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Abstract—In this paper, Sphere Decoding (SD) algorithms for complexity ) linearly increases with the product of transmit—
Spatial Modulation (SM) are developed to reduce the compu- antenna 4V;), receive—antenna\.), and size of the modula-
tational complexity of Maximum-Likelihood (ML-) optimum tion scheme /), i.e, C o< MN,N, [2]. Unlike other spatial
detectors, which foresee an exhaustive search of the wholeasch ; . o !
space and have a complexity that linearly increases with the multiplexing _SChemes for MIN_IO systems, such a_s the V-
product of number of transmit-antenna, receive—antenna, ad BLAST (Vertical Bell Laboratories Layered Space—Time),[3]
size of the modulation scheme. Three SDs specifically desigh [4], there is a substantial reduction in receiver compigxit
for SM are proposed and analyzed in terms of Bit Error as no multi-stream detectors with exponential-growing-com
Probability (BEP) and computational complexity. By judiciously - exity with N, are required. In addition to this significant

choosing some key parameterse.g., the radius of the sphere . .
centered around the received signal, it is shown that the praosed complexity reduction, SM also outperforms many converglon

algorithms offer the same BEP as ML—optimum detection, with Single—antenna and multi-antenna wireless systems [1], [5
a significant reduction of the computational complexity. Ako, it thus potentially being an appealing transmission concept f
is shown that none of the proposed SDs is always superior t0 the next generation of wireless systems.

the others, but the best SD to use depends on the system setup, |, spite of its low—complexity implementation and superior

i.e, the number of transmit—antenna, receive—antenna, and the e .
size of the modulation scheme. The computational complexit performance results, there still is potential for furthenuta-

trade—off offered by the proposed solutions is studied viamalysis ~tional complexity reductions, especially when: i) high sipal
and simulation, and numerical results are shown to validateour  efficiencies are required.¢., the productM N, is large), or

findings. i) high diversity gains and, thus, low error probabilitiese
Index Terms—Multiple—Input-Multiple-Output (MIMO) Sys-  needed i(e, N, is large). Furthermore, complexity issues
tems, Spatial Modulation (SM), Sphere Decoding (SD). become even more pressing when bathN, and N, are
large. Motivated by these considerations, some recenareise
works have focused on developing low—complexity detectors
Spatial Modulation (SM) is a recently proposed transmiser SM. For example, in [1] and [6] two sub—optimal two—step
sion technology for Multiple—Input—Multiple—Output (MI®I detectors based on heuristics are proposed. However, iit [2]
wireless systems, which has been originally proposed to is-shown that the detector in [1] belongs to the family of non-
crease the spectral efficiency of single—antenna systemsdxact methods [7], and is, in general, a few dB worse than
avoiding Inter—Channel Interference (ICI) [1]. This isaated ML—-optimum detection. On the other hand, in [8] an exact
through the adoption of a new modulation and coding schemew—complexity detector for SM has been proposed, which is
which foresees: i) the activation, at each time instance, - based on the Sphere Decoding (SD) algorithm [9]. Therein,
gle antenna that transmits a given data symlohétellation it is shown that the proposed solution has a computational
symbo), and ii) the exploitation of the spatial position (indextomplexity that is bounded b§M N, < C < 8M N;N,., and
of the active antenna as an additional dimension for dgteovides error performance very close to the ML-optimum
transmission gpatial symbdl Both constellation symbohnd detector. This SD-based detector is especially suitablenwh
spatial symbodepend on the incoming data bits. Thereby, athe number of receive—antenng. is very large, as it reduces
overall increase, by the base—two logarithm of the number thfe size of the search space related to the multiple antennas
transmit—antenna, of the spectral efficiency is achievedlew at the receiver (we denote this search space as “receive
still retaining a complexity comparable to single—antenrgearch space”). However, it has two main limitations: i) it
systems. does not reduce the dimension of the search space due to
In particular, at the receiver the Maximum Likelihood (ML)the number,N;, of transmit—-antenna and the siz&f, of
optimum decoder is a simple single—stream detector, whithe signal modulation diagram (we denote this search space
performs an exhaustive search over the whotastellation as “transmit search space”), which prevents the detector to
symboland spatial symbolspace, and whose computationahchieve a significant reduction in computational compjexit

