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Abstract—We consider a general class of Rician fading
multiple-input multiple-output (MIMO) channels, modeled by
a random, non-centered channel matrix with a variance profile,
i.e., the independent elements of the matrix are allowed to have
each a different mean and variance. This channel model is
motivated by the recent interest in cooperative small-cell systems
where several densely deployed base stations (BSs) cooperatively
serve multiple user terminals (UTs). We study the fluctuations
of the mutual information of this channel under the form of a
central limit theorem (CLT) and provide an explicit expression
of the asymptotic variance. The result can be used to compute
an approximation of the outage probability of such channels.
Although the derived expressions are only tight in the large
system limit, we show by simulations that they provide very
accurate approximations for realistic system dimensions.

I. INTRODUCTION

With an exponentially growing demand for mobile data

services, operators are facing the challenge of how to increase

the capacity of their networks: No breakthroughs in coding

or modulation schemes are to be expected and additional

spectrum resources are scarce [1]. This development has

stimulated research on interference cancellation techniques [2],

multicell processing [3], and cognitive radio [4] to improve

the spectral efficiency of today’s wireless networks. However,

none of these techniques is likely to carry the expected

increase in mobile data traffic alone and a further network

densification seems necessary. Since simply deploying more

macro cell base stations (BSs) causes prohibitive capital and

operational expenditures, a new concept of massive network

densification, known as “Small-Cell Networks (SCNs)”, is of

current investigation [5]. In short, SCNs are based on the

idea of a very dense deployment of self-organizing, low-cost,

low-power BSs which could potentially provide unprecedented

network capacities in an economically viable way.

Although a promising concept, SCNs pose also many new

challenges to the system design. Among numerous other

reasons (see, e.g., [5]), this is because smaller cell sizes

cause significant changes to the wireless link. With necessarily

lower antenna heights, the wave propagation becomes less

predictable and the channels between the BSs and the user

terminals (UTs) are likely to contain strong line-of-sight (LOS)

components. Moreover, some form of cooperation between

the BSs becomes mandatory in highly mobile environments

since hard handovers between the small-cell BSs would occur

otherwise far too frequently.

We consider in this paper a general channel model, well-

suited for the study of cooperative small-cell systems. More

precisely, we assume a Rician fading channel, where each

complex channel gain between a transmitter and a receiver

is allowed to have a different mean and variance. The latter

assumption is relevant to cooperative small-cell systems since

a UT might be simultaneously served by multiple BSs to each

of which it has a channel with a different path loss. The aim of

this paper is to study the fluctuations of the mutual information

of this channel around its mean, or more precisely around a

deterministic approximation of its mean [6], when the channel

dimensions grow large. The result is established under the

form of a central limit theorem (CLT) and can be used, e.g.,

to compute a close approximation of the outage probability.

The fluctuations of the mutual information around its deter-

ministic approximation have been studied in several works. For

channel matrices with Gaussian entries, the replica method, an

approach borrowed from mechanical statistics, has been often

pushed forward. Although not fully mathematically rigorous,

this method has provided exact results for Rayleigh [7] and

Rician fading [8] channels with a separable variance profile.

The use of advanced tools of random matrix theory allowed

the treatment of more sophisticated channel models and to

provide sound mathematical proofs. Rayleigh fading channels

with a separable variance profile and a general variance

profile with arbitrary colored noise were considered in [9] and

[10], respectively. Also more general channel matrix models

composed of independent and identically distributed (i.i.d.)

entries, not necessarily Gaussian, and a deterministic Rician

component [11] and channel matrices with centered entries

and a general variance profile [12] have been treated recently.

The case of a channel matrix with a general variance profile

and a Rician component has not been covered so far.

