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Abstract

The optimization of dialogue policies using reinforcement

learning (RL) is now an accepted part of the state of the art

in spoken dialogue systems (SDS). Yet, it is still the case that

the commonly used training algorithms for SDS require a large

number of dialogues and hence most systems still rely on arti-

ficial data generated by a user simulator. Optimization is there-

fore performed off-line before releasing the system to real users.

Gaussian Processes (GP) for RL have recently been applied to

dialogue systems. One advantage of GP is that they compute

an explicit measure of uncertainty in the value function esti-

mates computed during learning. In this paper, a class of novel

learning strategies is described which use uncertainty to control

exploration on-line. Comparisons between several exploration

schemes show that significant improvements to learning speed

can be obtained and that rapid and safe online optimisation is

possible, even on a complex task.

Index Terms: spoken dialogue systems, reinforcement learning

1. Introduction

Spoken Dialogue Systems (SDS), and especially task-oriented

SDSs, are now very common and are often encountered in ev-

eryday life (hotline, call routing etc.). A key requirement when

building such a dialogue system is to design a dialogue man-

ager that fulfils the user requests in a way which is robust, ef-

ficient and natural. To achieve optimality, dialogue strategies

should handle speech and language processing errors robustly,

exploiting implicit and explicit confirmation as well as disam-

biguation sub-dialogues as appropriate. Dialogue management

can therefore be seen as a sequential decision making problem

where decisions about which dialogue act should be output in

a given context (dialogue state) should be taken so as to maxi-

mize some optimality criterion. Sequential decision making is

often addressed by Reinforcement Learning (RL) [1] which is a

statistical machine learning method that has been successfully

applied to SDS during the last decade [2, 3, 4, 5]. Optimiz-

ing dialogue management by means of RL requires casting the

problem into a Markov Decision Process (MDP) [3] or a Par-

tially Observable MDP (POMDP) [5]. In the latter case, deci-

sions are not taken according to a single inferred context but ac-

cording to a distribution over all possible contexts. This makes
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the learning process more robust to speech recognition and un-

derstanding errors but at the cost of significantly more complex

dialogue policies.

Although the (PO)MDP framework is appealing for SDS

optimisation, standard RL algorithms need large amounts of

data to converge to an optimal strategy. Dataset expansion by

means of user simulation has thus been intensively studied dur-

ing the last 15 years [6, 4, 7]. Yet, user simulation induces a

modeling bias which is hard to predict [8] and can lead to sub-

optimal strategies after learning. In the meantime, RL research

has made progress. In particular, batch algorithms that can learn

from small amounts of fixed data have recently been shown to

be applicable to SDS [9]. Furthermore, the examples used for

learning, whether simulated or real, may not represent all types

of users. The ability of a system to adapt during actual use

would greatly mitigate this. Recently, online learning with an

efficient RL algorithm, namely GP-SARSA [10], has been pro-

posed to optimize dialogue management strategies [11]. GP-

SARSA makes use of Gaussian processes [12] to approximate

the state-action value function from which an optimal policy

can be easily derived.

Several approaches to on-line policy optimisation can be

envisioned depending on the way the policy is modified during

learning. If the initial policy is modified after each interaction

with a user, the approach is called on-policy. Whereas when

a policy is improved by using interactions collected with an-

other policy, the approach is called off-policy. While off-policy

learning offers the possibility to use a non-optimal but accept-

able policy during learning, it is not obvious how to identify

the best moment to disable exploration and switch to the learnt

policy. On the other hand, on-policy learning (as in [11]) al-

lows the policy to be updated immediately after each interac-

tion but requires the user to suffer changes made to the policy

during exploration, even if the changes are undesirable. Ideally,

therefore, learning should be as quick as possible to minimise

unacceptable changes to the policy affecting the users. How-

ever, this then raises the well-known exploration vs exploitation

dilemma: should the system exploit its current knowledge and

stop learning with the risk of being suboptimal or should it con-

tinue exploring different possible strategies to learn a better one

with the risk of acting dangerously.

In this paper, we propose to use the uncertainty informa-

tion relating to intermediate value estimates (namely the Q-

function) computed by the Gaussian Process for RL method to

build a sample-efficient online learning algorithm. A key ad-



vantage of the method is that exploring actions are selected not

only because they are uncertain but also because they are ex-

pected not to be harmful. The results are compared with [11].