I. INTRODUCTION



when high data rates are required( when bothN; and M  symbo] respectively. Each block is split into two sub—blocks of
are large), and ii) the detector has the same complexityas thg, (IV;) andlog, (M) bits each, and the following mapping
ML-optimum decoder whetV,. = 1. In general, the reduction rule is used:

in decoding complexity is not very high wheW, is small, as  , The bits in the first sub—block are used to select the an-

often happens in the downlink of cellular systems. The detec  tenna that is switched on for data transmission, while all

in [8] is here called Receiver—centric SD (Rx—SD). the other transmit—antenna are kept silent. In this paper,
Motivated by these considerations, in this paper we move the actual transmit—antenna that is active for transmissio

from the results in [8] and propose two new low—complexity s denoted by, with ¢, € {1,2,..., N;}.

detectors for SM, which are based on the SD principle. The, The bits in the second sub—block are used to choose a

first solution aims at reducing the “transmit search space”, symbol in the signal-constellation diagram. Without loss

and, thus, can be seen as a complementary solution to [8]. of generality, Quadrature Amplitude Modulation (QAM)

In particular, as opposed to [8], the proposed decoder is s considered. In this paper, the actual complex symbol

suitable when eitheV; or M, or both N, and M are large. emitted by the transmit-antenfiais denoted bys,, with
On the other hgr_nd, it keeps_the “receive sear(_:h space” t_he st € {51,82,...,80m}
same as the original ML-optimum decoder. This detector 'SAccordineg,
called Transmitter—centric SD (Tx—SD). On the other hahd, t
second solution combines both Rx—SD and Tx-—SD with the Xty 5, = [le(gt_l),St,le(Nt_gt)}T 1)
aim of reducing the complexity of the ML—optimum receiver T . .
in both the receive and transmit search spaces. This detedf§ere(-) denotes transpose operation, @), is ap x ¢
is called Combined-SD (C-SD). More specifically, the TxMatrix with all-zero entries.
SD dete_ctor is based on a simplifieq implem_entation of tr]? Channel Model
conventional SD proposed in [7], which exploits the pegulia ) . ]
property of SM that only a single antenna is active at any "€ modulated vector, ,,, in (1) is transmitted through
time instance. Due to space constraints, in this paper wdrequency—flalv, x Ny MIMO fading channel with impulse
focus on the so—called non—-underdetermined MIMO setigSPONseHL. In this paper, a Rayleigh fading channel model
with N, < N,.. In the recent period, some efficient SD methodS @ssumed, and, thus, the entriesfbfare modeled as com-
for the underdetermined MIMO setup have been proposBf* independent and identically distributed (i.i.d.) Gsian
(see,e.g, [10], [11], [12] and references therein). Howeverf,andom variables with zero—mean and umt—_vanance.
the analysis of this setup for SM is postponed to a future Thus, theN,. x 1 received vector can be written as follows:
research contribution. y =Hx, ., +n )

In this paper, we provide a careful study of the performance
of these three detectors, along with an accurate comparigfere n is the N,—dimensional Additive White Gaussian
of their computational complexity. Numerical results showoise (AWGN) with zero-mean and varianeé per dimen-
that the proposed solutions provide a substantial redudtio Sion at the receiver input.
computational complexity with respect to the ML—optimum From (1), (2) simplifies as follows:
detector, and no loss in the Bit Error Probability (BEP). y=hg s +n 3)
Furthermore, it is shown that the Rx—SD is less complex than "’
the C-SD whenV/ is not very large, while the C-SD is thewherehy,, is the ¢,—th column ofH.
best solution when eitheM is large or N, is small. The i
reason why Rx—SD outperforms C—SD wha# is not very C- ML=Optimum Detector
large is due to the some pre—computations required by the SDrhe optimum detector based on the ML principle has been
algorithm to determine the actual points of the reduced epaderived in [2]:

theN; x 1 transmitted vector is:

