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Abstract: This work addresses the modeling of the effects of maintenance on the degradation of an 

electric power plant component. This is done within a modeling framework previously proposed by the 

authors, whose distinguishing feature is the characterization of the component living conditions by 

Influencing Factors (IFs), i.e., conditioning aspects of the component life that influence its degradation.  

The original Fuzzy Logic (FL)-based modeling framework includes maintenance as an IF; this requires to 

jointly model its effects on the component degradation together with those of the other influencing factors. 

This may not come natural to the experts who are requested to provide the if-then linguistic rules at the 

basis of the fuzzy model linking the IFs with the component degradation state. An alternative modeling 

approach is proposed in this work, which does not consider maintenance as an IF that directly impacts on 

the degradation but as an external action that affects the state of the other IFs. By way of an example 

regarding the propagation of a crack in a Water-Feeding Turbo-Pump (WFTP) of a nuclear power plant, the 

approach is shown  to properly model the maintenance actions based on information that can be more 

easily elicited from the experts.  

Keywords: Maintenance, Degradation Model, Influencing Factors, Fuzzy Logic. 

1. INTRODUCTION 

The significant economic impact of maintenance has led to a strong interest in developing models to 

support decision makers in their tasks of improving system availability, preventing the occurrence of 

accidents and reducing maintenance costs of deteriorating systems. The output provided by these models 

are the values of key parameters used to define the optimal maintenance strategy in the face of various 

types of maintenance plan and other constraints such as safety requirements and budget limitations. 

The effectiveness of the models for supporting maintenance decisions increases when these are able to 

capture the specificity of the components, which derives from the particular ‘life’ (failures, shocks, 

preventive maintenance actions, unavailability periods, work load profile, etc.) that each of them has 

experienced [1]. For example, in the electrical industry two transformers of the same electrical network 

installed one on the Alps and one close to the Mediterranean Sea experience very different operating and 

ambient conditions. For these reasons, the more specifically characterized are the operating and ambient 

conditions in the model, the more informed can be the supported maintenance decisions. 



The issue of taking into account the influence of covariates representing operating and ambient 

conditions on the evolution of the degradation process of a component has been addressed in a number of 

works (e.g., [2]-[4]), also from the theoretical point of view (e.g., [5], [6]). However, as remarked in [7], 

there are few works (e.g., [7]-[9]) that focus on the influence of covariates in the modeling of degradation 

processes for maintenance optimization. Furthermore, the stochastic models proposed in these works rely 

on a number of parameters which may be difficult to estimate in real applications due to lack of real/field 

data collected during operation or properly designed tests. Indeed, in practice expert judgement is often 

the main source of information for these models.A novel framework (in the following referred to as 

‘reference modeling framework’) has been proposed ([10]-[11]) to assess the effectiveness of a 

maintenance policy by modeling the evolution of the degradation mechanisms taking into account the 

operating and ambient conditions experienced by the component during its life. Within a Condition Based 

Maintenance (CBM) framework, a maintenance action is performed when the index of the component 

degradation reaches a predefined limit threshold. 

The operating and ambient conditions are characterized by a set of IFs, i.e., conditioning aspects of the 

component life such as Environment, Operational Mode, Quality, etc. IFs are covariates of the degradation 

process. The modeling is based on Fuzzy Logic (FL) to deal with the scarce and qualitative information 

available. The expert knowledge on the influence of the living conditions on the component degradation is 

represented in terms of if-then-else rules linking the linguistic concepts qualitatively describing the IFs 

(antecedents) to those describing the degradation state (consequent), e.g., if Environment is Soft and Age is 

Young then Degradation State is Good’. In the reference modeling framework, maintenance is an IF itself 

and its effects on the component degradation are modeled jointly with those of the other influencing 

factors. This leads to numerous antecedents in the if-then linguistic rules which link the IFs with the 

component degradation state. from the complexity of this rule structure can render difficult the elicitation 

of the rules by the experts. To overcome this problem, in this paper maintenance is taken out from the set 

of IFs by applying  the concept of imperfect repairs i.e., maintenance actions that partially restore the 

health state of the component. 

Imperfect repairs have been widely investigated in the literature (e.g., [2], [7], [12]-[22]). A 

classification of the imperfect maintenance models into the two following classes has been proposed in 

[13]: 

i). Models in which the maintenance actions reduce the hazard rate (e.g., Arithmetic Reduction of 

Intensity (ARI) models of [15], [20] and related references); 

ii). Models in which the maintenance actions impact on the effective age or virtual age (e.g., [2], 

[7], [14], Arithmetic Reduction of Age (ARA) models in [15]).  

A further class: 

iii). Models in which the maintenance action impacts directly on the degradation level (e.g., [15], 

[19]-[20]),  

is here considered. 

The models of class i) cannot be applied in the reference modeling framework since they require that 

the analytical expression of the hazard rate is known. On the contrary, in the reference modeling 

framework the failure rate depends on the covariate ‘degradation level’, whose behavior is influenced by 



the stochastic behaviors of the IFs. This implies the covariate ‘degradation level’ is a stochastic process, 

whose analytical expression is unknown. Moreover, the degradation level is an internal covariate since its 

behavior is influenced by the failure of the component under study, and thus its path carries direct 

information on the previous stochastic failure history. Due to this fact, in case of ‘internal’ covariates, the 

well known exponential survival formula could be no longer valid ([3], [5] and [6]). For example, consider a 

component restored after a failure; not only its degradation level is reset to the lowest level, but also some 

IFs (such as Age) or some variables related to the IFs (such as the accumulated vibrations) are consequently 

modified. This is a further reason to avoid the use of this kind of models when accounting for living 

conditions.  