The rest of the paper is organized as follows. In Section 2,

the problem of casting SDS optimization into the POMDP

framework is presented. The following section then proposes

several exploration schemes based on the uncertainty of the

value estimates. In Section 4 some results are presented using

an operational dialogue system for tourist information. Finally,

conclusions are drawn and perspectives offered.

2. Dialogue Management as a POMDP

Dialogue management (DM) can be seen as a sequential de-

cision making problem. The decision maker is the dialogue

manager. From user acts (observations), it should choose and

perform a system act (actions) in order to satisfy the user in

an efficient and natural way. This satisfaction is quantified by

a reward provided at the end of a dialogue and computed as

a mixture of objective measures (such as the task completion,

the dialogue duration etc.). Framed like this, DM can be cast

as a Partially Observable Markov Decision Process (POMDP)

where each possible history is represented by a state and the de-

cision is taken according to the distribution over all states. In

practice, the exact implementation of a POMDP is intractable

but there are efficient methods for approximating the state. In

particular, in the hidden information state paradigm [5], the

state distribution is reduced to a summary space which has the

form of a continuous state MDP. In what follows, the term state

refers to a state of this MDP.

DM decisions are defined by a policy π associating an ac-

tion to each state. Its quality is quantified by a so-called Q-

function that gives the expected cumulative reward for starting

with a given state-action pair and then following the policy π:

Q
π(s, a) = E

h

X

i≥0

γ
i
ri

˛

˛

˛

s0 = s, a0 = a, π
i

,

γ being a discount factor, (s, a) the state-action pair and (ri)i≥0

the set of obtained rewards. The optimal policy (π∗) is greedy

wrt to its Q-function (Q∗(s, a)): π∗(s) = arg maxa Q∗(s, a).

The problem of finding an optimal policy therefore reduces to

learning the optimal Q-function. The Q-function not only al-

lows two policies to be compared, but it also allows the possi-

ble actions in any given state to be compared under a fixed pol-

icy. Usually, the state-action space is too large to allow an exact

computation of the Q-function and approximation is mandatory.

Here we are interested in learning an optimal control policy

while interacting with the user i.e. we require on-line and on-

policy learning. There are usually two steps: estimating the Q-

function of the followed policy (with SARSA [1] for example)

and choosing actions according to this estimated Q-function

(the control part).

Given an appropriate Q-function approximation algorithm,

the problem of choosing actions according to the current Q-

function estimate requires a choice between exploration and ex-

ploitation. At each interaction, the RL agent should choose be-

tween acting according to its current (imperfect) representation

of the world (here the estimated Q-function) and performing

some exploration action which although suboptimal according

to the current estimate might in fact lead to a higher reward.

A classical but crude scheme is the use of an ǫ-greedy pol-

icy whereby a greedy action is taken wrt to the estimated Q-

function (arg maxa Q(s, a)) with probability (w.p.) 1−ǫ, and a

random one w.p. ǫ. If learning from interactions with real users

is envisioned, the choice between exploration and exploitation

is crucial. First, learning should be fast: the DM should improve

quickly and be able to adapt rapidly to users. Second, learning

should be safe: the DM should not choose repetitively bad ac-

tions. This suggests that choosing actions purely randomly as

done by the ǫ-greedy policy may not be wise.

3. Gaussian Processes and Exploration

The underlying idea of this paper is that if one has access to

some uncertainty information about the estimated Q-function,

then it should provide useful information for handling the

choice between exploration and exploitation. For example, as-

sume that two actions are possible for a given state, one (say a1)

having a higher estimated Q-value than the other (a2). A greedy

agent would choose a1. But assume also that confidence inter-

vals for these estimates are available. If the uncertainty about

a2 is high, this action may in fact be better than a1, and so it

may be worth trying. On the other hand, if the confidence in-

terval is small, one should choose a1. This is an instantiation

of active learning where the utility function uses uncertainty in-

formation [13]. In this paper, we propose exploration schemes

which make this choice automatically.

In order to provide the required uncertainty information,

we use an extension of GP-based temporal difference learn-

ing called GP-SARSA [10]. The use of GP-SARSA for fast

learning in spoken dialogue systems was first described in [11]

and the same system is used here. The underlying principle

of GP-SARSA is to model the state-action value function as a

Gaussian Process (that is a set of jointly Gaussian random vari-

ables, these random variables being the values of each state-

action pair). A generative model linking rewards to values via

the sampled Bellman evaluation operator and an additive noise

is set: ri = Q̂(si, ai)−γQ̂(si+1, ai+1)+ni, ni being the addi-

tive noise. The Gaussian distribution of a state-action pair value

conditioned on past observed rewards is computed by perform-

ing Bayesian inference and the value of this state-action pair is

estimated as the mean of this Gaussian distribution. The asso-

ciated variance quantifies the uncertainty. As in any Bayesian

method, a prior must be defined. For GP-SARSA, this is done

through the choice of a kernel function which defines the prior

correlations of Q-function values.