to search through. J(ML) (ML) . 9

The reminder of this paper is organized as follow. In Section [ t 05 } ZE{?TQ‘CT_’_T%?} {Hy B hZSHF}
I, the system model along with the ML—optimum and Rx— s€{s1,52,--501}
SD detectors are summarized. In Section IlI, the new Tx—SD N, (4)
and C-SD receivers are described. In Section IV, an accurate = argmin {Z lyr — hg,rs|2}
analysis of the computational complexity of Tx-SD and C— £e{1,2,..N:} r=1

s€{s1,52,...50M }

SD is performed. In Section V, some numerical results are
shown to compare the proposed receivers. Finally, Section Where|\-||§ is the Frobenius nornt, identifies the estimated
concludes the paper. spatial and constellation symbols, apdand k. is the r—th
entry of y andhy, respectively.

The computational complexity of (4), in terms of real
A. SM Modulator multiplications, is equal to:

SM works as follows [1]. The bitstream emitted by a binary
source is divided into blocks containitgg, (N;) + log, (M)
bits each, withlog, (N;) andlog, (M) being the number of as the ML detector searches through the whole transmit and
bits needed to identify thepatial symboblnd theconstellation receive search spaces.

Il. SYSTEM MODEL

Cmr, = SM NN, (5)



D. Rx-SD Detector N, (¢,s)for¢ € {1,2,...N;} ands € {s1,s2,...5x} N

(7) are implicitly computed when solving the hypothesis—
detection problem in (6).

The radiusR can be chosen aB = 2aN,0?, wherea

is the solution of the equation as follows [7], [8]:

N7‘)2 N7‘
A Rt v (Ne 2aNy) ©)
[@ngiSD),Lét(RfoD)] = arg min Z |y'r - he,rs|2 r (N7)
0e{1,2,...N¢} a .. . .
sg{{sl,sz,fsm and~y (z,a) = [ £* L exp (=¢) d¢ is the lower incom-
plete Gamma functionl (z) = [, ¢*Lexp (—€) dé

is the Gamma function, andis an arbitrary small value
close to zeroe.g, € = 1079,

In [8], a reduced—complexity and close—to—optimal BEP—
achieving decoder is proposed, which, as mentioned in @ecti
I, aims at reducing the receive search space. The deteator ca’
formally be written as follows:

r=1

~ (6)
wherel < N, (¢,s) < N, is the number of correlations in
the receive search space that is computed by using the SD
principle. Note thatN, (+,-) can be different for each point
in the transmit search spacee., for ¢ € {1,2,...N;} and
s € {s1,82,...5Mm}

More specifically, the Rx-SD receiver works as follows. s anticipated in Section |, in this section two new SDs for
Given a sphere with radiug, the receiver computes thesy are introduced. The first one (Tx-SD), aims at reducing the
set of optimal N, (¢,s) for £ € {1,2,...N\;} and s € gransmit search space, as opposed to the Rx-SD search space,
{51, 82,...spm} as follows: and the second one (C-SD) combines Rx-SD and Tx-SD
decoders in order to reduce both transmit and receive search

n
> lye — hus|* > RQ} (7) spaces.
r=1

IIl. NEw Low—COMPLEXITY SPHEREDECODERS FORSM

N, (¢,s)=  min {n
ne{l,2,...N,.}

In other words, for eacty € {1,2,...N;} ands € A. Tx-SD Detector

{s1,82,... 51}, the Rx—SD receiver does not combine, ac- o Ty_sp for SM is a modified version of the well—
cording to the Maximal Ratio Combining (MRC) principle [2].,.nown SD for MIMO systems [7], [9]. It, however, exploits the
the signals received by all th¥,. antennas at the receiver, burpeculiar property of SM that only a single antenna is active f
it keeps combining the received signals until the Euclidegp,,gmission. More specifically, similar to convention&sS
norm in (6) gives a point that lie inside a sphere of radiy$e Tx_spD scheme reduces the number of poiits) for

