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Abstract—In this paper, Sphere Decoding (SD) algorithms for
Spatial Modulation (SM) are developed to reduce the compu-
tational complexity of Maximum–Likelihood (ML–) optimum
detectors, which foresee an exhaustive search of the whole search
space and have a complexity that linearly increases with the
product of number of transmit–antenna, receive–antenna, and
size of the modulation scheme. Three SDs specifically designed
for SM are proposed and analyzed in terms of Bit Error
Probability (BEP) and computational complexity. By judiciously
choosing some key parameters,e.g., the radius of the sphere
centered around the received signal, it is shown that the proposed
algorithms offer the same BEP as ML–optimum detection, with
a significant reduction of the computational complexity. Also, it
is shown that none of the proposed SDs is always superior to
the others, but the best SD to use depends on the system setup,
i.e., the number of transmit–antenna, receive–antenna, and the
size of the modulation scheme. The computational complexity
trade–off offered by the proposed solutions is studied via analysis
and simulation, and numerical results are shown to validateour
findings.

Index Terms—Multiple–Input–Multiple–Output (MIMO) Sys-
tems, Spatial Modulation (SM), Sphere Decoding (SD).

I. I NTRODUCTION

Spatial Modulation (SM) is a recently proposed transmis-
sion technology for Multiple–Input–Multiple–Output (MIMO)
wireless systems, which has been originally proposed to in-
crease the spectral efficiency of single–antenna systems by
avoiding Inter–Channel Interference (ICI) [1]. This is attained
through the adoption of a new modulation and coding scheme,
which foresees: i) the activation, at each time instance, ofa sin-
gle antenna that transmits a given data symbol (constellation
symbol), and ii) the exploitation of the spatial position (index)
of the active antenna as an additional dimension for data
transmission (spatial symbol). Both constellation symboland
spatial symboldepend on the incoming data bits. Thereby, an
overall increase, by the base–two logarithm of the number of
transmit–antenna, of the spectral efficiency is achieved, while
still retaining a complexity comparable to single–antenna
systems.

In particular, at the receiver the Maximum Likelihood (ML)
optimum decoder is a simple single–stream detector, which
performs an exhaustive search over the wholeconstellation
symboland spatial symbolspace, and whose computational

complexity (C) linearly increases with the product of transmit–
antenna (Nt), receive–antenna (Nr), and size of the modula-
tion scheme (M ), i.e., C ∝ MNtNr [2]. Unlike other spatial
multiplexing schemes for MIMO systems, such as the V–
BLAST (Vertical Bell Laboratories Layered Space–Time) [3],
[4], there is a substantial reduction in receiver complexity,
as no multi–stream detectors with exponential–growing com-
plexity with Nt are required. In addition to this significant
complexity reduction, SM also outperforms many conventional
single–antenna and multi–antenna wireless systems [1], [5],
thus potentially being an appealing transmission concept for
the next generation of wireless systems.

In spite of its low–complexity implementation and superior
performance results, there still is potential for further computa-
tional complexity reductions, especially when: i) high spectral
efficiencies are required (i.e., the productMNt is large), or
ii) high diversity gains and, thus, low error probabilities, are
needed (i.e., Nr is large). Furthermore, complexity issues
become even more pressing when bothMNt and Nr are
large. Motivated by these considerations, some recent research
works have focused on developing low–complexity detectors
for SM. For example, in [1] and [6] two sub–optimal two–step
detectors based on heuristics are proposed. However, in [2]it
is shown that the detector in [1] belongs to the family of non–
exact methods [7], and is, in general, a few dB worse than
ML–optimum detection. On the other hand, in [8] an exact
low–complexity detector for SM has been proposed, which is
based on the Sphere Decoding (SD) algorithm [9]. Therein,
it is shown that the proposed solution has a computational
complexity that is bounded by8MNt ≤ C ≤ 8MNtNr, and
provides error performance very close to the ML–optimum
detector. This SD–based detector is especially suitable when
the number of receive–antennaNr is very large, as it reduces
the size of the search space related to the multiple antennas
at the receiver (we denote this search space as “receive
search space”). However, it has two main limitations: i) it
does not reduce the dimension of the search space due to
the number,Nt, of transmit–antenna and the size,M , of
the signal modulation diagram (we denote this search space
as “transmit search space”), which prevents the detector to
achieve a significant reduction in computational complexity