It shall be noticed that although Theorem 1 is a by-product

of [6], the fluctuation results presented in this contribution

(Theorem 3) are neither by-products of [12] (where no Rician

component appears) nor of [10] (see also Remark 1 below). It

is indeed customary, and somehow unfortunate, in large ran-

dom matrix theory that new computations must be performed

from the very beginning whenever a substantial change of the

model (with respect to previously studied models) is consid-

ered. This is the case in this work. Thus, apart from being of

practical interest for the performance analysis of cooperative

small-cell systems, our result is also a novel contribution to

the field of random matrix theory in two directions: a) we

give a comprehensive outline of the proof of Theorem 3, b)

we provide a straightforward way of computing the variance

based on the fact that it can be written as the logarithm
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Fig. 1. Schematic system model for the case M = 2.

of a well-defined Jacobian matrix. We would also like to

stress that this formula for the variance, which was already

used in [10] in a different context, is: (i) straightforward,

(ii) can certainly be extended to other complex models and

circumvents a complete mathematical development1 which is

usually extremely involved, cf. [12], [9], [13], (iii) and applies

beyond the range of the replica method.

II. SYSTEM MODEL

We consider a multi-cell, Rician fading, uplink channel

from n single-antenna UTs to B BSs, each equipped with

M antennas. The BSs are connected to a central station (CS)

via orthogonal, delay- and error-free backhaul links of infinite

capacity. We assume that the CS jointly processes the received

signals from all BSs. This model corresponds to a cooperative

small-cell system where several BSs are connected together

to a cluster or “virtual cell” [5] which appears as a single,

distributed BS to the UTs. Apart from providing the well

known gains of multi-cell processing (network MIMO) [3],

virtual cells are mainly used in this context to reduce the

number of handovers between the small cells. A schematic

diagram of the system model is shown in Fig. 1. The stacked

receive vector of all BSs y = [y1, . . . , yBM ]
T ∈ C

BM
at a

given time reads

y = Hx+ n

where x = [x1, . . . , xn]
T ∈ C

n
is the vector of the transmitted

signals of all UTs, H = [HT

1 · · ·HT

B ]
T ∈ C

BM×n
is the

aggregated channel matrix from all UTs to all BSs and

n ∼ CN (0, ρIBM ) is a vector of additive noise. The UTs

are subject to the transmit power constraint E
[
|xj |2

]
≤ 1, ∀j.

We model the channel from the UTs to the bth BS by the

channel matrix Hb ∈ C
M×n

whose elements are given as

[Hb]m,k =

√
(1− κbk) ℓbk

n
wb

mk

︸ ︷︷ ︸
Rayleigh component

+

√
κbk ℓbk
n

ejφ
b
mk

︸ ︷︷ ︸
LOS component

1Although its rigorous justification remains based on a posteriori mathe-
matical developments.

where the wb
mk are i.i.d. standard complex Gaussian random

variables, ℓbk is the inverse path-loss and κbk ∈ [0, 1] the

Rician parameter of the channel between UT k and BS b,
and φbmk ∈ [0, 2π) is the phase of the specular compo-

nent of the channel between UT k and the mth antenna of

BS b. In general, the larger κbk, the more deterministic is

the channel; for κbk = 0, the channel is purely Rayleigh

faded. Define the matrices Σ = [ΣT

1 · · ·ΣT

B ]
T ∈ R

BM×n
+

and A = [AT

1 · · ·AT

B ]
T ∈ C

BM×n
, where the matrices

Σb ∈ R
M×n
+ and Ab ∈ C

M×n
are given as

[Σb]m,k = (1− κbk)ℓbk , [Ab]m,k =

√
κbkℓbk
n

ejφ
b
mk .

Under these assumptions, the elements [H]i,j of the aggregated

channel matrix H are independent, circular symmetric com-

plex Gaussian random variables with mean aij and variance

σ2
ij/n, where aij and σ2

ij are the (i, j) elements of the matrices

A and Σ, respectively.

Assuming that all UTs apply complex Gaussian codebooks

and that the channel H is fully known at the CS, the normal-

ized ergodic mutual information of the channel is given by

I(ρ) = E [I(ρ)], where

I(ρ) = 1

N
log det

(
IN +

1

ρ
HHH

)

and we defined N = BM . In the next sections, we provide

a deterministic approximation V (ρ) of I(ρ) and study the

fluctuations of the random variable N(I(ρ) − V (ρ)) under

the assumption that N and n grow large at the same speed.

III. DETERMINISTIC APPROXIMATION OF I(ρ)

For fixed size dimensions, finding a closed-form expression

for the ergodic mutual information I(ρ) is only possible in

certain academic cases, for example when the channel matrix

H is standard complex Gaussian [14]. For more realistic

scenarios, the study of the mutual information has often been

performed in the asymptotic regime, i.e., when N,n→ ∞ in

such a way that

0 < lim inf
N

n
≤ lim sup

N

n
<∞ .

