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Source Correlation in Randomly Excited
Complex Media

Andrea CozzaMember, |EEE

Abstract—When dealing with modal representations of the
Green’s function of a complex medium, the modal coefficients
are often assimilated to random variables, where statistial
independence is justified on heuristic arguments supportetly the
complexity of the propagation in multiple-scattering scemrios.
This letter addresses this assumption when the randomness
originates from an uncertain positioning of the sources, poving
under what conditions the modal coefficients can be regardeds

passwe
scatterers
~a
uncorrelated, showing that this special condition should ot be

taken for granted, even in complex media. @ Pt

Ve

Index Terms—Random media, correlation, Green’s function
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stochastic fields, uncertain systems. /v\\ ) @
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|. INTRODUCTION

partially reflective

Complex propagation media are of fundamental importance boundaries

in a number of practical configurations, e.g., wave propgagat
through indoor environments, the generation of random field
distributions in multi-modal waveguides and cavities, . et€ig. 1: Schematic representation of a medium occupying a
In the framework of the present paper, we shall regardregion (2, supporting a complex propagation of electromag-
medium as complex as soon as a wave propagating througgtic waves, due to multiple passive scatterers and reféecti
it is systematically subjected to a large number of scateriboundaries. The sources modeling the transmitter (orvegei
interactions, leading to loss of coherence and typicallyode are bound to the volumg&;,.
larization phenomena [1], [2].

Statistical models are typically proposed to reproduce the
behavior of the electromagnetic fields thus generated, lsyg. impression thatV degrees of freedom are equally accessible
representing the fields as continuous stochastic proc§kesin the medium.
[3], [4], [5] or by representing the propagation through a In this letter we provide a formal proof that whenever the
superposition of contributions modulated by random coeffiandomness is due to a non-deterministic position/ortemta
cients [6], [7], [8], [9]. The rationale for approximatingge¢ Of the sources, the coefficients should not be regarded as
fields as random variables is not only based on the complexifgdependent, even in the case of strongly scattering media.
of the wave propagation, but also on the existence of further
randomizing processes, such as the presence of movingrscatt |l. GREEN'S FUNCTIONS AND MODAL COVARIANCES
ers or even in the case of a static medium where the sources arghe electric field excited by an electric current distributi
randomly positioned, e.g., in the case of channel fading. [10](7a) under a harmonic steady-state at the frequenoyan

In the case of subspace (or spectral) representationsheaexpressed as a convolution integral involving the etectr
generic fieldF'(r) can be expanded over a basis formed bylectric dyadic Green’s function of the medium

the orthogonal functiong,, () /
G . (r,r) - J(rd3r, )

= Z ngn(r), @ where() is the region of space occupied by the medium under
consideration (Fig. 1). Clearly, other types of Green'sction

where thea;, are treated as random variables. Choosing th@n pe considered when dealing with magnetic fields and/or
type of probability description for the, is far from trivial, magnetic sources. In a general way, these dyadic functions
but it is a common practice to regard them as Gaussian ihn always be expanded into a spectral representation of the
dependent and identically distributed, for obvious sirfyjriig type [15]
reasons [11], [8], [7], [12], [13], [14]. As a result, (1) @is the 0 ( 0
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andk,, are respectively the eigenfunctions and eigenvalues aientation of the sources can be modeled as random vasiable
Helmholtz equation Under these circumstances, the covariances (8) can benvritt
2 2 _ as
Vien(r) +knen(r) =0 ) ol = / d*r el(r)- / &r' C(r,7') - e5(r), (9)
solved with boundary conditions specific to the medium, ap- /Q . @ _
plied overr € 9<2. These eigensolutions will be assumed to behere C(r,r’) will be referred to as the coupling dyad,

normalized in such a way that an orthonormality relatiopshf€fined as / -
holds C(r,r) = (I @)). (10)

/QEZT(T) -e;(r)d*r = 6y, (5)  Therefore, the coupling dyad operates as a kernel weighting
in (5).

whered;; is Kronecker’s delta andl stands for the Hermitian ©)
transpose. This kind of discrete expansion pertains to tedin 11l. N ECESSARY CONDITIONS FOR UNCORRELATED MODES
media (e.g., cavities, waveguides), large collectionscafter- A necessary condition for (8) to hold can be readily derived
ers (e.g. fog and colloidal suspensions at optical fregieshc by looking at the inner integral in (9) as a spatial filterin§[
or quasi-periodic structures. Although free-space-likedia if the dyadic coupling functiorC (r, ') did not modify the
can be considered by taking the limit of the summation in (¥patial distributionse;(r), then (9) would coincide with the
to an integral, the case of a discrete set of normal modeb sh@thogonality relationship (5) existing between normaldes,

be considered, with no loss of generality. directly implying uncorrelated modal coefficients. The gex
Inserting (3) into (2) yields representation in (9) does not allow to push this idea furthe

