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Résumé : L’utilisation de l’apprentissage par renforcement (AR) fait maintenant partie de l’état de l’art
dans le domaine de l’optimisation de gestionnaires de dialogues parlés. Cependant avec cette méthode,
entraîner un gestionnaire de dialogues requiert la génération de nombreuses données. C’est pourquoi
beaucoup d’attention a été portée à la simulation d’utilisateurs ces dix dernières années. L’optimisation
est donc faite avant de confronter le système à des utilisateurs réels et l’apprentissage est soit stoppé
ou soit très lent durant l’utilisation pratique. Pendant ce temps-là, la recherche en AR a développé
des algorithmes efficaces en termes d’échantillons. Par exemple les processus gaussiens pour l’AR ont
récemment été appliqués aux gestionnaires de dialogues. Pour augmenter la vitesse d’apprentissage,
l’incertitude sur les estimations calculées durant l’apprentissage est utilisée pour diriger l’exploration.
Une comparaison entre différents schémas d’exploration montre que des améliorations significatives
peuvent être apportées et qu’une optimisation en ligne rapide et sûre est possible, même sur une tâche
complexe.

1 Introduction

Spoken Dialogues Systems (SDS), and especially task-oriented SDSs, are now very common and can be
encountered in everyday life (hotline, call routing etc.). The difficulty when building such a dialogue sys-
tem, apart from speech and language processing, is to build a dialogue manager that fulfil the user requests
in the most efficient and natural way. To achieve optimality, dialogue strategies should thus handle speech
and language processing errors in a natural way, introducing implicit and explicit confirmation as well as
disambiguation subdialogues. Dialogue management can therefore be seen as a sequential decision making
problem where decisions about which dialog act has to be performed in a given context (dialogue state) so
as to maximize some optimality criterion. Sequential decision making is often addressed by Reinforcement
Learning (RL) Sutton & Barto (1998) which is a statistical machine learning method that has been suc-
cessfully applied to SDS during the last decade Singh et al. (1999); Levin et al. (2000); Pietquin & Dutoit
(2006); Young et al. (2010). Optimizing dialogue management by means of RL requires casting the problem
into a Markov Decision Process (MDP) Levin et al. (2000) or a Partially Observable MDP (POMDP) Young
et al. (2010). In the later case, decisions are not taken according to a single inferred context but according
to a distribution over different dialogue state hypotheses, which makes the learning process more robust to
speech recognition and understanding errors.

Although the (PO)MDP framework is appealing for SDS optimisation, standard RL algorithms need large
amounts of data to converge to an optimal strategy. Datasets expansion by means of user simulation has thus
been intensively studied during the last 15 years Eckert et al. (1997); Pietquin & Dutoit (2006); Schatzmann
et al. (2006). Yet, user simulation induces a modeling bias which is hard to predict Schatzmann et al. (2005)
and can lead to suboptimal strategies after learning. In the meantime, RL research has made a lot of progress
and especially batch algorithms that can learn from low amounts of fixed data have recently been shown
to efficiently apply to SDS Pietquin et al. (2011). Anyway, examples of interactions used for learning may
not represent all the types of users and learning should be pursued during the use of the system so as to
take advantage of novel interactions. Recently, online learning with an efficient RL algorithm, namely GP-
SARSA Engel et al. (2005), has been proposed to optimize dialogue management strategies Gašić et al.
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(2010). GP-SARSA makes use of Gaussian processes Rasmussen & Williams (2006) to approximate the
state-action value function from which is derived an optimal policy.

Several approaches can be envisioned to learn online an optimal policy depending on the way the policy is
modified during the learning. If the initial policy is modified after each interaction with a user, the approach
is called on-policy. Whereas when a policy is improved by using interactions collected with another policy,
the approach is called off-policy. While off-policy learning offers the possibility to use a non-optimal but
acceptable policy during learning, it is not obvious to identify the best moment when to switch to the
learnt policy. On the other hand, on-policy learning (like in Gašić et al. (2010)) allows the policy to be
enhanced immediately after each interaction but requires the user to undergo the changes made to the
policy, even if they are not enhancements. The learning should therefore be made as quick as possible to
avoid unacceptable changes to the policy to be seen by the users. This also poses the well-known exploration
vs exploitation dilemma : should the system exploit its current knowledge and stop learning with the risk of
being suboptimal or should it continue exploring different possible strategies to learn a better one with the
risk of acting dangerously.

