c1(T )

c′1(T )

n2
xnTy. (2)

This means that on a sample path where the random process

supt∈[0,T ] ‖ zn(xnty) ‖≤ ε̄ one gets

‖Mn(t)−m(
t

n
) ‖≤ 5ε̄+

c0
n

t−1∑
k=0

‖Mn(k)−m(
k

n
) ‖ (3)

By taking Πt =‖ Mn(t) − m( t
n

)) ‖≥ 0, ε = 5ε̄ > 0, µ̄k =
c0
n
> 0 one has, Πt ≤ ε+

∑t−1
k=0 µ̄kΠk. By (discrete) Gron-

wall inequality, we get Πt ≤ εe
∑t−1
k=0

µ̄k = εe
c0
n
t.

• We deduce that

P

(
sup

t∈[0,nT ]
‖ zn(xnty) ‖≤ ε̄

)

≤ P

(
sup

t∈[0,nT ]
‖Mn(t)−m(

t

n
) ‖≤ ε+

c0

n

nT−1∑
k=0

‖Mn(k)−m(
k

n
) ‖
)

≤ P

(
sup

t∈[0,nT ]
‖Mn(t)−m(

t

n
) ‖≤ εec0

xnTy
n

)
.

By (2), we know that P
(

supt∈[0,nT ] ‖ zn(xnty) ‖2≤ ε̄
)
−→

1 when n −→ +∞. Hence,

P

(
sup

t∈[0,nT ]

‖Mn(t)−m(
t

n
) ‖> εec0

xnTy
n

)
−→ 0.

This completes the proof.

Proof. sketch Proof of Proposition 2: Ifm∗(t) = m∗(t;u∗(t))
solution of the mean-field limit dynamics which is substi-
tuted into the Hamilton-Jacobi-Bellman (HJB) equation,
the differential population game results in the solutions of a
novel HJB equation given by

f̃∗ = f̃(u,m∗(t)), r∗ = r(., u,m∗(t)).

Since the new PDE admits a solution and the control u∗x(t) =
ux(.) optimizes the righthand side is a best response to m∗;
this means that the optimal response of the individual player
generates a mean-field limit which is a solution of ODE
(thus, consistent) and the players compute their controls
as a function of this mean-field, it follows that (u∗;m∗) is a
mean-field equilibrium