© yen(r) as the double dependence of the coupling dyad- and »’

E(r)= Z; j 12 (6) corresponds to a spatial-variant filtering; in other wor(®3,

n=1

is not equivalent to a convolution integral. This would be th
with ~, the modal coefficients obtained by projecting th&ase only if

current distribution of the sources over the eigensolstion C(r,r')=C(r—r"). (11)
en(r) by means of the Hilbert inner product It will be shown in the next Section that this property is
5 automatically satisfied as soon as the source position and
Tn = /Qen(T) ~J(r)d’r. (") orientation are totally random with no a priori information

_ e - At the same time, it will be shown that these same conditions
In spite of the difficulties in predicting the normal mode$ ., needed if the coupling dyad is to be isotropic and non-

e, (r), the most important information is arguably ConVeyeﬂolarized, a necessary condition proved at the end of this
by the modal coefficients,. As a matter of fact, the subspaces, tion

representation (3) implies the possibility of independent o gition (11) allows applying the convolution theorem in

exciting each of the degrees of freedom represented by eggh reciprocal spack. To this effect, we need to introduce the

normal mode, an interesting feature in any domain Concernggyrier transforne; (k) of a modal distributiore; () applied
with the existence of rich multiple-scattering environit®en ;. he variabler '

from diversity communications to the statistics of the field
generated within a random medium. The modal coefficients e(k) = / e;(r)e*rddr. (12)
v, thus provide a direct measure of the degree of excitation Q@ B
of each of these potential degrees of freedom by means of thence,o?; o d;; as soon as the Fourier transfo@(k) of
applied sources. the coupling dyad is such that

Due to the intrinsical difficulty of knowing beforehand the ~ - -
eigenfunctions,,(r), a statistical approach is often adopted, C(k) - &(k) oc & (k). (13)
by approximating the modal coefficientg to behave as ran- Recalling that the normal modes are but steady-state solu-
dom variables, described by a specific probability distidou tions to the source-less Helmholtz equation (4), theiriapat
law. Among the various hypothesis required in this respeist, spectrum can be assumed to be essentially made up of prop-
often assumed that the modal coefficients be independent @gative plane waves, i.e.,
identically distributed, i.e., a covariance matrix wittemlents &i(k) = 6(k — ko)&i(k) (14)

01‘23‘ = (V%) = 0351‘3‘7 (8) whereé; (k) is the angular spectrum [17] arig is the wave-

where (-) is the ensemble average operator, the overbar rélimPer associated with the background materiaf2inThis

resenting the complex conjugate aﬂﬁ’ the variance of the assumption holds as long as the mean free-path between two
modal coefficients, i.e., their average power. scattering events is larger than one wavelength, in order to

This paper addresses this common assumption in the c34gid evanescent-wave couplings [2]. Therefore
where the ,randomness is justified by a ra_ndom p0f5|t|on|n_g for /Q(r ) - e(r) AP = /Q(k) & (k)e RT3k =
the source’s volume&,. In general, for a given medium, with Q
a set of normal modes,, (r), the modal coefficients would

_ 2~ PN\ S (1\a—ikok-T 127,
behave as random variables as soon as the position and the _/ koC (kok) - ei(k)e ™" d k, (15)
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matrix of the three orthogonal components@fDue to the
’ initial assumption of a source oriented with equal prohghbil
along4r steradian, the diagonal elements@j are bound to
be identical. It is therefore sufficient to consider the cake
the component ofj along thez direction,
(Cdie = (-2 = 3,
whereas the off-diagonal elements 6f, are equal to zero,
yielding C, = I/3. At the same time, the average op €
Qo, referred to axC,. , yields C,, = o(r — r’)/Vq,, with
X Vo, the volume covered by the random vectoy; i.e.,

(19)

Fig. 2: Sources volume at a random positipfn bound to C(r,r') = ! 5(r—r"). (20)

the region)y. The reference system denoted by primed axis S0

indicates the rotation operatioR, applied to the original ~Whence, an elementary source arbitrarily polarized and
orientation of the sources volungg,. randomly oriented and positioned satisfies the conditiarts p

forward in the previous Section, thus ensuring uncorrdlate
coefficients for the modal expansion (3). In any other case,

whence the condition (13) is satisfied only if a probability density functionf(q; ®) depending on a set
S of parameter®® would be required, thus leading to results
C (kok) = Col, (16) also dependent o®. An example is provided by Von Mises

with I the identity dyad. Hence, the spatial spectrum ﬂ:stributions, where a preferential direction is ass@clab a