R and centered around the received signal itself. Since t@eE {1,2,...N,} and s € {s1,52,...50} to be searched

number of antennasy. (-, -), that are actually used for MRC y,,,gh in (4),i.e, the transmit search space, by computing
are computed adaptively for each point in the transmit $earge gy clidean distances only for those points that lie imsid
space, in [8] it is shown that there is no loss in either ditgrs a sphere with radius® and centered around the received
or coding gain: the BEP is exactly the same as the ML deteciggna| - However, unlike conventional SDs, in our scheme
in (4). ) ] _the set of points inside the sphere are much simpler to be
In [8], the interested reader can find an accurate analysis@fimputed, as there is only a single active antenna in SM. In
the computational complexity of the Rx-SD detector alongis section, we show how to compute these intervals. While i
with an efficient method to choose the radids which the next section, we provide an estimate of the computationa
significantly affects the performance of the algorithm. it omplexity of the proposed detector.
paper, we simply mention that: The analytical derivation follows the notation in [7], whic
o The complexity of the Rx—SD receiver is given by: here is briefly summarized to make the paper self-contained.
First, for ease of analytical derivation, the complex—ealu

Nt M
Crx_sp = 8 N, (4, s g) model in (2) is replaced by its real-valued equivalent, as
A ;; (6:9) ®) follows [13]: ~
y=Hx, s +0 (10)

It is easy to show thaCgry_sp lies in the interval
8MN; < Crx—sp < 8M N;N,, where the lower bound wherey is a2N,. x 1 vector,H is a2N, x 2N; matrix, X, s,
corresponds to the scenario whel&. (¢,s) = 1 for is a2N, x 1 vector, andii is a 2N, x 1 vector defined as
e {1,2,...N¢} ands € {s1, s2,...sn}, and the upper follows:

bound corresponds to the scenario whate(?, s) = N, _ T 11T

for £ € {1,2,...N;} ands € {s1,52,...sm}. In other y= [Re}{{y I}LI,Im {Iy }IJI

words, in the best—case scenario Rx—SD has the same H= [ Ie{ H} én{H} ]

complexity as a Multiple—Input—Single—Output (MISO) —Im{H} Re{H} (11)
system, while in the worst-case scenario it has the same Xey,s, = [Re {xéThSt} , Im XeTt,stH

complexity as the ML—optimum detector in (4). These a— [Re {nT} Tm {HTH

results suggest that the largh¥., the higher the potential

gain with respect to the ML—optimum receiver. Let uandRe {-} andIm{-} denote real and imaginary parts, re-
note that the Rx—SD solution has no pre—computatiogpectively.

with respect to the ML—optimum detector. In fact, By performing QR factorization of the matrid, (10) can



Op = { (¢,s) with ¢ € {1,2,...N¢} and s € {s1,52,...sm}| [|F — ﬁiﬂ,s”i < RQ}

2N, 2N, 2 (14)

= (6,s) with¢ € {1,2,... N;} and s € {s1,80,...sm} D | 2= > _pij¥; (6,5) | < Rp
i=1 j=i

be re—written as follows [7]:

_ = P
yQ[O
(2N, —2N;)x2N;

By taking this remark into account, it follows that: a) if

i = Ni+1, Ni+2, ..., 2N, then only the imaginary part

of Xy s plays a role in (15), and, thus, only one entry
Z;j (¢,s) can be non-zero; and b) if = 1,2,..., Ny,
then both real and imaginary parts ®f ; play a role

in (16), and, thus, only two entries; (¢,s) can be
non-zero. The considerations in a) and b) lead to the
intervals in (15) and (16), respectively, which are dirgctl
obtained by solving the inequality in (17). O

] X¢,,5, T 1 (12)

where P is a 2N; x 2N; upper triangular matrix,Q =
[Q: Q: ], and Qi, Q; are 2N, x 2N; and 2N, x
(2N, — 2N;) matrices, respectively.

The Tx—SD scheme can be formally written as follows:

[éﬁTX‘SD), §§TX_SD)} = arg min {||y - Ijb_(gysui} (13)

(¢,5)€OR By comparing the intervals in (15) and (16) with those of

where© 7, is the subset of pointé/, s) for £ € {1,2,...N;} a conventional SD [7], we notice that (15) and (16) are much

ands € {s1,50,... 5} in the transmit search space that isimpler, and this is due to the fact that in SM there is only

inside a sphere with radiug and centered around the receive@"€ active antenna element, while in conventional SDs all th
signaly. In formulas, the subs@y, can be written as shown in 21t€nnas transmit simultaneously. Note that, as (16) dipen

(14) on top of this page, where we have defined & Q7y, implicitly on (_15), this means th_at (16) r_1eeds to be computed
i) Ré _Rp2_ HQsz_’HQ iiiy 2, andz, (¢, s) are thei—th entry for all the points that lie in the interval in (15).