The basic assumption of virtual age models (class ii) is that at any time instant, the failure rate of a 

component can be calculated from the failure rate of the component working in nominal conditions 

(intrinsic failure rate) by considering a virtual age that accounts for the events having caused any 

rejuvenation or anticipated aging. Thus, in these models the calendar time since the component was firstly 

operated is substituted for the virtual age. Although virtual age models presented in the literature require 

assumptions on the analytical expression of the intrinsic failure rate (as the models of class i), this way of 

modeling maintenance effects can be applicable to the reference modeling framework by assuming that 

rejuvenations and modifications of the aging rate due to maintenance actions modify the IFs and thus the 

evolution of the degradation process.  

The models of class iii) focus on the description of the evolution of the degradation processes by means 

of stochastic processes; the effect of maintenance actions is described by means of improvement functions 

which define the amount of accumulated degradation that is removed from the component when it 

undertakes a maintenance action. This class of models is not directly applicable in the present framework. 

In fact, in order to be as close as possible to the industrial practice, where experts usually classifies the 

degradation state of a component into a small number (e.g., 3, 4) of discrete states (being this classification 

based on qualitative measures of symptoms), the degradation process has also to be described by means of 

a small number of discrete states. The application of a model of class iii) within a modeling of the 

degradation process in few discrete states leads to consider jumps from one degradation state toward a 

lower one (e.g. from degradation state 3 towards 2). This may result in an overestimation of the 

effectiveness of the maintenance actions. On the contrary, in the models of class iii) the improvements of 

the maintenance actions do not necessarily force the degradation processes to large jumps, since in general 

there are many, even continuous degradation levels. 

The class ii) maintenance modeling approach is developed in this work and compared to that adopted 

in the reference modeling framework. 

The paper is organized as follows: a brief description of the reference modeling framework is provided 

in Section 2; Section 3 shows the characteristics of the new approach to modeling maintenance and 

compares it to the original approach adopted in the reference modeling framework; Section 4 describes the 

case study on which the proposed methodology is applied; finally, some conclusions are given in the last 

Section. 

2. A brief description of the modeling framework 



The reference modeling framework is partially derived from [23], where a pragmatic approach is 

proposed to taking into account the component specific living conditions (e.g., environment, working 

cycles, etc.) by multiplying the base value of the component failure rate by empirical factors. Despite its 

pragmatism, this approach is not directly applicable in a CBM context which requires the knowledge (even 

qualitative) of the component degradation level in order to define the most opportune maintenance policy. 

On the contrary, the approach proposed in the reference modeling framework focuses specifically on the 

modeling of the degradation process affecting the component, taking into account the actual living 

conditions in which it works. 

Figure 1 gives a snapshot of the modeling framework, which is based on three modules: 

 Central Module (CeM); it defines the IFs that actually influence the considered degradation 

mechanism.  

 Backward Module (BM); the physical variables related to each IF are identified, and the 

relationships between them and the IF are determined.  

 Forward Module (FM): the link between the IFs and the degradation process is defined. The 

degradation process is described by means of a small number of levels, or degradation 

‘macro-states’, each one characterized by a failure rate. The choice of this representation is 

driven by industrial practice: experts usually adopt a discrete and qualitative classification 

of the degradation state based on qualitative interpretations of symptoms.  

Eliciting information from experts, resorting to the literature, inferring from databases etc. are different 

ways to address the contents of these modules.  

 

 

Figure 1: snapshot of the degradation modeling framework. 

Both the BM and the FM are developed by applying FL theory to cope with the scarcity of the data 

typically available and its qualitative nature. In practice, the IFs are expected to be more easily represented 

by linguistic variables rather than numeric variables (e.g., ‘the environment is mild’ or ‘the maintenance is 

efficient’). In this case, fuzzy logic offers the capability of dealing with imprecise variables and linguistic 

statements provided by experts on the basis of their knowledge and engineering sense of practice.  

Furthermore, the typically stochastic behavior of the living conditions results in randomness of the 

covariates/IFs, and thus stochastic transitions between the degradation levels (and associated values of 

failure rates). 

The degradation model can be used to test the effectiveness of a maintenance policy. To do this, the 

degradation stochastic evolution is simulated by the model and the failure rates associated to the 



degradation levels evolving in time are input to a Monte Carlo (MC) module which estimates the availability 

of the system over a specified time horizon (Figure 2); through a cost model, the total costs associated to 

the maintenance policy can then be assessed [10]-[11]. 

 

 

Figure 2: interface between FL degradation and MC simulation models. 

3. Maintenance Modeling approach 

In the reference modeling framework, maintenance is considered as an IF. The physical variables (e.g., 

frequency of the inspections, accuracy of maintenance actions, number of maintenance actions overtaken 

by the component, etc.) on which this IF depends are identified and a Fuzzy Rule Base (FRB) is built to 

combine them to the Maintenance level. For example, a rule of this FRB may be: ‘if Inspections are 

Frequent and Maintenance Action Accuracy is Good and Number of Maintenance Actions is Low then 

Maintenance is Good’. 

