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Abstract—In lattice-coded multiple-input multiple-output
(MIMO) systems, optimal decoding amounts to solving the closest
vector problem (CVP). Embedding is a powerful technique for
the approximate CVP, yet its remarkable performance is not well
understood. In this paper, we analyze the embedding technique
from a bounded distance decoding (BDD) viewpoint. 1/(2γ)-
BDD is referred to as a decoder that finds the closest vector
when the noise norm is smaller than λ1/(2γ), where λ1 is the
minimum distance of the lattice. We prove that the Lenstra,
Lenstra and Lovász (LLL) algorithm can achieve 1/(2γ)-BDD
for γ ≈ O(2n/4). This substantially improves the existing result
γ = O(2n) for embedding decoding. We also prove that BDD
of the regularized lattice is optimal in terms of the diversity-
multiplexing gain tradeoff (DMT).

I. INTRODUCTION

Lattice decoding for the linear multiple-input multiple-
output (MIMO) channel is a problem of high relevance in
multi-antenna, broadcast, cooperative and other multi-terminal
communication systems [1]. Maximum-likelihood (ML) de-
coding for a lattice can be realized efficiently by sphere de-
coding [2], whose complexity can however grow prohibitively
with the dimension n. The decoding complexity is especially
high in the case of coded or distributed systems, where
the lattice dimension is usually larger. Thus, the practical
implementation of decoders often has to resort to approximate
solutions, which mostly fall under two main strategies. One is
to reduce the complexity of sphere decoding, while another
is lattice reduction-aided decoding. The latter in essence
applies zero-forcing (ZF), successive interference cancellation
(SIC) or other suboptimal receivers to a reduced basis of the
lattice [3]. It is known that regularized lattice-reduction aided
decoding can achieve the optimal diversity and multiplexing
tradeoff (DMT) [4].

However, lattice-reduction-aided decoding exhibits a widen-
ing gap to (infinite) lattice decoding [5], and thus there
is a strong demand for computationally efficient suboptimal
decoding algorithms that offer improved performance. Sev-
eral such approaches are emerging, including list decoding,
sampling [6] and embedding [7]. It was shown in [6] that the
sampling technique can provide a constant improvement in the
signal-to-noise ratio (SNR) gain at polynomial complexity. In

sharp contrast, no theoretic improvement has been proved for
embedding, despite its remarkable performance in simulation.
This is the motivation of this paper.

The decoding problem considered in [7] can be viewed
as a variant of the CVP known as 1/(2γ)-bounded distance
decoding (BDD), where the closest vector is found under
the assumption that the noise norm is small compared to the
minimum distance λ1 of the lattice, i.e., no more than λ1/(2γ).

In this paper, we prove that the embedding technique can
reduce 1/ (2γ)-BDD to the γ-unique shortest vector problem
(uSVP). Note that the problems are harder for smaller values
of γ. On the algorithmic side, we show that γ-uSVP for
γ = O(2n/4) can be solved by the Lenstra, Lenstra and Lovász
(LLL) algorithm. This is a new result of independent interest,
which is stronger than the usual bound γ = O(2n/2) in
literature. Combining the two results, we prove that embedding
decoding using the LLL algorithm can solve 1/ (2γ)-BDD
for γ ≈ O(2n/4). This is significantly better than the bound
γ = O(2n) proven in [7]. It should be mentioned that these are
worst-case bounds; the actual decoding performance is often
better.

Moreover, we prove that the regularized BDD is DMT-
optimal. This represents a nontrivial extension of the analysis
in [4] for C-approximation algorithms of CVP. Indeed, it is
easy to see that C-approximate algorithms are a special case
of BDD, because any decoding technique which provides a C-
approximate CVP solution is also able to solve 1/(2C)-BDD.
However, the converse is not necessarily true.

The paper is organized as follows: Section II presents the
transmission model and lattice decoding. In Section III the
decoding radius of embedding decoding is anlayzed. The DMT
analysis of BDD is given in Section IV. Section V evaluates
the performance by computer simulation.