F?’ (2 K2 ) .
of vectorsz andx, ., respectively, and ivp, ; is the (i, j)-th ~ With respect to the Rx-SD scheme, the Tx-SD scheme
entry of matrix P. ’ foresees some pre—computations to estimate the pointiehat

The key point behind the application of SD for reducinﬁ‘Side the sphere o_f radiug. The.se additionall computations
the computational complexity of ML—optimum detectors ig thare carefully taken into account in the analysis of the compu
efficient computation of the subsetz, which should avoid an tational complexity of the Tx-SD scheme and its comparison
exhaustive search in the whole transmit search space. As'4th the ML—optimum detector (see Section IV). Furthermore
as SM is concerned, these points can be computed in a v@’r‘? note that the radiug in (14) can still be computed from
simple way, as summarized lremma 1 (9)-

Lemma 1:The subset of point©r in (14) lie in the

intervals: B. C-SD Detector

g < Hetz

< (15)
pi,i pz,z

In Section 1I-D and Section IlI-A, we have seen that Rx—
_ _ SD and Tx-SD aim at reducing the complexity of the ML—
M <zi(ls) < M (16) optimum detector by minimizing the size of the receive and
Pii DPii transmit search spaces, respectively. So, it is naturabin-c
for i = 2N;,2N, —1,...,N; + 1 in (15),i = N;,N, — bine both of them to further decrease the receiver compglexit
1,...,1 in (16), and we have defined;;, .y, = z — by reducing the size of both the search spaces. The proposed
Diit N, TitN, (£, 5). C-SD is a two-step detector that works as follows:

Proof: This result can be obtained as follows. 1) First, the Tx-SD algorithm is used to reduce the transmit
1) First, we note that a necessary condition that the points * gocch space. The subset of poifitg is computed as
of the transmit search space need to satisfy to belong to  ¢hown in (14).
the subseBy in (14) is (for alli = 1,2,...,2Ny): 2) Second, the Rx-SD algorithm is used to reduce the re-
2N, 2 ceive search space. More specifically, Rx—SD is applied

21' — Zﬁi’jjj (é, S) S Ré (17)
j=t

only on the subset of point® computed in the step
above.

which is a condition similar to conventional SD algo- N formulas, we have:

rithms [7]. Vo (£,5)
2) Second, we need to take into account that in SM only [égc—SD)vggc—SD)} — argmin lyr — hops)?
a single antenna is active at any time instance. In the (ts)eor | /4

equivalent real-valued signal model in (10) and (13), this

(18)

is equivalent to having only two, out &N;, non-zero where®p and N, (¢, s) are computed by using (14) and (7),
entries in the signal vectosg, ;, andx, ;, respectively. respectively.



IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY V. NUMERICAL RESULTS

In this section, we analyze the computational complexity

of Tx-SD and C-SD algorithms by taking into account the In this section, Monte Carlo simulation results for at least

re—com ions n im h ints of th . S
pre-computations needed to estimate the points of the eedu 0° channel realisation are shown to compare the performance

search space. The complexity is here computed as the number, ; . .

of real multiplications needed by each algorithm. Furthemen ?encdei(\:/oeTspqlfagogsrlncgrzzg:eggrsf Ig;;?gtg?;nzgdbszgﬁfneﬂ

we note that when divisions are involved, we take therp1 ’ . . P y as: 9
e system model in Section Il. Furthermore, the radiuss

) 1
into account and assume they have the same complexity as ; . . 6
multiplications. chosen as described in (9) with= 107°.