The Maintenance IF is an antecedent of the rules of the FRB that describes the relation between all the 

IFs (e.g., Environment, Maintenance and Age) and the degradation level of the component. For example, a 

rule of this FRB could be: ‘if Environment is Mild and Maintenance is Good and Age is Young then 

Degradation State is Good’. 

Once the fuzzy models have been built, they can be used for the identification of the degradation state 

of a component which has experienced given operational and ambient conditions. The Fuzzy Inference 

System adopted is of Mamdani type ([29], [30]).  

In such modeling framework, the impacts of a maintenance policy on the degradation process need to 

be evaluated jointly with the effects of the other IFs. This may be difficult for experts that need to build 

rules on the basis of multidimensional antecedents and account for numerous aspects specific to 

maintenance (e.g., effects of actions like lubrication and cleaning, different effectiveness of maintenance 

actions during the component life, sensitivity of the degradation dynamics to the inspection period) which 

may influence the other IFs. 

In the present work, an alternative modeling choice is investigated: maintenance does not influence 

the degradation process directly, but it is taken into account by modeling its effects on the physical 

variables which the other IFs depend on (Figure 3 and Figure 4). Thus, the expert has to identify the effect 



of each maintenance action on these variables. For example (Figure 4), the maintenance actions can impact 

on the variables Age Setback and Environmental Quality which are input variables of the BM of the IFs Age 

and Environment, respectively. A rule for describing the influence of the maintenance on the Age Setback 

may be: ‘if Number of Overtaken Maintenance Actions is Small and Calendar Time Since Last Maintenance 

Action is Medium and Current Degradation Level is Good and Quality of Maintenance Actions is Good then 

Age Setback is Large’; a rule that links maintenance to Environmental Quality may be with the same 

antecedents and ‘Environmental Quality is Good’ as consequent. 

With regards to the modeling complexity, if compared to the approach presented in the reference 

modeling framework, the present approach has one less IF (i.e., the Maintenance) and thus requires the 

elicitation of a smaller number of rules for the constitution of the FRB of the Forward Module. On the other 

side, building the maintenance model of Figure 4 requires to model the effect of maintenance on the other 

IFs and thus may require additional variables in input to the BM modules of the IFs. 

As highlighted in [14], an important issue that the maintenance modeling should take into account is 

aging: the degradation level of a component will unavoidably tend to increase even if maintenance actions 

are performed regularly and neatly. This issue is here addressed by modeling age setbacks that decrease 

over time even if the same maintenance action with the same care is performed during the component 

lifetime and imposing that there exists a part of the life in which these setbacks are not sufficient to reset 

component age to zero. In the maintenance modeling approach proposed in the reference modeling 

framework the expert is requested to build rules that implicitly account for the different efficiency of the 

maintenance actions during the component life time.  

 

 

Figure 3: modeling of the maintenance effects. 

In [24] it has been noted that there are maintenance actions, as for example lubrication and cleaning, 

that do not result in age setbacks, but in changes of the aging rate. These maintenance actions are nothing 

but improvements of the environment in which the component works; thus, in the proposed approach they 

are taken into account by the rules that describe their influence on the IF ‘Environment’ (see Figure 4). 

Again, the modeling choice implemented in the reference modeling framework requires that when building 

the FRBs, experts take into account that some of the maintenance actions that will be performed during the 

component time horizon are lubrications, cleaning, etc and thus have effects different from other PM 

actions. This may be very difficult in practice.  

It is also interesting to take a glance at how the maintenance models of the literature address the issue 

of modeling maintenance actions like lubrication and cleaning. The pure ARA and ARI models investigated 

in [15] are not suitable to modeling these actions, whereas extended ARI and ARA approaches (e.g. [2], 



[22]) are able to account for them by adjusting the aging rates when components overtake these 

maintenance actions. Also the models of class iii) in which maintenance actions impact on the degradation 

levels can model this type of maintenance actions, for example by considering stochastic models that 

change their parameters at the occurrence of maintenance events (e.g. a correction factor applied to the 

shape parameter of a gamma process that decreases the propagation speed for a given time interval; in 

[19], a change in the shape parameter is accompanied with a jump of the degradation level). 

 

  

Figure 4: modeling of the influence of maintenance actions on the IFs. 

A further comparison between the proposed maintenance modeling approach and other approaches of 

literature concerns the way in which stresses caused by the living conditions are taken into account. In the 

proposed approach they are not captured only by the IF Age, but also by the other IFs; this modeling choice 

differs from that adopted in [2] where stresses are modeled by modifying only the relation between age 

and chronological time; thus, the IF Age accounts for both the living conditions and impacts on the 

evolution of the failure rate. 

4. Case study 

In order to illustrate the application of the proposed methodology, an example concerning a Water-

Feeding Turbo-Pump (WFTP) of a steam generator of a nuclear power plant is considered in this Section. In 

particular, this example is derived from a real case study investigated by Electricité de France (EDF) experts, 

who have identified by means of a Failure Mode and Effect Analysis (FMEA) the degradation processes 

affecting the component and the associated IFs and symptoms. These latter are defined as consequences of 

the degradation process that are observed by the operators during the component inspections. For 

example, vibrations and over-heating may be the symptoms associated to the degradation of the teeth of a 

gear. Fatigue degradation mechanism is revealed to be one of the most critical processes affecting the 

component and thus it has been chosen as case study in the present work. Notice that no consideration has 

been given to other degradation mechanisms or components although, as stated by the EDF experts, some 

may lead to an acceleration of the degradation process under consideration and in some cases even to the 

failure of the considered device (cascade effect). The ability of the framework to model multi-components 

system is an open issue to be addressed.  