when high data rates are required (i.e., when bothNt andM

are large), and ii) the detector has the same complexity as the
ML–optimum decoder whenNr = 1. In general, the reduction
in decoding complexity is not very high whenNr is small, as
often happens in the downlink of cellular systems. The detector
in [8] is here called Receiver–centric SD (Rx–SD).

Motivated by these considerations, in this paper we move
from the results in [8] and propose two new low–complexity
detectors for SM, which are based on the SD principle. The
first solution aims at reducing the “transmit search space”,
and, thus, can be seen as a complementary solution to [8].
In particular, as opposed to [8], the proposed decoder is
suitable when eitherNt or M , or bothNt and M are large.
On the other hand, it keeps the “receive search space” the
same as the original ML–optimum decoder. This detector is
called Transmitter–centric SD (Tx–SD). On the other hand, the
second solution combines both Rx–SD and Tx–SD with the
aim of reducing the complexity of the ML–optimum receiver
in both the receive and transmit search spaces. This detector
is called Combined–SD (C–SD). More specifically, the Tx–
SD detector is based on a simplified implementation of the
conventional SD proposed in [7], which exploits the peculiar
property of SM that only a single antenna is active at any
time instance. Due to space constraints, in this paper we
focus on the so–called non–underdetermined MIMO setup
with Nt ≤ Nr. In the recent period, some efficient SD methods
for the underdetermined MIMO setup have been proposed
(see,e.g., [10], [11], [12] and references therein). However,
the analysis of this setup for SM is postponed to a future
research contribution.

In this paper, we provide a careful study of the performance
of these three detectors, along with an accurate comparison
of their computational complexity. Numerical results show
that the proposed solutions provide a substantial reduction in
computational complexity with respect to the ML–optimum
detector, and no loss in the Bit Error Probability (BEP).
Furthermore, it is shown that the Rx–SD is less complex than
the C–SD whenM is not very large, while the C–SD is the
best solution when eitherM is large or Nr is small. The
reason why Rx–SD outperforms C–SD whenM is not very
large is due to the some pre–computations required by the SD
algorithm to determine the actual points of the reduced space
to search through.

The reminder of this paper is organized as follow. In Section
II, the system model along with the ML–optimum and Rx–
SD detectors are summarized. In Section III, the new Tx–SD
and C–SD receivers are described. In Section IV, an accurate
analysis of the computational complexity of Tx–SD and C–
SD is performed. In Section V, some numerical results are
shown to compare the proposed receivers. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

A. SM Modulator

SM works as follows [1]. The bitstream emitted by a binary
source is divided into blocks containinglog2 (Nt)+ log2 (M)
bits each, withlog2 (Nt) and log2 (M) being the number of
bits needed to identify thespatial symboland theconstellation

symbol, respectively. Each block is split into two sub–blocks of
log2 (Nt) andlog2 (M) bits each, and the following mapping
rule is used:

• The bits in the first sub–block are used to select the an-
tenna that is switched on for data transmission, while all
the other transmit–antenna are kept silent. In this paper,
the actual transmit–antenna that is active for transmission
is denoted byℓt, with ℓt ∈ {1, 2, . . . , Nt}.

• The bits in the second sub–block are used to choose a
symbol in the signal–constellation diagram. Without loss
of generality, Quadrature Amplitude Modulation (QAM)
is considered. In this paper, the actual complex symbol
emitted by the transmit–antennaℓt is denoted byst, with
st ∈ {s1, s2, . . . , sM}.

Accordingly, theNt × 1 transmitted vector is:

xℓt,st
=

[

01×(ℓt−1), st,01×(Nt−ℓt)

]T
(1)

where(·)
T denotes transpose operation, and0p×q is a p × q

matrix with all–zero entries.