II. LATTICE CODING AND DECODING

A. System Model

Consider an nT × nR flat-fading MIMO system model
consisting of nT transmitters and nR receivers

Y = HX+N, (1)



where X ∈ CnT×T , Y, N ∈ CnR×T of block length
T denote the channel input, output and noise, respectively,
and H ∈ CnR×nT is the nR × nT full-rank channel gain
matrix with nR ≥ nT , all of its elements are i.i.d. complex
Gaussian random variables CN (0, 1). The entries of N are
i.i.d. complex Gaussian with variance σ2 each. The codewords
X satisfy the average power constraint E[∥X∥2F/T ] = 1.
Hence, the signal-to-noise ratio (SNR) at each receive antenna
is 1/σ2.

When a lattice space-time block code is employed, the
QAM information vector x is multiplied by the generator
matrix G of the encoding lattice. An nT ×T codeword matrix
X is formed by column-wise stacking of consecutive nT -
tuples of the vector s = Gx ∈ CnTT . By column-by-column
vectorization of the matrices Y and N in (1), i.e., y = Vec(Y)
and n = Vec(N), the received signal at the destination can be
expressed as

y =(IT ⊗H)Gx+ n. (2)

When T = 1 and G = InT
, (2) reduces to the model for

uncoded MIMO communication y = Hx+n. Furthermore, by
separating real and imaginary parts, we obtain the equivalent
2nT × 2nR real-valued model[

ℜy
ℑy

]
=

[
ℜH −ℑH
ℑH ℜH

] [
ℜx
ℑx

]
+

[
ℜn
ℑn

]
. (3)

The QAM constellations C can be interpreted as the shifted
and scaled version of a finite subset AnT of the integer lattice
ZnT , i.e., C = a(AnT + [1/2, ..., 1/2]T ), where the factor
a arises from energy normalization. For example, we have
AnT = {−

√
M/2, ...,

√
M/2− 1} for M-QAM signalling.

Therefore, with scaling and shifting, we consider the generic
n×m (m ≥ n) real-valued MIMO system model

y = Bx+ n, (4)

where B ∈ Rm×n, can be interpreted as the basis matrix of
the decoding lattice. Obviously, n = 2nTT and m = 2nRT .
The data vector x is drawn from a finite subset An ⊂ Zn to
satisfy the power constraint.

B. Lattice Decoding

An n-dimensional lattice in the m-dimensional Euclidean
space Rm (n ≤ m) is the set of integer linear combinations
of n independent vectors b1, . . . ,bn ∈ Rm:

L (B)=

{
n∑

i=1

xibi |xi ∈ Z, i = 1, . . . n

}
.

The matrix B = [b1 · · ·bn] is a basis of the lattice L(B).
In matrix form, L(B) = {Bx : x ∈ Zn}. For any point
y ∈Rm and any lattice L (B), the distance of y to the lattice
is dist(y,B) = minx∈Zn ∥y −Bx∥. A shortest vector of a
lattice L (B) is a non-zero vector in L (B) with the smallest
l2 norm. The length of the shortest vector, often referred to as
the minimum distance, of L (B) is denoted by λ1(B).

We now give precise definitions for the lattice problems that
are central to this work.

- Shortest Vector Problem (SVP):
Given a lattice L (B), find a non-zero vector v ∈ L (B) of
norm λ1(B).

- Approximate Shortest Vector Problem (ApproxSVP):
Given a lattice L (B) and an approximation factor C ≥ 1,
find a non-zero vector v ∈ L (B) of norm smaller than
Cλ1(B).

- γ-unique Shortest Vector Problem (γ-uSVP):
Given a lattice L (B) such that λ2(B) > γλ1(B), find a
non-zero vector v ∈ L (B) of norm λ1(B).

- 1/(2γ)-Bounded Distance Decoding (β-BDD):
Given a lattice L (B) and a vector y such that dist(y,B) <
1/(2γ)λ1(B), find the lattice vector Bx̂ ∈ L (B) closest to
y.