In the considered case study, the experts have been involved only in this preliminary investigation and not 

in the effective development of the degradation model. The information necessary for the development of 

the proposed degradation model has been acquired by using a physical model of the degradation process. 

Notice that in practical cases the degradation model is not expected to be available and one can resorts 

only to expert knowledge for the development of the fuzzy degradation models. In this work, the use of a 

physical model has allowed us to verify what is the information necessary for the model development and if 

the obtained model can be effectively used for maintenance policy assessment. In particular, the physical 

model has been used to simulate some component degradation evolutions corresponding to different living 

conditions in order to extract the fuzzy rules of the fuzzy degradation model. Furthermore, the physical 

model parameters, which are usually unknown or uncertain, are supposed to be exactly known. 

The degradation of the considered component due to fatigue is caused by the development of cracks. 

The creation and propagation of these cracks is a complex physical phenomenon, which has been modeled 

in a number of different ways (e.g.,[25]-[27]). According to these models, the degradation is mainly 

influenced by the loads applied on the component, its constitutive materials and production process and 

some geometrical factors characterizing the crack such as its size, notch radius, position with respect to the 

direction of the loads, etc.  

In this work, it is assumed that the length of the most critical crack of the component defines its 

degradation level and that this length can only increase in time; in other words, PM actions on the crack 

cannot shorten it. 

In the modeling, the following three degradation states are considered (see also Figure 2): 

1. Good: the component is as new or almost new; no maintenance actions are foreseen if the component 

is in this state. 

2. Medium: the component in this state needs some actions aimed at decreasing the crack growth speed. 

3. Bad: if the component is in this degradation state it is convenient to replace it. 

 

To each degradation state, the failure rates reported in Table 1 have been associated. Their values can be 

determined from real plant data, if available, or from expert knowledge. In this respect, the degradation 

states observed at inspection and the component failure times are information that can be collected and 

used to estimate the failure rates associated to the different degradation states. 

Finally, notice that although the failure rates associated to the degradation states are constants, the 

component experiences an increasing failure rate during its life, since its degradation state evolves from 

‘Good’ to ‘Bad’ until failure. Thus, the component failure rate can be seen as a stepwise function whose 

steps have values ,  and . 

Table 1: Failure rates 

Degradation State Failure rate 

Good  

Medium  

Bad  

 

The CBM policy applied to the system is composed by the following tasks: 



 Inspection: this action, aimed at detecting the degradation state of the component, is considered to 

be of negligible duration but has a cost of  €. Furthermore, this is the only scheduled action. 

 CBM actions: PM actions which are dependent on the result of an inspection action. If the 

component is found to be in state “Good”, no action is performed. If the degradation state is 

“Medium”, the component undergoes a repairing action aimed at slowing down the degradation 

process: this action has a duration of  and a cost of  €. Finally, if the component is in state 

“Bad”, it is replaced: this action takes  of time and costs  €. 

 Corrective Maintenance (CM) actions. The corrective action, performed after a component failure, 

is assumed to be the replacement of the component. Due to the fact that this event is unscheduled, 

this action brings an additional duration of  and an additional cost of  €, with respect to 

the replacement after an inspection, leading to a total duration of  and to a total cost of  

€. In particular, the additional time may be caused by the supplementary time needed for 

performing the procedure of replacement after failure or to the time elapsed between the 

occurrence of the failure and the start of the replacement actions. 

Both the amplitude and the frequency of the fundamental wave, which constitute the measurable variables 
in input to the BM of the IF environment, are assumed to change according to a Compound Poisson Process  
(CPP,. [3] and [28]). This modeling choice is justified by considering that the vibration in the location in 
which the component of interest works is caused by other components due to their degrading (e.g., the 
increase of the eccentricity of the center of gravity in rotating machines) or to the plant design, which 
results in the periodic application of a load on coupled components (e.g., alternating machines discharging 
loads on the same basement of the component of interest). Since, in general, the behavior of the 
components producing the vibration is stochastic, the vibration profile suffered by the components is also 
stochastic. In the present case study, it has been supposed that the external events that cause 
modifications both in the amplitude of the wave (e.g., failures that modify the eccentricity of rotating 
systems and relevant maintenance actions) and in its frequency (e.g., increasing/decreasing of the 
operational load of a vibrating system) occur randomly with a given rate, whereas the amount of the 
changes is uniformly distributed. This leads to consider a CPP process whose parameters are: 

 

 the time of modifications of both the amplitude and frequency of the fundamental wave, which is 

assumed to be exponentially distributed, with parameter ; 

 the new frequency value which is assumed  uniformly distributed in the range ; 

 the new amplitude value which is assumed to be uniformly distributed in the range . 

4.1. Physical model of the degradation process 

In this paragraph, the Paris-Erdogan model (one of the best known physical models in fracture 

mechanics) is briefly presented. The fatigue crack growth can be modeled as a process divided into three 

different parts (Figure 5): 

 Initiation (or incubation): the period during which the crack has not yet appeared. This step ends at 

a time  and corresponds to the ‘Good’ degradation state of the component. 

 Propagation: the crack has already appeared (i.e., it has reached the detection threshold, ) and is 

growing slowly until it reaches a critical size, . This part corresponds to the ‘Medium’ degradation 

state of the component. 