B. Channel Model

The modulated vector,xℓt,st
, in (1) is transmitted through

a frequency–flatNr ×Nt MIMO fading channel with impulse
responseH. In this paper, a Rayleigh fading channel model
is assumed, and, thus, the entries ofH are modeled as com-
plex independent and identically distributed (i.i.d.) Gaussian
random variables with zero–mean and unit–variance.

Thus, theNr × 1 received vector can be written as follows:

y = Hxℓt,st
+ n (2)

where n is the Nr–dimensional Additive White Gaussian
Noise (AWGN) with zero–mean and varianceσ2 per dimen-
sion at the receiver input.

From (1), (2) simplifies as follows:

y = hℓt
st + n (3)

wherehℓt
is theℓt–th column ofH.

C. ML–Optimum Detector

The optimum detector based on the ML principle has been
derived in [2]:

[

ℓ̂
(ML)
t , ŝ

(ML)
t

]

= arg min
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{

‖y − hℓs‖
2
F

}

= arg min
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{

Nr
∑

r=1

|yr − hℓ,rs|
2

} (4)

where‖·‖2
F is the Frobenius norm,̂· identifies the estimated

spatial and constellation symbols, andyr andhℓ,r is ther–th
entry of y andhℓ, respectively.

The computational complexity of (4), in terms of real
multiplications, is equal to:

CML = 8MNtNr (5)

as the ML detector searches through the whole transmit and
receive search spaces.



D. Rx–SD Detector

In [8], a reduced–complexity and close–to–optimal BEP–
achieving decoder is proposed, which, as mentioned in Section
I, aims at reducing the receive search space. The detector can
formally be written as follows:

h

ℓ̂
(Rx−SD)
t , ŝ

(Rx−SD)
t

i

= argmin
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM }

8

<

:

Ñr(ℓ,s)
X

r=1

˛

˛yr − hℓ,rs
˛

˛

2

9

=

;

(6)

where1 ≤ Ñr (ℓ, s) ≤ Nr is the number of correlations in
the receive search space that is computed by using the SD
principle. Note thatÑr (·, ·) can be different for each point
in the transmit search space,i.e., for ℓ ∈ {1, 2, . . .Nt} and
s ∈ {s1, s2, . . . sM}.

More specifically, the Rx–SD receiver works as follows.
Given a sphere with radiusR, the receiver computes the
set of optimal Ñr (ℓ, s) for ℓ ∈ {1, 2, . . .Nt} and s ∈
{s1, s2, . . . sM} as follows:

Ñr (ℓ, s) = min
n∈{1,2,...Nr}

{

n

∣

∣

∣

∣

∣

n
∑

r=1

|yr − hℓ,rs|
2

> R2

}

(7)

In other words, for eachℓ ∈ {1, 2, . . .Nt} and s ∈
{s1, s2, . . . sM}, the Rx–SD receiver does not combine, ac-
cording to the Maximal Ratio Combining (MRC) principle [2],
the signals received by all theNr antennas at the receiver, but
it keeps combining the received signals until the Euclidean
norm in (6) gives a point that lie inside a sphere of radius
R and centered around the received signal itself. Since the
number of antennas,̃Nr (·, ·), that are actually used for MRC
are computed adaptively for each point in the transmit search
space, in [8] it is shown that there is no loss in either diversity
or coding gain: the BEP is exactly the same as the ML detector
in (4).