A lattice has infinitely many bases. In general, every matrix
B̄ = BU, where U is an unimodular matrix, i.e., det(U) =
±1 and all elements of U are integers, is also a basis of L (B).
The celebrated LLL algorithm [8] is the first polynomial-time
algorithm of lattice reduction which finds a vector not much
longer than the shortest nonzero vector. Let B = QR be
the QR decomposition, where Q has orthogonal columns and
R is a an upper triangular matrix with nonnegative diagonal
elements ri,i for i = 1, . . . , n. An LLL-reduced basis B has
the following properties [8]:

rj,j ≤ α(i−j)/2ri,i (5)

for 1 ≤ j < i ≤ n, and

α−(n−1)/2λ1 (B) ≤ min
1≤i≤n

ri,i ≤ λ1 (B) (6)

where α = 1/ (δ − 1/4), 1/4 < δ ≤ 1. We have α = 2 for
the most common value δ = 3/4.

Babai’s nearest plane algorithm [3] or LLL-SIC decoding,
combining lattice reduction and SIC, can be viewed as the
most basic BDD. The correct decoding radius of SIC is given
by [5]

RSIC =
1

2
min

1≤i≤n
ri,i, (7)

which means that correct decoding is guaranteed if ∥n∥ ≤
RSIC.

III. DECODING RADIUS OF EMBEDDING DECODING

The core of the embedding technique is that basis matrix
B and the received vector y are embedded in a higher
dimensional lattice. More precisely, we consider the following
(m+ 1) × (n+ 1) basis matrix [9]

B̃ =

[
B −y
01×n t

]
(8)

where t > 0 is a parameter to be determined. The strategy is
to reduce CVP to SVP in the following way: for a suitable
choice of t and for sufficiently small noise norm, v = [(Bx−
y)T t]T is the shortest vector in the lattice L(B̃); thus an



SVP algorithm will find it, and the message x can be easily
recovered from the coordinates of this vector in the basis B̃:

If v = B̃

(
x′

q

)
=

(
Bx′ − qy

qt

)
, then x̂ = x′ (q = ±1).

(9)
At the same time, t should not be too small or too large,
otherwise [(Bx− y)T t]T might not be the shortest vector.

Luzzi et al. [7] chose t = 1
2
√
2αn/2

min1≤i≤n ri,i and
used the LLL algorithm to find the shortest vector in the
lattice L(B̃). Their scheme, under the term augmented lattice
reduction (ALR), was shown to achieve the correct decoding
radius

RALR =
1

2
√
2αn− 1

2

λ1 (B) . (10)

In the following subsections, we will improve this bound.

A. Correct Decoding Radius for General t

In [10], it is proved that by choosing t = dist(y,B), the
embedding technique can reduce 1/ (2γ)-BDD to γ-uSVP.
In this subsection, we will show that one can achieve the
same correct decoding radius by setting t , 1

2γλ1 (B), thus
bypassing the assumption of dist(y,B) in [10].

Theorem 1 (Decoding Radius for Embedding): Applying
γ-uSVP (γ ≥ 1) to the extended lattice (8) with parameter
t (0 < t < λ1 (B) /γ) and computing the estimate (9)
guarantees a correct decoding radius

REmb =

√
t

γ
λ1 (B)− t2 (11)

whose maximum is

REmb =
1

2γ
λ1 (B) (12)

obtained by setting t , 1
2γλ1 (B).

The proof of Theorem 1 uses the following lemma.
Lemma 1: Let B̃ be the matrix defined in (8), and let 0 <

t < 1
γλ1 (B), with γ ≥ 1. Suppose that

∥y −Bx∥ ≤
√

t

γ
λ1 (B)− t2,

then v =

(
Bx− y

t

)
=

(
−n
t

)
is a γ-unique shortest vector

of L(B̃).
Proof: Let B̃ be the matrix defined in (8), and let w be

an arbitrary nonzero vector in L (B). Any vector in L(B̃) that
is not a multiple of v can be represented by w′ = w + qv,
with q ∈ Z and w ∈ L(B). We will show that ∥w′∥ ≥ γ∥v∥.
The norm of w′ can be written as

∥w′∥ =

√
∥w − qn∥2 + (qt)

2.