 Rupture: after the achievement of the critical size, , the largest crack reaches a faster growth and 

leads to the failure of the component. This part corresponds to the ‘Bad’ degradation state of the 

component. 

 

 

Figure 5: fatigue crack growth model. 

The Paris-Erdogan model relates the increment of crack growth per cycle, , to the parameters of 

stress range, , and instantaneous crack length, : 

  (1) 

where  and  are constants determined by material properties and  is the fluctuation range of the 

crack tip stress-intensity factor , which depends on the size and the type of the crack [27]. A simple model 

for  is given by: 

 (2) 

where  is the stress at the crack tip and  is the geometry correction factor which depends on the 

crack shape, length and on the component shape. A backward difference approximation can be obtained 

as: 

 (3) 

where . 

According to this model, the crack growth accumulates relatively slowly and continuously with the load 

cycles . In this case study, the stress range, , has been linked to the amplitude, , of the 

fundamental wave by means of the constant parameter , which, for the sake of simplicity and without loss 

of generality, has been assumed equal to 1: 

 (4) 

Table 2 reports the values of the parameters of the Paris-Erdogan model that have been used in the 

considered case study. Notice that the parameters values used in this case study are not derived from a real 

application; they have been arbitrarily assumed for the purpose of illustration. 



Table 2: parameters of the Paris-Erdogan model used in the case study. 

Parameter Value 

  

  

  

  

  

  

 

4.2. Fuzzy model of the degradation process 

The evolution of the degradation process is assumed to be dependent on two IFs:  

 IF1: Environment. The influence of the environment on the considered degradation mechanism is 

assumed to be mainly caused by the vibrations in the location in which the component works. In 

particular, the measurable variables on which the IF1 depends are the mean values of the frequency 

and of the amplitude of the vibration fundamental wave in the time elapsed since the component 

has started to work. The UoD of this IF, arbitrarily scaled on , is partitioned into three Fuzzy 

Sets: ‘Soft’, ‘Medium’ and ‘Heavy’ (Figure 6, left) whose membership functions (MFs) achieve the 

maxima in correspondence of 0, 0.5 and 1, respectively. For the sake of simplicity, the MFs are 

assumed to be linear and to sum to 1 in any point of the UoD. 

 IF2: Age. This IF represents the virtual age of the component. The UoD of this IF is the interval 

, where  is the time horizon; on this interval, three Fuzzy Sets ‘Young’, 

‘Medium’ and ‘Old’ are defined by means of triangular membership functions (Figure 6, right). In 

particular, the component is considered ‘Young’ when it has no visible crack. This is completely true 

at the beginning of the component life (engineering good sense suggests that a brand new 

component has no cracks) whereas it is completely false after  (the physical model 

simulations show that no component works for more than  without any crack having 

appeared). On the opposite, after  the component is considered ‘Old’ with membership 1: 

simulations of the physical model prove that no component is able to work for more than . 

The MF of level ‘Medium’ is assumed to be the complement to one of the sum of the MFs of the 

other two levels, which for simplicity are assumed to be linear. 

4.2.1. Model of the maintenance action effects 

In this case study, for the sake of simplicity, modeling of maintenance actions is not addressed within 

the FL framework but it is assumed that the value of the IF/covariate Age, , changes when a repair 

action is performed according to: 

 

 (5) 

 



where  is the number of repair actions already performed on the component. Notice that a deterministic 

model of the maintenance action effects is not known in practical cases where the information available is 

expected to come from expert knowledge. However, using a deterministic model of the effects of the 

maintenance actions allows to compare the results obtained by the fuzzy degradation model with those of 

the application of the physical degradation model of Section 4.1. 

 

Figure 6: fuzzy sets of the IFs: Environment (left) and Age (right). 

4.2.2. Backward Module 

IF1 depends on two physical variables which can be measured by means of sensors (e.g., strain gauges): 

the amplitude and the frequency of the vibration fundamental wave. In particular, the mean values of 

these variables in the time elapsed since the system has started to work are given in input to the BM. 

Figure 7 shows the fuzzy sets, defined by means of trapezoidal membership functions, partitioning the 

variables in input to the BM. In particular: 

 The mean value of the frequency of the fundamental wave is described by the fuzzy sets “Low”, 

“Medium” and “High”, defined on the UoD . 

 The mean value of the frequency of the fundamental wave is described by the fuzzy sets “Low”, 

“Medium” and “High”, defined on the UoD . 

The UoDs and the MFs of the fuzzy sets have been set by using expert judgement. 

 

Figure 7: fuzzy sets of Frequency (left) and Amplitude (right). 

 



Table 3 reports the rules that combine the two inputs of the BM module and thus evaluate the quality 

of the environment in which the mechanical component works. For example, the cell in column 5 and row 5 

expresses the rule: ‘if Frequency is High and Amplitude is High then Environment is Heavy’.  

 

Table 3: fuzzy rules of the BM relative to the IF1. 

 
Amplitude 

Low Medium High 

Fr
e

q
u

e
n

cy
 Low Soft Soft Medium 

Medium Soft Medium Heavy 

High Soft Heavy Heavy 

 

4.2.3. Forward Module 

The Forward Module is addressed by setting the rules summarized in Table 4. For example, the cell in 

row 4 and column 3 defines the rule: ‘if Environment is Soft and Age is Young and Previous Degradation 

State is Good then Degradation State is Good’. Thus, the rules in Table 4 have three antecedents: 

Environment, Age and Previous Degradation State (PDS); this latter is not an IF and has been introduced in 

order to ensure that the degradation state does not decrease as the age of the component increases ([10]-

[11]).  