the coupling dyad needs to be: 1) constant over the surf 'gher_proba_bility; asa result, the coupling dyad woulds_prﬁ
an anisotropic behavior (e.g., a fll;), with (9) becoming

k = ko, i.e., isotropic along any direction and 2) non<
polarizing, i.e., proportional to the identity dyad. Thease s 1 B el C 21
conditions correspond to a spherically symmetric coupling T = Wzg Q S @)

o, e e ol Con000ys aterng he onronormatycoron 9.
parted from (11), which is a'fundamental requirement toeghe In Fhe more general case OT an.extended souree, Itis no more
results. In other\;vords the coupling dyad needs to be pasiti Bossmle. to_ operate a factorization as dor_1e in (13), because
invariaﬁt isotropic in c;irection and non polarized of the Q|str|but§d nature of (r). We sha}ll first consider th.e.
' ' averaging obtained by a random rotation around the origin,
which is equivalent to rotating the doublet of vectersand
IV. I SOTROPIG POSITION-INVARIANT , NON-POLARIZED  ;/ while keeping the source regidi, centered at the origin.
COUPLING DYADS This operation can be resumed by a random rotation,of
These requirements are shown in this Section to impWhere it is regarded as a random vector R, - r, which is
a specific random orientation and positioning of the sourégjuivalent to the substitution ~ ¢g. We definer’ as
volume(2,. We first consider the case of an elementary electric ¥ =1+ ArRy, - 7, 22)
current
J(r) =Ry pi(r —ro) (17) where R, represents the rotation operation linking the di-

. o . rection ofr to Ar =/ — r. Hence
with p the polarization of the elementary source; its

position and its orientation modified by the rotation operat <J(7“)JT(7“I)>A = <15(7°Q)15T(7°Q +ArRA, - q)

R, with ¢ the unit vector pointing to the direction of the R ) (23)
source. We will assume the position and orientation of this /(r@)J(rq + ArRy, -q)>q.

source to be random and independent, assuming them as n
causally related by any underlying deterministic procésis.
therefore possible to split the ensemble average in (1@) i
two averages,

C(r,v') = (Ry-p p' - RL)a(d(r —710)d(r" = 70))r,. (18) (p(ra)

?rtltroducing the rotation operatdR,, linking the polariza-
t'[ons atr andr’, the right-hand side of the above expression
"Becomes

p (rq)) - RL NJI(rg)J(rqg + ArRA, - q
p'(rq) . RL(r,7")(J(rq)J(rq + ArRA, - q) ) .

q

(24)
For a completely random orientation, with no preferential din most practical configurations, sources are polarizediahs
rection,q € U(4r), i.e., g can cover with uniform probability a way thatp(r) is independent of, implying R, = I.

47 steradian, hence a probability density functigtg) = Recalling (20)
1/47. The first average can be computed by observing that o
the vectorR, - p resulting from the random rotation inherits <J(7')J (r )>A = C4(r, A7)

the probability distribution of the rotation dyad. Henchet ! (25)

first average, hereafter referred to@s, is just the covariance = l<J(r‘7)J(r‘7 +ATRA, ‘7)>q’



as long agj € U(4x). In any other case, the resulting correlaevaluation of (9) in this case will generally require a nuicer
tion would be at least partially polarized, and thus depahdeapproach, so that it is hardly possible to make any broad
on the orientation of the source, i.e., non isotropic. Tligp prediction, particularly because of the strong sensytititat
was shown to be a necessary condition for uncorrelated modah be expected on the details of the configuration of interes
coefficients in Section IIl.
If the source position were deterministic, then the resglti V. CONCLUSIONS

coupling dyad could not possibly be position-invariant;kesr
from (25), still dependent on. Conversely, we shall considerIin
a random positionr, spanning a regiorf)y, as depicted in

This letter has introduced the concept of a coupling dyad
king the covariances of the modal coefficients in the séc

. ) e expansion of a generic Green'’s dyadic function to the orhog
Fig. 2, ground the nominal pqsﬁmr@,/ a sort.of barycente-r of nality relationship existing between normal modes. Nemgss
the regiontd. Once the positions, =’ at which the coupling conditions for perfectly uncorrelated modal coefficientsrev
dyad is evaluated are chosen, a random displacement of (Ifé fonstrated, leading to the conclusion that in more génera
sources by an offseto is equivalent to applying a randOmconﬁgurations the effective number of degrees of freedom
offseh_*o —To to_the vectorr appearlng In (25), resulting in available may be smaller than assumed. In other words, no
a spatial averaging of the coupling dyad o¥&y. equivalence between the number of available normal modes

In the casetd, 2 due. to the rotational invariance Ofand the number of degrees of freedom should be taken for
C,(r,Ar), the overall coupling dyad can be computed as

granted.
C’(Ar) = (C,(r, Ar)> o
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