In [8], the interested reader can find an accurate analysis of
the computational complexity of the Rx–SD detector along
with an efficient method to choose the radiusR, which
significantly affects the performance of the algorithm. In this
paper, we simply mention that:

• The complexity of the Rx–SD receiver is given by:

CRx−SD = 8

Nt
∑

ℓ=1

M
∑

s=1

Ñr (ℓ, s) (8)

It is easy to show thatCRx−SD lies in the interval
8MNt ≤ CRx−SD ≤ 8MNtNr, where the lower bound
corresponds to the scenario wherẽNr (ℓ, s) = 1 for
ℓ ∈ {1, 2, . . .Nt} ands ∈ {s1, s2, . . . sM}, and the upper
bound corresponds to the scenario whereÑr (ℓ, s) = Nr

for ℓ ∈ {1, 2, . . .Nt} and s ∈ {s1, s2, . . . sM}. In other
words, in the best–case scenario Rx–SD has the same
complexity as a Multiple–Input–Single–Output (MISO)
system, while in the worst-case scenario it has the same
complexity as the ML–optimum detector in (4). These
results suggest that the largerNr, the higher the potential
gain with respect to the ML–optimum receiver. Let us
note that the Rx–SD solution has no pre–computations
with respect to the ML–optimum detector. In fact,

Ñr (ℓ, s) for ℓ ∈ {1, 2, . . .Nt} ands ∈ {s1, s2, . . . sM} in
(7) are implicitly computed when solving the hypothesis–
detection problem in (6).

• The radiusR can be chosen asR = 2αNrσ
2, whereα

is the solution of the equation as follows [7], [8]:

γ (Nr, 2αNr)

Γ (Nr)
= 1 − ε (9)

andγ (x, a) =
∫ a

0 ξx−1 exp (−ξ) dξ is the lower incom-
plete Gamma function,Γ (x) =

∫ +∞

0 ξx−1 exp (−ξ) dξ

is the Gamma function, andε is an arbitrary small value
close to zero,e.g., ε = 10−6.

III. N EW LOW–COMPLEXITY SPHEREDECODERS FORSM

As anticipated in Section I, in this section two new SDs for
SM are introduced. The first one (Tx–SD), aims at reducing the
transmit search space, as opposed to the Rx-SD search space,
and the second one (C–SD) combines Rx–SD and Tx–SD
decoders in order to reduce both transmit and receive search
spaces.

A. Tx–SD Detector

The Tx–SD for SM is a modified version of the well–
known SD for MIMO systems [7], [9]. It, however, exploits the
peculiar property of SM that only a single antenna is active for
transmission. More specifically, similar to conventional SDs,
the Tx–SD scheme reduces the number of points(ℓ, s) for
ℓ ∈ {1, 2, . . .Nt} and s ∈ {s1, s2, . . . sM} to be searched
through in (4),i.e., the transmit search space, by computing
the Euclidean distances only for those points that lie inside
a sphere with radiusR and centered around the received
signal. However, unlike conventional SDs, in our scheme
the set of points inside the sphere are much simpler to be
computed, as there is only a single active antenna in SM. In
this section, we show how to compute these intervals. While in
the next section, we provide an estimate of the computational
complexity of the proposed detector.

The analytical derivation follows the notation in [7], which
here is briefly summarized to make the paper self–contained.
First, for ease of analytical derivation, the complex–valued
model in (2) is replaced by its real–valued equivalent, as
follows [13]:

ȳ = H̄x̄ℓt,st
+ n̄ (10)

whereȳ is a2Nr ×1 vector,H̄ is a2Nr ×2Nt matrix, x̄ℓt,st

is a 2Nt × 1 vector, andn̄ is a 2Nr × 1 vector defined as
follows:































ȳ =
[

Re
{

yT
}

, Im
{

yT
}]T

H̄ =

[

Re {H} Im {H}
−Im {H} Re {H}

]

x̄ℓt,st
=

[

Re
{

xT
ℓt,st

}

, Im
{

xT
ℓt,st

}]T

n̄ =
[

Re
{

nT
}

, Im
{

nT
}]T

(11)

and Re {·} and Im {·} denote real and imaginary parts, re-
spectively.