Notice that the rules in Table 3 and Table 4 have been defined by simulating with the physical model 

the different degradation evolutions corresponding to the different environmental conditions and thus by 

qualitatively extracting the degradation states in the different age levels. 

 

Table 4: fuzzy rules defining the relationship between the IFs and the degradation state. 

  Environment 

  Soft Medium Heavy 

 Age  

PDS: 

Good 

Young Good Good Good 

Medium Medium Medium Bad 

Old Medium Bad Bad 

PDS: 

Medium 

Young Medium Medium Medium 

Medium Medium Medium Bad 

Old Medium Bad Bad 

PDS: 

Bad 

Young Bad Bad Bad 

Medium Bad Bad Bad 

Old Bad Bad Bad 

 



 

Figure 8: modeling of the influence of maintenance actions on the IFs: tailoring to the present case study. 

4.3. Results and comparisons 

In this Section, the results obtained by applying the modeling approach proposed in this work (referred 

to as Maintenance as External Effect (MEE)) are reported and compared with the results provided by both 

the physical model and the approach proposed in the reference modeling framework (referred to as 

Maintenance IF (MIF)). 

Figure 9 shows the mean unavailability of the component for different values of the Inspection Interval, , 

with the related 68.3% confidence interval which represent the uncertainty affecting the estimation due to 

the use of the MC method for its computation. In this case study, the confidence intervals are very narrow 

because of the large number (105) of MC simulations performed.  

Notice that there is a very good agreement between the two fuzzy logic-based approaches, MIF and MEE, 

whereas a bias with respect to the physical model mean unavailability is observed. This bias depends from 

a modeling imprecision of the fuzzy models built using only the limited information coming from the 

observation of some component degradation evolutions. In this respect, notice that if more information 

were available for the model building, more accurate predictions of the mean unavailability would be 

obtained. 

The mean unavailability computed by the MIF and MEE approaches presents two minima in 

correspondence to the Inspection Intervals of  and . In both approaches, these minima 

emerge due to the fuzzy rules used to describe the degradation of the component. For example, in the MEE 

approach, Table 3 shows that the transition from the degradation state ‘Medium’ to the state ‘Bad’ in case 

of environment ‘Heavy’ is represented by the rules ‘if Environment is Heavy and Age is Young and PDS is 

Medium then Degradation state is Medium’ and ‘if Environment is Heavy and Age is Medium and PDS is 

Medium then Degradation state is Bad’. Thus, this transition requires that the age of the component fires 

with an highest degree of membership the fuzzy set ‘Medium’ rather than the fuzzy set ‘Young’, i.e., the 

age should be at least . Then, for a  or , the probability of detecting the 

‘Bad’ degradation state before the component failure (i.e., the probability of performing a PM action 

instead of a CM one) is significant since the component will work in the ‘Bad’ degradation state for only 

 (between  and ). In particular, this probability is given by: 

 



 

 

Figure 9: mean unavailability of the component, with the related 68.3% confidence interval (i.e., one standard deviation), 

for different values of the inspection interval. 

 

On the contrary, for different inspection intervals, e.g.  or , the inspection task which can 

detect the ‘Bad’ degradation state is performed later (at  and at , respectively); thus, the 

associated probabilities of detecting the ‘Bad’ degradation state are: 

 

The effectiveness of the detection and replacement action, which avoids the large down-time 

corresponding to the unscheduled and potentially dangerous failure of the component, is thus heavily 

reduced when passing from  to  or to . 

To further investigate this aspect, the mean unavailability is decomposed in its contributing parts: 

Figure 10 reports the mean contribution of the failures (and, thus, of the corrective maintenance), Figure 

11 that of the repair actions which follow the detection of the ‘Medium’ degradation state of the 

component and finally Figure 12 that of the replacement actions which follow the detection of the “Bad” 

state. These mean values are reported with the associated 68.3% confidence intervals. It can be noted that 

the principal contributions to the mean unavailability are due to failures and, for frequent controls, repair 

actions, whereas a negligible contribution comes from the preventive replacements. In particular, the 

contribution of the failure to the unavailability has an increasing trend, even if two local minima are located 

at  and , for the reasons explained above. The contribution to the unavailability of 

the repair actions is decreasing with the increasing inspection interval. This contribution increases in 

correspondence to an inspection interval of about  due to the fact that at time , when 

the Environment is “ Soft” or “Medium”, the degradation state of the component makes a transition from 

“Good” to “Medium”. Finally, the contribution of the preventive replacement to the unavailability has a 



trend which is decreasing with the increase of the inspection interval; however, as stated above, this 

contribution can be neglected without a great loss of accuracy. 

The bias between the unavailability estimated by the two FL-based approaches and by the physical 

model is mainly due to the contribution of the failures (see Figure 10): the degradation process of the 

physical model is not exactly reproduced by the fuzzy logic-based models; in particular, in some situations 

the fuzzy logic-based model is found to overestimate the degradation level reached by the component. This 

is mainly due to the small number of fuzzy sets partitioning the IFs (i.e., the Environment and the Age), 

which forces the analyst to approximate the representation of the degradation process; however, the 

larger the number of fuzzy sets the larger the number of fuzzy rules, which may be difficult to set up by the 

expert . 