In this paper, we propose to use the uncertainty information on intermediate estimates (namely the Q-
function) computed by the Gaussian process for RL method to build a sample-efficient online learning
algorithm. Efficiency is reached thanks to different exploration schemes based on the computed uncer-
tainty, allowing to test wisely unseen situations, not only because they are uncertain but also because they
are expected not to be armful. The results are compared with Gašić et al. (2010). The rest of the paper is
organized as follows. In Section 2, the problem of casting SDS optimization into the POMDP framework
is presented. The following section proposes several exploration schemes based on uncertainty about esti-
mates. In Section 4 some results are presented on a large-scale dialogue systems. Eventually, conclusions
are drawn and perspectives proposed.

2 Dialogue Management as a POMDP

Dialog management (DM) can be seen as a sequential decision making problem. The decision maker is
the dialog manager. From user acts (observations), it should choose and perform a system act (actions) in
order to satisfy the user in an efficient and natural way. This satisfaction is quantified by a reward provided
at the end of a dialogue and computed as a mixture of objective measures (such as the task completion,
the dialogue duration etc.). Framed like this, DM can be cast as a POMDP (Partially Observable Markov
Decision Process) : decision should be taken according to the full history of user and system acts. However,
this history can briefly and efficiently be summarized by the hidden information state paradigm Young et al.

(2010). Thus, DM can be cast as a continuous state MDP or a POMDP.
What is searched for is a policy π associating an action to each state, its quality being quantified by the

so-called Q-function that gives the expected cumulative reward for starting with a given state-action pair
and then following the policy π :

Qπ(s, a) = E[
∑

i≥0

γiri|s0 = s, a0 = a, π],

γ being the discount factor, (s, a) the state-action pair and (ri)i≥0 the set of obtained rewards. The optimal
policy (π∗) is greedy relatively to its Q-function (Q∗(s, a)) : π∗(s) = arg maxa Q∗(s, a). The problem of
finding the optimal policy thus resumes to the learning of the optimal Q-function. The Q-function allows
comparing two policies, but also comparing two actions for a given state under a fixed policy. Usually,
the state-action space is too large to allow an exact computation of the Q-function and approximation is
mandatory.

Here we are interested in learning an optimal control policy while interacting with the user (online and
on-policy learning). There are usually two steps : estimating the Q-function of the followed policy (with
SARSA Sutton & Barto (1998) for example, or with GP-SARSA Engel et al. (2005) here) and choosing
actions according to this estimated Q-function (the control part).

Let’s assume that the Q-function approximation algorithm is provided. Choosing actions according to
the current Q-function estimate is known as the dilemma between exploration and exploitation. At each
interaction, the RL agent should choose between acting according to its current (imperfect) representation
of the world (here the estimated Q-function) and performing some exploration action, suboptimal according
to the current estimates but which can improve them. A classical but crude scheme is the use of an ǫ-greedy



policy : a greedy action resp. to the estimated Q-function (arg maxa Q(s, a)) is chosen w.p. ǫ, and a random
one w.p. 1 − ǫ. If learning from interactions with real users is envisioned, the exploration/exploitation
dilemma is crucial. First, learning should be fast : the DM improves quickly and is able to adapt itself to
users. Second, learning should be safe : the DM doesn’t choose repetitively bad actions. This suggests that
choosing actions purely randomly as done by the ǫ-greedy policy is not wise.

3 Gaussian Processes and Exploration

Here we pursue a work initiated by Gašić et al. (2010); Geist & Pietquin (2011). The underlying idea
is that, if one has access to some uncertainty information about the estimated Q-function, than it should
provide useful information for handling the dilemma between exploration and exploitation. For example,
assume that two actions are possible for a given state, one (say a1) having a higher estimated value than the
other one (a2). A greedy agent would choose a1. But assume also that some confidence intervals about these
estimates are also available. If uncertainty about a2 is high, it should mean that this action is possibly better
than a1, and it can be worth trying it. On the other hand, if this confidence interval is small, one should
choose a1. We propose exploration schemes making such sort of choice automatically. Notice that we are
interested in the uncertainty of the estimate, and not in the variance of the stochastic process of which the
Q-function is the mean, which are two different things.

Two model-free value function approximators provide such an uncertainty information, namely
KTD Geist & Pietquin (2010a) and GP-SARSA Engel et al. (2005), the later being considered in this
paper. The underlying principle of GP-SARSA is to model the state-action value function as a Gaussian
process (that is a set of jointly Gaussian random variables, these random variables being here the values of
each state-action pair). A generative model linking rewards to values via the sampled Bellman evaluation
operator and an additive noise is set. The Gaussian distribution of a state-action pair value conditioned on
past observed rewards is computed by performing Bayesian inference and the value of this state-action pair
is estimated as the mean of this Gaussian distribution. The associated variance quantifies the uncertainty. As
any Bayesian method, a prior must be defined. For GP-SARSA, this is done through the choice of a kernel
function defining the prior correlations of Q-function values.