The GP-SARSA algorithm provides at each step i an es-

timate Q̂i(s, a) of the Q-function as well as an associated

standard deviation σ̂i(s, a). The ǫ-greedy policy does not

use this uncertainty information: the greedy action ai+1 =

arg maxa Q̂i(si+1, a) is chosen w.p. 1− ǫ and a (uniform) ran-

dom action otherwise. The obtained transition is then used to

learn the new estimate Q̂i+1 (and σ̂i+1). Under some condi-

tions, notably a decaying exploration factor, it converges to the

optimal policy. However, it can be rather slow and unsafe dur-

ing the exploration stage.

In [11] an informed exploration policy is introduced and

this is used here as a baseline. It chooses the greedy action (wrt

to the estimated Q-function) ai+1 = arg maxa Q̂i(si+1, a)
w.p. 1− ǫ and another greedy action (wrt to the computed vari-

ance) ai+1 = arg maxa σ̂2
i (si+1, a) w.p. ǫ:

ai+1 =

(

arg maxa Q̂i(si+1, a) w.p. 1 − ǫ

arg maxa σ̂2
i (si+1, a) w.p. ǫ

(1)

Therefore, the underlying idea is to act greedily wrt the esti-

mated state-action value function, and to occasionally choose



an exploratory action. By choosing the less certain action, this

scheme actually chooses the action which provides more infor-

mation. Moreover, the exploration parameter ǫ is decayed to

zero as learning progresses, so this scheme tends to the greedy

policy. This improves over the classical ǫ-greedy policy but

with the possible drawback that the exploration stage does not

take the estimated value into account. Therefore, an action with

a very low estimated value (which is possibly a “dangerous”

action) can be chosen repeatedly, as long as it has a higher un-

certainty than other actions (even if the difference is slight). To

avoid this drawback, we propose to use of a different form of

exploration scheme.

The confident-greedy policy consists of acting greedily ac-

cording to the upper bound of an estimated confidence inter-

val [14]. For a tabular representation (for which the confi-

dence interval width is proportional to 1√
n(s,a)

, where n(s, a)

is the number of visits to the considered state-action pair), some

PAC (Probably Approximately Correct) guarantees can be pro-

vided [15]. In the case of continuous state spaces (which occur

in SDS optimization), the state-action pairs are uncountable,

this approach does not hold. Here, standard deviation is pro-

vided by a Bayesian method, the prior is given and the posterior

is computed. The distribution being Gaussian by assumption,

the confidence interval width is proportional to the estimated

standard deviation (which is actually true for any distribution,

according to the Bienaymé-Tchebychev concentration inequal-

ity). Let α be a free positive parameter. We define the confident-

greedy policy as:

ai+1 = arg max
a

(Q̂i(si+1, a) + ασ̂i(si+1, a)) (2)

This strategy favors less certain actions if they correspond to

the upper bound of the confidence interval. On the other hand,

if for a given state all standard deviations are equal, than the

agent will act greedily wrt Q̂i. Notice also that the variance

provided by GP-SARSA decreases as the prediction accuracy of

rewards improves and as actions are more and more explored. A

similar strategy has been shown to be efficient in model-based

reinforcement learning using Gaussian Processes [13].

The second approach we consider is the bonus greedy pol-

icy, inspired by [16]. Using a Bayesian argument, it acts greed-

ily wrt the estimated Q-function plus a bonus, this bonus being

proportional to the inverse of the number of visits to the state-

action pair of interest. As 1√
n(s,a)

is proportional to the stan-

dard deviation in a frequentist approach, we interpret 1
n(s,a)

as

a variance. The proposed bonus-greedy policy therefore uses a

variance-based bonus and is defined as:

ai+1 = arg max
a

(Q̂i(si+1, a) + β
σ̂2

i (si+1, a)

β0 + σ̂2
i (si+1, a)

) (3)

where β0 and β are free parameters. This strategy also favors

less certain actions and tends to be greedy wrt the estimated

state-action value function if variances are close to each other.