 

Figure 10: contribution of the corrective maintenance to the mean unavailability. 



 

Figure 11: contribution of the PM repair actions to the mean unavailability. 

 

Figure 12: contribution of the PM replacement actions to the mean unavailability. 

Figure 13 shows the total costs associated to the maintenance policy of the component when varying 

the inspection interval; it shows a trend which is similar to that of the mean unavailability. The results 

found applying the two fuzzy logic-based degradation models are close one another, but a bias is observed 

with respect to the result of the application of the physical degradation model. This bias has the same 

cause of that on the mean unavailability estimation (Figure 9). 



 

 

Figure 13: total cost of the component maintenance, with the related 68.3% confidence interval, for different values of the 

inspection interval. 

 

A comment is in order about the assessment of the maintenance policy: the physical model based on 

the Paris-Erdogan law suggests that very rare inspections (i.e., with ) or very frequent (i.e., 

with ) are inefficient. Furthermore, there is also a range of intermediate inspection intervals 

(i.e., with ) in which the maintenance is found to be inefficient. Both the MIF and 

MEE approaches provide results which are consistent with the physical model, although with the bias 

mentioned above. In particular, the total maintenance cost presents two minima, corresponding to 

 and , which are located, respectively, in the range  and in 

the range , identified by the physical model as the ones in which the total 

maintenance cost is smaller. This proves the potential of both the MIF and MEE approaches. 

Finally, the instantaneous unavailability estimated by both MIF and MEE approaches are reported in 

Figure 14 and Figure 15 for inspection intervals  and , respectively; in particular, 

these are also compared to the unavailability computed by applying the physical model. It can be observed 

that there are peaks in correspondence to the multiples of the inspection interval, due to the preventive 

maintenance performed on the component. The peaks obtained when applying the fuzzy logic-based 

models are larger; this is due to the fact that the degradation state is slightly overestimated with respect to 

the physical model and, thus, also the average number of preventive maintenance actions is larger. 

 



 

Figure 14: instantaneous component unavailability during the time horizon, with an inspection interval of 8000 h. 

 

Figure 15: instantaneous component unavailability during the time horizon, with an inspection interval of 18000 h. 

5. Conclusion and Future Work 

An approach for modelling the impact of a maintenance policy on the evolution of the degradation 

process affecting a component has been proposed in this work. This has been developed within the 

framework presented in the reference modeling framework and is based on the concept of imperfect 

repairs. The differences between the maintenance modelling approach here proposed (MEE) and that 

investigated in the reference modeling framework (MIF) have been pointed out.  

A WFTP of a steam generator of a nuclear power plant affected by fatigue degradation process has 

been considered as case study, and the two modelling approaches have been tailored on it. This has 

allowed to illustrate in detail the modelling framework and also to compare the MIF and MEE approaches 

from a practical point of view. A physical model, for describing the actual component degradation behavior, 

has been applied on the same case study in order to provide the comparison term for assessing the 

performance of the two models. In practical cases, the physical model and/or its parameters may not be 

known, and degradation process may only be modeled by resorting to expert knowledge, which is of 

qualitative nature. The MIF and MEE models capture the knowledge of the experts about the degradation 

process, and provide results that are affected by the uncertainty deriving from the imprecise modeling 

made by the experts. In the case study examined, although some differences arise between the physical 

and the two fuzzy models they all lead to the same conclusions in terms of maintenance decision. 



Some issues remain open and will be addressed in future works: 

 The effects of the maintenance actions on the IFs different from Age have not been modelled. 

Inclusion of these aspects could be needed when assessing the performance of more complex 

maintenance policies. 

 The case study considered is made up of a single component affected by only one degradation 

process. The potential of the framework needs to be tested on a multi-component and multi-

degradation processes system. 

 The operation of defuzzyfication performed on the output of the Forward Module, does not 

propagate the uncertainties affecting the degradation state reached by the component. This leads 

to MC simulations which sample from exponential distributions without considering the 

uncertainty of the parameters of those distributions. 

 The fuzzy logic modelling framework has been developed by applying the Mamdani inference 

system [29], [30]. This limits the activation degrees of the degradation states to values smaller than 

1, i.e., it is not guaranteed that the maximum of the activation degree of the degradation state is 

equal to 1. This problem, which leads to a smaller confidence on the degradation state, may be 

overcome by considering more sophisticated inference systems. 

6. Acknowledgment 

The authors wish to thank Eng. Guido Rossetti for his contribution to the work, within the development 

of his thesis at the Energy Department of the Politecnico di Milano. 

7. References 

[1]. Meeker W.Q., Escobar L.A.: Statistical Methods for Reliability Data, 1998. Wiley, N.Y.  

[2]. Martorell S., Sanchez A., Serradell V.: Age-dependent reliability model considering effects of 

maintenance and working conditions. Reliability Engineering and System Safety, 1999, Vol. 64, pp. 

19-31.  

[3]. Singpurwalla N.D.: Survival in Dynamic Environment. Statistical Science, 1995, Vol. 10, No. 1, pp. 

86-103.. 

[4]. Bogdanavičius V., Nikulin M.S.: Estimation in Degradation Models with Explanatory Variables. 

Lifetime Data Analysis, 2000, Vol.7, pp. 85-103.  