By performing QR factorization of the matrix̄H, (10) can



ΘR =
{

(ℓ, s) with ℓ ∈ {1, 2, . . .Nt} and s ∈ {s1, s2, . . . sM}|
∥

∥ȳ − H̄x̄ℓ,s

∥

∥

2

F
≤ R2

}

=











(ℓ, s) with ℓ ∈ {1, 2, . . .Nt} and s ∈ {s1, s2, . . . sM}|

2Nt
∑

i=1



z̄i −

2Nt
∑

j=i

p̄i,j x̄j (ℓ, s)





2

≤ R2
Q











(14)

be re–written as follows [7]:

ȳ = Q̄

[

P̄

0(2Nr−2Nt)×2Nt

]

x̄ℓt,st
+ n̄ (12)

where P̄ is a 2Nt × 2Nt upper triangular matrix,Q̄ =
[

Q̄1 Q̄2

]

, and Q̄1, Q̄2 are 2Nr × 2Nt and 2Nr ×
(2Nr − 2Nt) matrices, respectively.

The Tx–SD scheme can be formally written as follows:
[

ℓ̂
(Tx−SD)
t , ŝ

(Tx−SD)
t

]

= arg min
(ℓ,s)∈ΘR

{

∥

∥ȳ − H̄x̄ℓ,s

∥

∥

2

F

}

(13)

whereΘR is the subset of points(ℓ, s) for ℓ ∈ {1, 2, . . .Nt}
and s ∈ {s1, s2, . . . sM} in the transmit search space that lie
inside a sphere with radiusR and centered around the received
signalȳ. In formulas, the subsetΘR can be written as shown in
(14) on top of this page, where we have defined: i)z̄ = QT

1 ȳ,
ii) R2

Q = R2−
∥

∥Q̄T
2 ȳ

∥

∥

2

F
, iii) z̄i andx̄i (ℓ, s) are thei–th entry

of vectorsz̄ andx̄ℓ,s, respectively, and iv)̄pi,j is the(i, j)–th
entry of matrixP̄.

The key point behind the application of SD for reducing
the computational complexity of ML–optimum detectors is the
efficient computation of the subsetΘR, which should avoid an
exhaustive search in the whole transmit search space. As far
as SM is concerned, these points can be computed in a very
simple way, as summarized inLemma 1.

Lemma 1:The subset of pointsΘR in (14) lie in the
intervals:

−RQ + z̄i

p̄i,i

≤ x̄i (ℓ, s) ≤
RQ + z̄i

p̄i,i

(15)

−RQ + z̄i,i+Nt

p̄i,i

≤ x̄i (ℓ, s) ≤
RQ + z̄i,i+Nt

p̄i,i

(16)

for i = 2Nt, 2Nt − 1, . . . , Nt + 1 in (15), i = Nt, Nt −
1, . . . , 1 in (16), and we have defined̄zi,i+Nt

= z̄i −
p̄i,i+Nt

x̄i+Nt
(ℓ, s).

Proof: This result can be obtained as follows.
1) First, we note that a necessary condition that the points

of the transmit search space need to satisfy to belong to
the subsetΘR in (14) is (for all i = 1, 2, . . . , 2Nt):



z̄i −

2Nt
∑

j=i

p̄i,j x̄j (ℓ, s)





2

≤ R2
Q (17)

which is a condition similar to conventional SD algo-
rithms [7].

2) Second, we need to take into account that in SM only
a single antenna is active at any time instance. In the
equivalent real–valued signal model in (10) and (13), this
is equivalent to having only two, out of2Nt, non–zero
entries in the signal vectors̄xℓt,st

andx̄ℓ,s, respectively.

By taking this remark into account, it follows that: a) if
i = Nt+1, Nt+2, . . . , 2Nt, then only the imaginary part
of x̄ℓ,s plays a role in (15), and, thus, only one entry
x̄j (ℓ, s) can be non–zero; and b) ifi = 1, 2, . . . , Nt,
then both real and imaginary parts ofx̄ℓ,s play a role
in (16), and, thus, only two entries̄xj (ℓ, s) can be
non–zero. The considerations in a) and b) lead to the
intervals in (15) and (16), respectively, which are directly
obtained by solving the inequality in (17). �

By comparing the intervals in (15) and (16) with those of
a conventional SD [7], we notice that (15) and (16) are much
simpler, and this is due to the fact that in SM there is only
one active antenna element, while in conventional SDs all the
antennas transmit simultaneously. Note that, as (16) depends
implicitly on (15), this means that (16) needs to be computed
for all the points that lie in the interval in (15).