If ∥qn∥ ≤ λ1 (B), using the triangular inequality, we have the
lower bound

∥w′∥ ≥
√
(λ1 (B)− q ∥n∥)2 + (qt)

2

=

√
λ1(B)2 − 2qλ1(B) ∥n∥+ q2 ∥n∥2 + q2t2

≥ λ1 (B) t√
∥n∥2 + t2

.

If ∥qn∥ > λ1 (B), we can also obtain the same bound because

∥w′∥ ≥ qt >
λ1 (B) t

∥n∥
≥ λ1 (B) t√

∥n∥2 + t2
.

We need to make sure that ∥w′∥ > γ ∥v∥, so

λ1 (B) t√
∥n∥2 + t2

> γ

√
∥n∥2 + t2

which implies that

∥n∥2 = ∥Bx− y∥2 <
t

γ
λ1 (B)− t2

= −
(
t− λ1 (B)

2γ

)2

+

(
λ1 (B)

2γ

)2

≤
(
λ1 (B)

2γ

)2

.

where the equality holds if t = λ1(B)
2γ .

Due to the well known fact that the LLL algorithm can
solve γ-uSVP with γ = αn/2 for the basis (8) of dimension
n+ 1 [8], one can obtain the correct decoding radius

REmb =
1

2αn/2
λ1 (B) (13)

by choosing t = t0 , 1
2αn/2λ1 (B). This decoding radius

improves the bound (10) from [7]. Yet, there is still room
to improve. The reason is that the estimate γ = αn/2 is
pessimistic for γ-uSVP. In fact, αn/2 is just the approxima-
tion factor for ApproxSVP achieved by LLL. Any algorithm
solving γ-ApproxSVP necessarily solves γ-uSVP, while the
converse is not true.

B. Correct Decoding Radius Achieved by LLL

In this subsection, we will show that LLL can in fact solve
γ-uSVP with a smaller γ.

Lemma 2 (LLL for uSVP): The LLL algorithm can solve
γ-uSVP for γ = max1≤i≤n−1{

√
γi}αn/4 in an n-dimensional

lattice L(B), where γi is the Hermite constant for i-
dimensional lattices.

Proof: Suppose that B is an LLL-reduced basis, and that
λ2(B) > max1≤i≤n−1{

√
γi}αn/4λ1(B). We will prove that

the first vector output by LLL, b1, is the shortest vector v.
By contradiction, suppose that b1 ̸= ±v. Note that b1 cannot
be a multiple of v, or B would not be a basis. We may write

v =
k∑

i=1

xibi,



where xi is an integer and k is the largest i such that xi is not
zero. Then we have λ1(B) = ∥v∥ ≥ rk,k, where B = QR
is the QR decomposition of B. Using the assumption that
b1 ̸= ±v, we have that k > 1. On the other hand, we have
the following bound for the second minimum λ2(B)

λ2(B) ≤ λ1(L [b1,...,bk−1]), k > 1.

In fact λ2(B) must be smaller than the norm of the shortest
nonzero vector in the sublattice spanned by {b1,...,bk−1},
since these vectors are linearly independent with v. The
fact that k > 1 ensures that there are non-zero vectors in
L([b1, ...,bk−1]).