[5]. Yashin, A., Arjas, E.: A note on random intensities and conditional survival functions. Journal of 

Applied Probability, 1988, Vol. 25, pp. 630-635. 

[6]. Filkelstein, M.S.: On the exponential formula for reliability. IEEE Transactions On Reliability, 2004, 

Vol. 53-2, pp. 265-268. 

[7]. Deloux E., Castanier B., Bérenguer C.: Predictive maintenance Policy for a gradually deteriorating 

system subject to stress. Reliability Engineering and System Safety, 2009, Vol. 94, pp. 418-431.  

[8]. Jardine A.K.S., Ralston P., Reid N., Stafford J.: Proportional hazards analysis of diesel engine failure 

data,Quality and Reliability Engineering International, 1989, Vol. 5 pp. 207-16. 

[9]. Zille V., Bérenguer C., Grall A., Despujols A., & Lonchampt J.: Modelling and performance 

assessment of complex maintenance programs for multi-component systems. Proceedings of the 

32nd ESReDA seminar and 1st ESReDA-ESRA seminar, 2007, pp. 127-140. Alghero, Italy.  



[10]. Baraldi P., Zio E., Compare M., Rossetti G. and Despujols A.: A novel approach to model 

the degradation of components in electrical production plants. Proceedings of the European Safety 

and Reliability Conference ESREL 2009, Praha, Czech Republic. 

[11]. Baraldi P., Zio E., Compare M., Rossetti G. and Despujols A.: Modeling of degradation 

mechanisms in electrical components taking into account their actual living conditions. Proceedings 

of the International Conference in Reliability Maintenance and Safety ICRMS 2009. Chengdu, China. 

[12]. Pham H., Wang H.: Imperfect Maintenance. European Journal of Operational Research, 

1996, Vol. 139, pp. 469-489.  

[13]. Clavareau J., Labeau P.E.: An Alternative imperfect preventive maintenance model. Safety 

Reliability and Risk analysis: Theory, Methods and Applications. Proceedings of Esrel 2008, Valencia 

(Spain). S. Martorell et al. Eds. 

[14]. Clavareau J., Labeau P.E.: A model of imperfect preventive maintenance efficiency based 

on the concepts of elasticity and effective age. Safety Reliability and Risk analysis: Theory, Methods 

and Applications. Proceedings of Esrel 2009, Praha (Czech Republic). Briš et al. Eds.  

[15]. Doyent L., Gaudoin O.: Classes of imperfect repair models based on reduction of failure 

intensity or virtual age. Reliability Engineering and System Safety, 2004, Vol. 84, pp. 45-56.  

[16]. Castanier B., Bérenguer C., Grall A.: A sequential condition-based repair/replacement 

policy with non-periodic inspections for a system subject to continuous wea. Applied Stochastic 

Models in Business and Industry, 2003, Vol. 19, pp. 327-347. 

[17]. Ponchet A., Fouladirad M., Grall A.: Imperfect condition-based maintenance on a finite 

time span for a gradually deteriorating system. Safety Reliability and Risk analysis: Theory, Methods 

and Applications. Proceedings of Esrel 2009, Praha (Czech Republic). Briš et al. Eds.  

[18]. Barata, J., Guedes Soares C., Marseguerra M., Zio E.: Simulation modelling of repairable 

multi-component deteriorating systems for ‘on condition’ maintenance optimization. Reliability 

Engineering and System Safety, 2002, Vol. 76, pp. 255-264. 

[19]. Nicolai R.P., Frenk J.B.G., Dekker R.: Modeling and optimizing imperfect maintenance of 

coatings on steel structures. Structural Safety,209, Vol. 31, pp. 234-244. 

[20]. Zequeira R.I., Berenguer C.: Periodic Imperfect preventive maintenance with two 

categories of competing failure modes. Reliability Engineering and System Safety, 2006, Vol. 91, pp. 

460-468.   

[21]. Filkelstein M.S.: Wearing-out of components in a variable environment. Reliability 

Engineering and System Safety, 1999, Vol. 66, pp. 235-242.  

[22]. Kumar D., Klefsjö B.: Proprotional hazard model A review. Reliability Engineering and 

System Safety, 1994, Vol. 44, pp. 177-188.  

[23]. MIL-HDBK-217F. 1995, U.S. Department of Defense. () 

[24]. Vasely W.E.: Approaches for Age-Dependent Probabilistic Safety Assessment with Emphasis 

on Prioritization and Sensitivity Studies. NUREG/CR-5587,1992. 

[25]. Marquis V., & Solin J.: Fatigue design and Reliability. 1999, ESIS, Elsevier. 

[26]. Shigley J. E., Mischke C. R.,  Brown, T. H.: Standard Handbook of Machine Design, Third 

Edition. 2004, Mc Graw-Hill. 

[27]. Paris P. C., Erdogan F.: A critical analysis of crack propagation laws. Journal of Basic 

Engineering, Trans ASME, 1963, 85: 528-534. 

[28]. Papoulis A., Pillai U.: Probability, Random Variables, and Stochastic Processes. 4th Edition. 

2002, Mc Graw-Hill  

[29]. Mamdani E.H.: Application of fuzzy algorithms for control of a simple dynamic plant. 

Proceedings of the IEEE, 1974, 121(12), pp. 1585–1588. 



[30]. Babuska, R.: Fuzzy Modeling for Control, 1988, Kluwer Academic Publishers, 

Massachusetts. 

 