However, even in the asymptotic setting, the mutual informa-

tion still does not have a closed-form expression, in general.

Deterministic quantities which depend solely on the statistical

properties of the channel and which are given as the solution of

several implicit equations are therefore introduced. As we will

see next, such quantities play a key role for the approximation

of the mutual information and its fluctuations.

For j ∈ {1, . . . , n} and i ∈ {1, . . . , N}, define the matrices:

Dj = diag
(
σ2
1j , . . . , σ

2
Nj

)
, D̃i = diag

(
σ2
i1, . . . , σ

2
in

)
.

Denote by C+ = {z ∈ C : Im(z) > 0}, and by S the class

of functions f analytic over C+, such that f : C+ → C+

and limy→∞ −iyf(iy) = 1, where i =
√
−1.2 The following

theorem provides a deterministic equivalent of the ergodic

mutual information I(ρ) :

2Such functions are known to be Stieltjes transforms of probability mea-
sures over R - see for instance [6, Proposition 2.2].
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Theorem 1 (Deterministic Equivalent): [6, Theorems 2.4,

4.1] Under some mild technical assumptions:

(i) The following set of N + n deterministic equations,

ψi(z) =
1

ρ
(
1 + 1

n
trD̃iT̃(z)

) , 1 ≤ i ≤ N

ψ̃j(z) =
1

ρ
(
1 + 1

n
trDjT(z)

) , 1 ≤ j ≤ n

where

Ψ(z) = diag (ψi(z), 1 ≤ i ≤ N)

Ψ̃(z) = diag
(
ψ̃j(z), 1 ≤ j ≤ n

)

T(z) =
(
Ψ(z)−1 + ρAΨ̃(z)AH

)−1

T̃(z) =
(
Ψ̃(z)−1 + ρAHΨ(z)A

)−1

admits a unique solution (ψ1(z), . . . , ψN (z),

ψ̃1(z), . . . , ψ̃n(z)) ∈ SN+n for z ∈ C \ R+.

(ii) Let ρ > 0 and consider the quantity:

V (ρ) =
1

N
log det

(
Ψ(−ρ)−1

ρ
+AΨ̃(−ρ)AH

)

+
1

N
log det

(
Ψ̃(−ρ)−1

ρ

)

− ρ

Nn

∑

i=1,...,N
j=1,...,n

σ2
ijTii(−ρ)T̃jj(−ρ) .

Then, the following holds true:

I(ρ)− V (ρ) −−−−−→
N,n→∞

0 .

In the following, z = −ρ. If we define δj = 1

n
trDjT,

δ̃i = 1

n
trD̃iT̃, and let ∆ = diag (δj , 1 ≤ j ≤ n) and ∆̃ =

diag
(
δ̃i, 1 ≤ i ≤ N

)
, then, the system of N +n equations in

Theorem 1 (i) can be written in an equivalent way as:

δj = Γj(∆, ∆̃) , 1 ≤ j ≤ n

δ̃i = Γ̃i(∆, ∆̃) , 1 ≤ i ≤ N

where

Γj(∆, ∆̃) ,
1

n
trDj

[
ρ
(
IN + ∆̃

)
+A (In +∆)−1

A
H

]
−1

Γ̃i(∆, ∆̃) ,
1

n
trD̃i

[
ρ (In +∆) +A

H

(
IN + ∆̃

)
−1

A

]
−1

As we will see in the next section, the functions Γj and Γ̃i

will help in providing a concise expression for the asymptotic

variance of the random variable N(I(ρ) − V (ρ)). Prior to

that, let us consider the case of a separable variance profile

for which Theorem 1 (i) simplifies to the following result:

Theorem 2: Assume σ2
ij = did̃j . Let D = diag(di, 1 ≤ i ≤

N) and D̃ = diag(d̃j , 1 ≤ j ≤ n). Then, the following system

of implicit equations

δ = Γ1(δ, δ̃) , δ̃ = Γ2(δ, δ̃)

where

Γ1(δ, δ̃) ,
1

n
trD

[
ρ
(
IN + δ̃D

)
+A(In + δD̃)−1

A
H

]
−1

Γ2(δ, δ̃) ,
1

n
trD̃

[
ρ
(
In + δD̃

)
+A

H(IN + δ̃D)−1
A

]
−1

admits a unique solution (δ, δ̃) in (0,+∞)2 for any ρ > 0.