We do not provide more details here, it should be enough to say that it provides at each step i an estimate
Q̂i(s, a) of the Q-function as well as an associated standard deviation σ̂i(s, a). The ǫ-greedy policy does
not use this uncertainty information : the greedy action ai+1 = arg maxa Q̂i(si+1, a) is chosen w.p. 1 − ǫ

and a (uniform) random action otherwise. The obtained transition is then used to learn the new estimate
Q̂i+1 (and σ̂i+1). Under some conditions, notably a decaying exploration factor, it converges to the optimal
policy. However, it can be rather slow and unsafe during the exploration stage.

In Gašić et al. (2010) an informed exploration policy, also called active learning is introduced and
is used here as a baseline. It chooses the greedy action (resp. to the estimated Q-function) ai+1 =
arg maxa Q̂i(si+1, a) w.p. 1 − ǫ and another greedy action (resp. to the computed variance) ai+1 =
arg maxa σ̂2

i (si+1, a) w.p. ǫ :

ai+1 =

{

arg maxa Q̂i(si+1, a) w.p. 1 − ǫ

arg maxa σ̂2
i (si+1, a) w.p. ǫ

(1)

Therefore, the underlying idea is to act greedily respectively to the estimated state-action value function, and
to choose sometimes an exploratory information. By choosing the less certain action, this scheme actually
chooses the action which provides more information. Moreover, the exploration parameter ǫ is decayed to
zero as learning progresses, so this scheme tends to the greedy policy. This improves over the classical
ǫ-greedy policy but one possible drawback is that the exploration stage does not take the estimated value
into account. Therefore, an action with a very low estimated value (which is possibly a “dangerous” action)
can be chosen repeteadly, as long as it has a higher uncertainty that other actions (even if the difference is
slight). We propose to use other exploration schemes.

The confident-greedy policy consists in acting greedily according to the upper bound of an estimated
confidence interval Kaelbling (1993). For a tabular representation (for which the confidence interval width
is proportional to 1√

n(s,a)
, n(s, a) being the number of visits to the considered state-action pair), some

PAC (Probably Approximately Correct) guarantees can be provided Strehl & Littman (2006). In the case of
continuous state spaces (which occurs in SDS optimization), the state-action pairs being uncountable, this
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approach does not hold. Here, standard deviation is provided by a Bayesian method, the prior is given and
the posterior is computed. The distribution being Gaussian by assumption, the confidence interval width
is proportional to the estimated standard deviation (which is actually true for any distribution, according
to the Bienaymé-Tchebychev concentration inequality). Let α be a free positive parameter, we define the
confident-greedy policy as :

ai+1 = arg max
a

(Q̂i(si+1, a) + ασ̂i(si+1, a)) (2)

This strategy favors less certain actions if they correspond to the upper bound of the confidence interval.
On the other hand, if for a given state all standard deviations are equal, than the agent will act greedily
respectively to Q̂i. Notice also that the variance information provided by GP-SARSA tends to decrease as
rewards are well predicted and as actions are more and more experimented.

The second approach we consider is the bonus greedy policy, inspired from Kolter & Ng (2009). Using
a Bayesian argument, they act greedily resp. to the estimated Q-function plus a bonus, this bonus being
proportional to the inverse of the number of visits to the state-action pair of interest. As 1√

n(s,a)
is pro-

portional to the standard deviation in a frequentist tabular approach, we interpret 1
n(s,a) as a variance. The

proposed bonus-greedy policy therefore uses a variance-based bonus and is defined as (β0 and β being two
free parameters) :

ai+1 = arg max
a

(Q̂i(si+1, a) + β
σ̂2

i (si+1, a)

β0 + σ̂2
i (si+1, a)

) (3)

This strategy also favors less certain actions and tends to be greedy respectively to the estimated state-
action value function if variances are close to each other. A similar strategy has been shown efficient in
model-based reinforcement learning using Gaussian Processes Deisenroth et al. (2009).

4 Experiments

Experiments have been led with the Hidden Information State (HIS) dialogue manager (Young et al.

(2010)). The task consists in a tourist information system, assisting user to find a venue in Cambridge which
can have up to 12 attributes. The algorithm used for the dialogue management optimisation is GP-SARSA
with a polynomial kernel for the summary state space and a Dirac kernel for the action space ; it is the same
set-up for the Q-function approximator as in Gašić et al. (2010). To obtain enough dialogues, the dialogue
manager interacts at the intention level with a simulated user and not with real ones. The experiments are
thus reproducible and the diversity of the users is ensured. An artificial speech understanding error rate of
10% is added. A positive reward (+20) is given at the end of the dialogue if the DM managed to fulfil the
user request and a penalty (−1), aiming at encouraging short dialogues, is given at each dialogue turn.