With respect to the Rx–SD scheme, the Tx–SD scheme
foresees some pre–computations to estimate the points thatlie
inside the sphere of radiusR. These additional computations
are carefully taken into account in the analysis of the compu-
tational complexity of the Tx–SD scheme and its comparison
with the ML–optimum detector (see Section IV). Furthermore,
we note that the radiusR in (14) can still be computed from
(9).

B. C–SD Detector

In Section II-D and Section III-A, we have seen that Rx–
SD and Tx–SD aim at reducing the complexity of the ML–
optimum detector by minimizing the size of the receive and
transmit search spaces, respectively. So, it is natural to com-
bine both of them to further decrease the receiver complexity
by reducing the size of both the search spaces. The proposed
C–SD is a two–step detector that works as follows:

1) First, the Tx–SD algorithm is used to reduce the transmit
search space. The subset of pointsΘR is computed as
shown in (14).

2) Second, the Rx–SD algorithm is used to reduce the re-
ceive search space. More specifically, Rx–SD is applied
only on the subset of pointsΘR computed in the step
above.

In formulas, we have:

[

ℓ̂
(C−SD)
t , ŝ

(C−SD)
t

]

= arg min
(ℓ,s)∈ΘR







Ñr(ℓ,s)
∑

r=1

|yr − hℓ,rs|
2







(18)
whereΘR andÑr (ℓ, s) are computed by using (14) and (7),
respectively.



IV. A NALYSIS OF COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity
of Tx–SD and C–SD algorithms by taking into account the
pre–computations needed to estimate the points of the reduced
search space. The complexity is here computed as the number
of real multiplications needed by each algorithm. Furthermore,
we note that when divisions are involved, we take them
into account and assume they have the same complexity as
multiplications.

A. Tx–SD

The computational complexity of Tx–SD can be estimated
by taking into account that:

1) The QR factorization in (12), when computed by using
the Householder algorithm [14], requires a number of
real multiplications equal to:

CQR =

N
∑

ξ=1

[

2f (ξ) + f2 (ξ) + 2f3 (ξ) + 1
]

−N3
r (19)

wheref (ξ) = Nr + 1 − ξ andN = min {Nr − 1, Nt}.
2) The computation of̄z = QT

1 ȳ in (14) needs4NtNr real
multiplications,i.e., Cz̄ = 4NtNr.

3) The computation of
∥

∥Q̄T
2 ȳ

∥

∥

2

F
in (14) needs

C‖Q̄T

2
ȳ‖

2

F

= 2Nr (2Nr − 2Nt + 1) real multiplications,

i.e., C‖Q̄T

2
ȳ‖

2

F

= 2Nr (2Nr − 2Nt + 1).

4) The computation of the intervals in (15) and (16) re-
quires: i) 2Nt real divisions to compute (15) forNt

antenna indexes; and ii)1 real multiplication and2
real divisions for a number of times equal to the total
number of points that satisfy (15). In the worst–case
scenario, the number of points computed in (15) is equal
to the size,MI , of the imaginary constellation diagram
composing the QAM constellation symbol. Accordingly,
we haveMINt real multiplications and2MINt real
divisions, and, thus, the complexity of computing the
intervals in (15) and (16) can be upper–bounded by
Cinterval = 2Nt + 3MINt.

In summary, the analytical complexity resulting from the
computation of the points in the subsetΘR can be upper–
bounded by:

CΘR
≤ CQR + Cz̄ + C‖Q̄T

2
ȳ‖

2

F

+ Cinterval (20)

Since (13) requires 8 real multiplications for each computed
Euclidean distance, it follows that the computational complex-
ity of the Tx–SD receiver can be upper–bounded as follows:

CTx−SD ≤ CΘR
+ 8Nrcard {ΘR} (21)

where card{·} denotes the cardinality,i.e., the number of
points, in a set.