IV. FLUCTUATIONS OF I(ρ): A CENTRAL LIMIT THEOREM

In this section, we present a theorem about the asymptotic

behavior of the fluctuations of the mutual information I(ρ).
Before stating our result, we will first provide a brief overview

of the recently studied scenarios.

A. Separable case

The case of a separable variance profile with Gaussian

centered elements, i.e., A = 0 and σ2
ij = did̃j , was first

studied using the replica method [7], where the functionals

δ and δ̃ play a key role in the derivation of the asymptotic

moments. More precisely, they arise during the computation

of the cumulant generating function and are chosen to cancel

the derivative of the first asymptotic moment. A saddle point

approximation is then performed to approximate the other

higher order asymptotic moments. In particular, the variance

of the mutual information is given by

Θ2
N,n = − log(1− ρ2

n2
trD2T2trD̃2T̃2)

= − log det

[
1 ρ

n
trD2T2

ρ
n

trD̃2T̃2 1

]

, − log det(J) .

Let Γ : R2 → R
2 (δ, δ̃) 7→ (δ − Γ1(δ, δ̃), δ̃ − Γ2(δ, δ̃)), then

one can easily verify that J is in fact the Jacobian matrix

of the function Γ. In the replica method, the factor det(J)
arises while applying the change of variables formula for the

computation of a certain integral. In a later paper [9], the same

result was given a rigorous mathematical proof.

B. General variance profile with zero mean entries

The case of a general variance profile with zero mean

elements, i.e., A = 0, has been studied in [12]. Taking a close

look at the obtained second order results [12, Theorem 3.1],

one can verify that the asymptotic variance Θ2
N,n can be writ-

ten again as Θ2
N,n = − log det (J), where J is the Jacobian of

the function Γ : R
n+N → R

n+N
(δ1, · · · , δn, δ̃1, · · · δ̃N ) 7→

(f1, · · · , fn, f̃1, · · · f̃N ), where fj = δj − Γj(∆, ∆̃) ∀j and

f̃i = δ̃i − Γ̃i(∆, ∆̃) ∀i.

C. General variance profile with non zero mean entries

Based on the careful observation of the aforementioned

results, we claim that the mutual information I(ρ) behaves

asymptotically also for this more general random matrix model

as a Gaussian random variable. This is our main result.
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Theorem 3 (The CLT): Under some mild technical assump-

tions, the mutual information I(ρ) satisfies

N

ΘN,n

(I(ρ)− V (ρ))
D−−−−−→

N,n→∞
N (0, 1)

where D denotes convergence in distribution and the asymp-

totic variance ΘN,n is given as

Θ2
N,n = − log det(J) . (1)

Letting ai, bi ti and t̃i denote respectively the columns of A,

AH, T and T̃, the matrix J takes the following form:

J =

(
J1 J2

J3 J4

)

where

[J1] k=1,...,n
m=1,...,n

= 1{k,m} −
1

n(1 + δm)2
aHmTDkTam

[J2] k=1,...,n
m=1,...,N

=
ρ

n
tHmDktm

[J3]k=1,...,N
m=1,...,n

=
ρ

n
t̃HmD̃k t̃m

[J4] k=1,...,N
m=1,...,N

= 1{k,m} −
1

n(1 + δ̃m)2
bH

mT̃D̃kT̃bm

where 1{k,m} = 1 for k = m and zero otherwise.

As shown in the next section, Theorem 3 can be used to

provide a tight approximation of the outage probability:

Pout(R)
△

= Pr(NI(ρ) < R) ≈ 1−Q

(
R−NV (ρ)

ΘN,n

)
(2)

where Q(x) is the Gaussian tail function.