The efficiency of the different exploration/exploitation schemes has been compared with the one proposed
in Gašić et al. (2010) called active learning and which we referred to as the informed exploration scheme
in Section 3.

First, we compare the different schemes by leading the same experiments as in Gašić et al. (2010).
In Gašić et al. (2010), the results are obtained by stopping the learning and performing trials by using
the greedy policy (no exploration anymore). The three schemes are compared Figure 1. This provides a ba-
seline but one has to remember that the performance of the greedy policy can be good although the online
performance during learning can be quite bad. Indeed, a totally random policy combined to an off-policy al-
gorithm would lead to a good greedy policy and the poorer results during the learning. This is not acceptable
when interacting with real users.

That is why we compare these results with ones obtained in an online way to get rid of this drawback.
We show the performances of the policy while learning, this policy using the exploration scheme. In other
words, it is an online evaluation of the policy, happening during the interactions with the user that serve to
the learning. This difference is important since the greedy policy can be very good although very bad actions
have been tested during the learning. Yet, if one wants to learn online, very bad actions should be avoided.
Also, the advantage of learning online is that there is no need to chose the moment when to switch to the
greedy policy, it is implicit from the exploration/exploitation schemes proposed in Section 3 that the learnt
policy is asymptotically greedy. One other advantage of working online is that the policy keeps improving
and adapting all along the interaction with the users. The different schemes are compared Figure 2. The



FIG. 1 – Performances of greedy policy. To get the average reward, each 100 dialogues, 100 policies were
learnt and tested in a greedy way 1000 times each.

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  200  400  600  800  1000

a
v
e
ra

g
e
 c

u
m

u
la

ti
v
e
 r

e
w

a
rd

training dialogues

active learning
confident greedy

bonus greedy

FIG. 2 – Performances of the policies. Parameters : α = 12, β0 = 100, β = 1000, ǫ0 = 0.1. The curves are
obtained for an average over 1000 training trials. An average is made with a sliding window of 100 points
width each 50 points.
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average reward obtained by using the currently learnt policy has been plotted with respect to the number
of dialogues already experienced during the learning. The parameters α, β and β0, used in the two new
exploration schemes, are chosen empiricallay to have good results but they are quite easy to tune since their
order of magnitude can be deduced from the variance approximation of the Q function. The parameter ǫ0
is used at the beginning of the learning in the active learning scheme and then decrease during the learning
phase according to the number of dialogues experienced.

The comparison of the curves shows that improvements are brought when the information of uncertainty
is used considering also the estimated value of the chosen action as proposed by the two novel explora-
tion schemes. First, the number of samples needed to reach the same quality of policy is smaller (about 150
dialogues with respect to 600). This is an advantage when possibly interacting with real users, since the qui-
cker a good policy is learnt the less the user is annoyed by an unadapted behaviour of the dialogue manager.
Consequently, the user simulation needed to build data to learn a correct policy before interacting with real
users may not be mandatory anymore. That removes the bias inherent with the simulation. Secondly, the
asymptote for a big number of samples is higher (around 12 v.s around 10) with the new schemes proposed
in Section 3. With active learning, the average number of steps to do the task is 20− 10 = 10 whereas with
the new schemes it is 20 − 12 = 8. The policy found seems better since the dialogue manager fulfils the
user request with less steps, meaning that it better handles errors. This is due to the fact that learning online
using the active learning scheme, the DM keeps performing uncertain actions which can lead to locally
bad strategies. The two other schemes take the estimated value of the Q-function into account and avoid
exploring uncertain actions if they are not expected to provide a correct behaviour. This is why the online
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performances of the proposed schemes are better while the active learning scheme provides similar results
when tested on the greedy policy. Anyway, one can notice that the online performances of the proposed
exploration schemes are as good as the greedy one, while it is not the case for the active learning scheme.

5 Conclusion and Perspectives

In this paper, we have proposed two novel exploration schemes to learn (online and on-policy) an optimal
dialogue management strategy by means of reinforcement learning. Based on this work, it is possible to
envision learning of dialogue policies on real users, during the actual life of the system. This way, dialogue
policies can permanently improve and are not subject to user modeling bias. It has been shown that the
learning is made faster by the use of these exploration schemes which allows reaching an optimal policy
after only a few hundreds of dialogues. These results outperform the results previously reported in Gašić
et al. (2010).

In the future, we want to apply this method, as well as other RL algorithms providing uncertainty in-
formation which have been shown to be very efficient Geist & Pietquin (2010a,b) to direclty optimise the
policy in interaction with real users. Moreover, these methods allow substantially more elements of the
dialogue manager to be learnt which has the potential to make dialogue manager more data driven, flexible
and human-like.
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