B. C–SD

The computational complexity of C–SD follows immedi-
ately from (8) and (21), as follows:

CC−SD ≤ CΘR
+ 8

∑

(ℓ,s)∈ΘR

Ñr (ℓ, s) (22)

V. NUMERICAL RESULTS

In this section, Monte Carlo simulation results for at least
106 channel realisation are shown to compare the performance
and computational complexity of ML–optimum and SD–based
receivers. The numerical examples are obtained by assuming
the system model in Section II. Furthermore, the radiusR is
chosen as described in (9) withε = 10−6.

In Fig. 1, the BEP averaged over Rayleigh fading is
shown by considering two different constellation sizes, and
Nt = Nr = 4. We notice that all the SDs have the same
performance, and all of them overlap with the ML–optimum
detector. As expected, the performance of SM improves when
M decreases.

In Fig. 2, Fig. 3, and Fig. 4, the computational complexity
C is compared according to the estimates provided in the
sections above. In particular, the figures show the relative
computational complexity of the SDs with respect to the ML–
optimum detector,i.e., Crel (%) = 100× (CML − CSD)/CML.
In Fig. 2, we observe that C–SD is always better than Tx–SD,
while it is better than Rx–SD only for high SNRs. The reason
for this latter result is due to the additional pre–computations
required by both C–SD and Tx–SD solutions. As mentioned in
Section I, we notice that the Rx–SD scheme is more effective
in reducing the complexity when the number of antennas at
the receiver is large.

Figures 3 and 4 show an interesting setups where it is clearly
highlighted that none of the proposed SDs isa priori superior
to the others, and that the best detector to use actually depends
on both the MIMO setup and the SNR. In particular, on the
right–hand side of Fig. 3, we notice that the best receiver to
use is the C–SD, while if we look at the left–hand side of
Fig. 3 and Fig. 4 we notice that the best receiver to use is
always the RX–SD. The reason is that in the former case the
transmit search space is large enough to compensate for the
pre–computations required by Tx–SD and C–SD receivers. On
the contrary, in the latter case the transmit search space isnot
very large, and, thus, there is not too much gain in reducing
it.

Finally, the right–hand side of Fig. 4 shows that Rx–SD
and C–SD are almost equivalent, as both a large transmit
search space and a large number of antennas at the receiver
are considered.

In summary, we can conclude that Rx–SD turns out to be
the best choice when the number of antennas at the receiver
is large, as it can significantly reduce the receiver search
space without any pre–computations. On the other hand, C–
SD turns out to be the best choice when the transmit search
space is very large and the number of antennas at the receiver
is low. It is interesting to note that the Tx–SD scheme is
never the best choice in the analyzed system setup. Since
this latter decoder is the most similar to conventional SDs
for MIMO systems, a main contribution of this paper is to
have highlighted the importance of reducing both transmit and
receive search spaces to get a significant reduction in receiver
complexity with performance guarantees.
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Fig. 1. BEP against the SNR.Nt = Nr = 4, (left) M = 8; (right)
M = 64.
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Fig. 2. Computational complexity against the SNR.Nt = Nr = 2, (left)
M = 8; (right) M = 16.

VI. CONCLUSION

In this paper, we have introduced and analyzed the per-
formance/complexity trade–off of three SDs for SM. We
have shown that the proposed solutions provide a substantial
reduction of the computational complexity while retainingthe
same BEP as the ML–optimum detector. Numerical results
have highlighted that no SD is superior to the others, and that
the best solution to use depends on the MIMO setup,i.e., the
triple (Nt, Nr, M), and the SNR at the receiver. In general,
Rx–SD is the best choice for largeNr, and C–SD is the best
option when eitherNr is low or M is large. Overall, analysis
and results shown in this paper confirm that SD can be a viable
and effective solution to reduce the complexity of SM without
deteriorating its BER performance.
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