Remark 1: One should notice the difference between the

model of this paper, where the mutual information writes:

I(ρ) = 1

N
log det

(
IN + ρ−1(X+A)(X+A)H

)
, where X

is a centered random matrix with a variance profile and A

is deterministic, and the model considered in [10]: I(ρ) =
1

N
log det

(
IN + ρ−1

(
AAH +XXH

))
. Despite an apparently

narrow difference between the two models, it turns out that the

fluctuations of the former do not follow by far from those of

the latter.

Outline of the proof of Theorem 3: In order to establish

the CLT, one shall consider the following decomposition:

N(I(ρ)− V (ρ)) = N(I(ρ)− EI(ρ)) +N(EI(ρ)− V (ρ))

and treat each term of the right-hand side separately. Using

Gaussian tools, such as the integration by part formula and

Poincaré-Nash inequality (e.g. [9], [15]), one can prove that

N(EI(ρ)− V (ρ)) −−−−−→
N,n→∞

0 .

Now write

N(I(ρ)− EI(ρ)) =

n∑

i=1

(Ei − Ei−1)NI(ρ) △

=

n∑

i=1

γi

where Ei = E (· | hk; k ≤ i) is the conditional expectation

with respect to the i first columns of matrix H. Such a

decomposition enables us to interpret N(I(ρ)−EI(ρ)) as the

sum of increments of a martingale. We can now rely on the

Fig. 2. Cellular example with B = 3 BSs and n = 3 UTs.

CLT for the martingales, e.g. [16, Theorem 35.12]. According

to this theorem, the crux of the proof is then to identify the

deterministic equivalent of the quantity
∑n

i=1
Ei+1γ

2
i :

n∑

i=1

Ei+1γ
2
i ≈ Θ̃2

N,n (3)

(in the sense that the difference goes to zero in probability)

and then to prove that this deterministic equivalent is an

approximation of the variance:

Θ̃2
N,n −Θ2

N,n −−−−−→
N,n→∞

0 . (4)

Once these facts are established, [16, Theorem 35.12] directly

implies the required CLT.

This very streamlined outline of the proof must not hide the

fact that (3) and (4) are very involved to obtain. It is, therefore,

fortunate to have a general and straightforward formula to

identify the variance (cf. (1)).

V. NUMERICAL RESULTS

We consider a cellular system consisting of B = 3 BSs with

M = 2 antennas and n = {3, 6, 9} UTs, as shown in Fig. 2.

The UTs are uniformly distributed over the three cell sectors.

The inverse path loss factor ℓbk between UT k and BS b is

given as ℓbk = d−3.6
bk , where dbk is the normalized distance

between UT k and BS b. The Rician parameters κbk are drawn

randomly from the unit interval while the phases φbmk of the

specular components are drawn randomly from the interval

[0, 2π). The signal-to-noise-ratio is defined as SNR = 1/ρ.

We consider one random snapshot of user distributions and

average over many different realizations of H.

Fig. 3 shows the ergodic mutual information I(ρ) versus

SNR for n = {3, 6, 9}. The markers correspond to simulations

while the solid lines correspond to the approximation by the

deterministic equivalent V (ρ). We observe an almost perfect

overlap between both results. The validity of Theorem 3 is

demonstrated in Fig. 4 which compares the histogram of the

quantity N
ΘN,n

(I(ρ)− V (ρ)) against the normal law N (0, 1).
The fit between both results is surprisingly good for a rather

small system size of 9 UTs. Finally, we present the perfor-

mance of the approximation of the outage probability Pout(R)
as given by (2) in Fig. 5. We show the outage probability as a

function of the SNR for a target rate of R = n×3 [nats/s/Hz].
The solid lines are calculated by Theorem 3 and (2), dashed
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lines corresponds to simulation results. The approximation is

also very accurate for small system dimensions.

VI. CONCLUSIONS

We have derived a CLT of the fluctuations of the mutual

information of a class of Rician fading MIMO channels and
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Fig. 5. Outage probability Pout(R) versus SNR for n = {3, 6, 9} and target
rate R = n× 3 [nats/s/Hz].

verified its accuracy for small system dimensions by simula-

tions. The result is useful for the study of cooperative small-

cell systems and can be used to provide a close approximation

of the outage probability. The structural insight about the

asymptotic variance of the mutual information provided in this

work might be also helpful to derive similar results for other

channel models.
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