In Fig. 1, the BEP averaged over Rayleigh fading is

A. Tx-SD shown by considering two different constellation sizesgd an
The computational complexity of Tx—SD can be estimatedls = N; = 4. We notice that all the SDs have the same
by taking into account that; performance, and all of them overlap with the ML—optimum

1) The QR factorization in (12), when computed by usinc%ftector. As expected, the performance of SM improves when
the Householder algorithm [14], requires a number df. decreases.
real multiplications equal to: In Fig. 2, Fig. 3, and Fig. 4, the computational complexity
N C is compared according to the estimates provided in the
_ 2 3 _A73 sections above. In particular, the figures show the relative
Car ; [2f &)+ Q) +277) + 1} Ny (19) computational complexity of the SDs with respect to the ML—
optimum detectori.e., Cre; (%) = 100 X (Cyr, — Csp)/CwmL-
where f () = Ny +1—¢ andN = min {N, — 1, Ni}. |n Fig. 2, we observe that C-SD is always better than Tx-SD,
2) The computation of = Q{'y in (14) needsiN; N, real hjle it is better than Rx—SD only for high SNRs. The reason
multiplications,i.e., Cz = 4N N,. ) for this latter result is due to the additional pre—compiotat
3) The computation of [|Q3y|[; in (14) needs required by both C-SD and Tx-SD solutions. As mentioned in
Clary|2 = 2Nr (2Nr — 2N, +1) real multiplications, - section I, we notice that the Rx-SD scheme is more effective

F

ie, CHQT)_,HQ = 2N, (2N, — 2N + 1). in reducing the complexity when the number of antennas at
2 . .
4) The computation of the intervals in (15) and (16) rethe receiver is large.
quires: i) 2N, real divisions to compute (15) foiv, Figures 3 and 4 show an interesting setups where it is clearly

antenna indexes; and ii) real multiplication and2 highlighted that none of the proposed SDsiipriori superior

real divisions for a number of times equal to the totdb the others, and that the best detector to use actuallyndispe
number of points that satisfy (15). In the worst—casen both the MIMO setup and the SNR. In particular, on the
scenario, the number of points computed in (15) is equaght—hand side of Fig. 3, we notice that the best receiver to
to the size,M;, of the imaginary constellation diagramuse is the C-SD, while if we look at the left—hand side of
composing the QAM constellation symbol. AccordinglyfFig. 3 and Fig. 4 we notice that the best receiver to use is
we have M;N; real multiplications and2M;N; real always the RX-SD. The reason is that in the former case the
divisions, and, thus, the complexity of computing théransmit search space is large enough to compensate for the
intervals in (15) and (16) can be upper-bounded kyre—computations required by Tx—SD and C-SD receivers. On
Cinterval = 2Ny + 3M [ N;. the contrary, in the latter case the transmit search spacetis

In summary, the analytical complexity resulting from th¢/€ry large, and, thus, there is not too much gain in reducing
computation of the points in the subs®t; can be upper— It
bounded by: Finally, the right-hand side of Fig. 4 shows that Rx-SD
2 4 Cootoread (20) and C-SD are almost equivalent, as both a large transmit
F

< . .
Cor <Cor+Cat CII search space and a large number of antennas at the receiver

Q7|
Since (13) requires 8 real multiplications for each comgutét® considered.

Euclidean distance, it follows that the computational ctexp  In summary, we can conclude that Rx—SD turns out to be

ity of the Tx—SD receiver can be upper—bounded as followshe best choice when the number of antennas at the receiver

is large, as it can significantly reduce the receiver search

Crx-sp < Cop + 8N, card {Or} (21)  space without any pre—computations. On the other hand, C—
where card {-} denotes the cardinality,e., the number of SD turns out to be the best choice when the transmit search
points, in a set. space is very large and the number of antennas at the receiver

is low. It is interesting to note that the Tx—SD scheme is
B. C-SD never the best choice in the analyzed system setup. Since
The computational complexity of C—SD follows immedithis latter decoder is the most similar to conventional SDs
ately from (8) and (21), as follows: for MIMO systems, a main contribution of this paper is to
. have highlighted the importance of reducing both transmit a
Cc-sp < Cop, +8 Z N (¢, s) (22) receive search spaces to get a significant reduction invexcei

(4,5)€OR complexity with performance guarantees.
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