4. Experiments

Experiments have been conducted using the Hidden Informa-

tion State (HIS) dialogue manager [5]. The task concerns a

tourist information system which assists users to find a venue

in Cambridge using up to 12 attributes. The algorithm used

for the dialogue management optimisation is GP-SARSA with

a polynomial kernel for the summary state space and a Dirac

kernel for the action space; it uses an identical set-up for the

Q-function approximator as in [11]. To obtain sufficient dia-

logues, the dialogue manager interacts at the intention level with

a simulated user [17]. The simulated user consists of a goal and

an agenda. The goal ensures that the user simulator exhibits

consistent, goal-directed behaviour. The role of the agenda is

to elicit the dialogue acts needed to complete the goal. The

speech understanding error rate is set to 10% by using an er-

ror simulator, which randomly confuses the semantic concepts

that occur in user dialogue acts. A positive reward of +20 is

given at the end of the dialogue if the DM managed to fulfil

the user request and a penalty of −1 is applied per system turn

to encourage short dialogues. The efficiency of the different ex-

ploration/exploitation schemes was compared with the informed

exploration scheme described in Section 3.

The different schemes are first compared using the same

approach as in [11]. In each case, a policy is trained using a

specific number of dialogues and the policy is tested (without

exploration). The parameters used in the two new exploration

schemes were set as follows: α = 12, β = 1000 and β0 = 100.

These were chosen empirically to give good results but they are

quite easy to tune since their order of magnitude can be deduced

from the variance approximation of the Q function. The param-

eter ǫ0 = 0.1 was set at the start of training in the informed ex-

ploration scheme and then decreased during the learning phase

according to the number of dialogues experienced.

Figure 1 shows the reward achieved as a function of the

number of training dialogues. As can be seen, the confident

greedy and bonus greedy algorithms both learn faster initially

but eventually converge to similar values. However, the confi-

dent greedy scheme is consistently better than the bonus greedy

scheme.
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Figure 1: Performance of the trained policies (greedy setting).

To compute the average reward, each 100 dialogues, 100 poli-

cies were trained and tested in a greedy way 1000 times each.

The above results allow the performance of the trained poli-

cies to be assessed but they do not take account of the fact that

during learning, exploration may result in some dialogues hav-

ing very poor rewards. Whilst this is acceptable for off-line

training, it may not be acceptable to users during on-line train-

ing. To assess the detrimental impact of poor rewards during

on-line training, Figure 2 shows the rewards actually obtained

during training as a function of the number of dialogues pro-

cessed. As can be seen, the two newly proposed algorithms

yield much better rewards during training. This is because they

avoid subjecting the user to bad exploratory actions. A further

advantage of the new on-line learning algorithms is that they
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Figure 2: Performances of the policies (online setting). The

curves are obtained for an average over 1000 training trials.

An average is made with a sliding window of 100 points width

each 50 points.

avoid the need to decide when a trained policy is sufficiently

good that exploration can be disabled. Indeed, they allow ex-

ploration to be resumed as needed if and when user behaviour

changes as indicated by increasing confidence intervals. Thus,

these algorithms allow for continuous adaptation during opera-

tion.

The above results show that improvements are obtained

when the estimated Q values are augmented by uncertainty

information when selecting actions. First, when learning on-

line, the asymptotic performance of the new schemes is higher

(around 12 v.s 10) because they do not suffer from the poor

rewards resulting from random exploration.

Second, the number of samples needed to reach the same

quality of policy is smaller (about 150 dialogues compared to

600). This is an advantage when interacting with real users,

since the quicker a good policy is learnt the less the user will be

annoyed by poor behaviour of the dialogue manager. Further-

more, the ability to learn policies quickly will obviate the need

for training using a user simulator. This is a significant benefit,

since good user simulators are expensive to build.

5. Conclusion and Perspectives

In this paper, we have proposed two novel exploration schemes

to learn on-line and on-policy an optimal dialogue management

strategy using reinforcement learning. The key feature of the

new schemes is that they augment the Q function value of each

state-action pair with an estimate of its uncertainty. This has the

effect that the dialogue manager will choose the action which

leads to the highest reward when it is confident about its esti-

mate of that reward, otherwise it will choose the action about

which it is least certain. This does not mean that the dialogue

manager will never choose bad actions, but it does reduce the

frequency with which it does so. The net result is faster learn-

ing and a higher reward during learning. This makes the new

schemes more suitable for continuous on-line adaptation com-

pared to conventional ǫ-greedy schemes.

The new exploration schemes were evaluated in this paper

using GP-SARSA. In the future, alternative sample-efficient re-

inforcement learning algorithms such as in [18, 19, 20] will be

tested with the aim of improving the learning speed further.
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