Using Minkowski’s first theorem [11], we obtain

λ2(B) ≤ √
γk−1 det (L [b1, · · · ,bk−1])

1/(k−1)

=
√
γk−1

(
k−1∏
i=1

ri,i

)1/(k−1)

≤ √
γk−1rk,k

(
k−1∏
i=1

α(k−i)/2

)1/(k−1)

=
√
γk−1α

k/4rk,k

≤ max
1≤i≤n−1

{√γi}αn/4λ1(B),

where the inequality ri,i ≤ α(k−i)/2rk,k for 1 ≤ i < k follows
from (5). The reason why we use max1≤i≤n−1{

√
γi} instead

of γn−1 in the last step is that it is not known whether γi is an
increasing function. The last statement is a contradiction be-
cause we assumed λ2(B) > max1≤i≤n−1{

√
γi}αn/4λ1(B).

Therefore, b1 = ±v.

Lemma 2 leads to the following result:
Theorem 2 (Decoding Radius of Embedding using LLL):

Applying the LLL algorithm to the embedding problem can
achieve the correct decoding radius

RLLL-Emb =
1

2max1≤i≤n{
√
γi}α(n+1)/4

λ1 (B) (14)

by choosing t = t0 , λ1(B)
2max1≤i≤n{

√
γi}α(n+1)/4 .

This is exponentially better than (10). Since the LLL
algorithm has polynomial complexity with respect to n, the
embedding decoder also has polynomial complexity (assuming
λ1(B) has been found in the pre-processing stage).

IV. DMT ANALYSIS OF BDD
In this section we will prove that, similarly to LLL

reduction-aided ZF and SIC decoding, BDD (including em-
bedding decoding) is optimal from the point of view of DMT
[12] when a suitable left preprocessing is employed.

In the present discussion, we suppose for the sake of
simplicity that m = n. Following Jaldén and Elia’s notation
in [4], we consider the equivalent normalized channel model
where the noise variance is equal to 1:

y′ = B′x+ n′,

where B′ =
√
ρB, n′

i =
√
ρni ∼ N (0, 1), ∀i = 1, . . . , n.

Here ρ = 1/σ2 denotes the SNR. Moreover, we consider the
equivalent regularized system

y1 = Rx+ n1, (15)

where (
B′

In×n

)
= QR, y1 = Q†

(
y

′

0n×1

)
.

From the point of view of receiver architecture, this amounts
to performing left preprocessing before decoding, by using
a maximum mean square error generalized decision-feedback
equalizer (MMSE-GDFE). We can show that DMT-optimality
holds for all instances of BDD by following the same reason-
ing of the original proof in [4].

Theorem 3: For any constant η > 0, the regularized η-BDD
is DMT-optimal.

Proof: Let dML(r) be the optimal diversity gain corre-
sponding to a multiplexing gain r ∈ {0, . . . ,min(nT , nR)}.
Using the same notation as [4], we consider the constellation
Λr ∩ R, where the lattice Λr = ρ−

rT
n Zn is scaled according

to the SNR, and R is a fixed shaping region1. Let B ⊂ R be
a ball of fixed radius R, where R is chosen in such a way that
d1 + d2 ∈ R, ∀d1,d2 ∈ B. Let

νr = min
d∈B∩Λr

d ̸=0

1

4
∥B′d∥2 .

Then Lemma 1 of [4] holds, that is

lim sup
ρ→∞

logP{νr ≤ 1}
log ρ

≤ −dML(r).

Let ζ > 0 and choose δ such that 2ζT
n > δ > 0. We have

Λr = ρ
ζT
n Λr+ζ . As in the original proof, ∃ρ1 such that ∀ρ ≥

ρ1, R ⊆ 1
2ρ

ζT
n B. As in Theorem 1 from [4], we want to show

that the conditions

νr+ζ ≥ 1, ∥n′∥2 ≤ ρδ (16)

are sufficient for the regularized η-BDD to decode correctly
for sufficiently large SNR. We need a lower bound for

d2R = min
x̂∈Λr\{0}

1

4
∥Rx̂∥2 = min

x̂∈Λr\{0}

1

4

(
∥B′x̂∥2 + ∥x̂∥2

)
.

Let φ(x̂) = ∥B′x̂∥2 + ∥x̂∥2. Let x̂ ∈ Λr \ {0} be any lattice
point.

• If x̂ /∈ 1
2ρ

ζT
n B, φ(x̂) ≥ ∥x̂∥2 > 1

4R
2ρ

2ζT
n .

• If x̂ ∈ 1
2ρ

ζT
n B ∩ Λr = 1

2ρ
ζT
n B ∩ ρ

ζT
n Λr+ζ , then

x̂ρ−
ζT
n ∈ 1

2B ∩ Λr+ζ and so 1
4

∥∥∥B′x̂ρ−
ζT
n

∥∥∥2 ≥ 1

since by the hypothesis (16), νr+ζ ≥ 1. Therefore
φ(x̂) ≥ ∥B′x̂∥2 ≥ 4ρ

2ζT
n .

In conclusion, ∃k > 0 such that d2R ≥ kρ
2ζT
n .

1Note that the generator matrix of the lattice code has been absorbed into
R, hence Λr is just a scaled version of Zn.



Now consider the transmitted codeword x ∈ Λr ∩ R.
The regularized η-BDD decoder is able to decode correctly
provided that ∥y1 −Rx∥ < ηdR. We have

∥y1 −Rx∥ = ∥y′ −B′x∥2+∥x∥2 = ∥n′∥2+∥x∥2 ≤ ρδ+c,

where c = maxr∈R ∥r∥2 is a constant. Therefore under the
conditions (16), the regularized η-BDD decoder is able to
decode correctly provided that ρδ+c < ηkρ

2ζT
n . But δ < 2ζT

n ,
so ∃ρ̄ such that ∀ρ ≥ ρ̄, ρδ+c < ηkρ

2ζT
n . Then as in Theorem

1 from [4] we can conclude that

P{x̂η−BDD ̸= x} ≤ P{νr+ζ < 1}+ P{∥n′∥2 > ρδ},

and the second term is negligible for ρ → ∞. So we can say,
similarly to the original proof, that

lim sup
ρ→∞

logP{x̂η−BDD ̸= x}
log ρ

≤ −dML(r + ζ)

and then use the right continuity of dML(r).

V. EXPERIMENTS AND SUMMARY

In this section we evaluate the performance of embedding
decoding proposed in Section III through numerical simula-
tions. For comparison purposes, the performances of lattice
reduction aided MMSE-SIC decoding and ML decoding are
also shown. We assume perfect channel state information at
the receiver. Monte Carlo simulation was used to estimate the
bit error rate with Gray mapping and LLL reduction (δ=0.75).

In the simulation, we further enhance embedding decoding
by making use of all intermediate lattice vectors during the
execution of LLL. Such vectors are generated when size
reduction is performed; we can obtain one new vector in
each size reduction. We can integrate this into LLL, and the
complexity will be of the same order. The size check in LLL
is on the lengthes of Gram-Schmidt vectors. It is preferable
to choose a bit smaller t so that the last column in (8) can be
used as many times as possible. Hence, we choose

tList-Emb =
1

2
√
γnα

(n+1)/4
min

1≤i≤n
ri,i. (17)

The advantage is that the knowledge of λ1 is not required,
while the performance is actually a little better due to a larger
list.

Fig. 1 shows the bit error rate for an uncoded system
with nT = nR = 10, 64-QAM. We found that list MMSE
embedding is sufficient to obtain near-optimum performance
for uncoded systems with nT = nR = 10; the SNR loss is
less than 1.2 dB.

In summary, we have investigated the decoding radius of
embedding decoding through the relation between BDD and
uSVP. With the knowledge of λ1(B) which may be obtained
by pre-processing, this yields a polynomial-complexity algo-
rithm achieving a correct decoding radius exponentially larger
than previously proved. Moreover, we proved that BDD with
MMSE-GDFE left processing is DMT-optimal. Due to space
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Figure 1. Bit error rate vs. average SNR per bit for the uncoded 10 × 10
system using 64-QAM.

limitation, a rigorous approach that does not require the exact
value of λ1(B) while still retaining polynomial complexity
will be reported in the journal version.
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