Persymmetric Adaptive Radar Detectors - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Aerospace and Electronic Systems Year : 2011

Persymmetric Adaptive Radar Detectors


In the general framework of radar detection, estimation of the Gaussian or non-Gaussian clutter covariance matrix is an important point. This matrix commonly exhibits a particular structure: for instance, this is the case for active systems using a symmetrically spaced linear array with constant pulse repetition interval. We propose using the particular persymmetric structure of the covariance matrix to improve the detection performance. In this context, this work provides two new adaptive detectors for Gaussian additive noise and non-Gaussian additive noise which is modeled by the spherically invariant random vector (SIRV). Their statistical properties are then derived and compared with simulations. The vast improvement in their detection performance is demonstrated by way of simulations or experimental ground clutter data. This allows for the analysis of the proposed detectors on both real Gaussian and non-Gaussian data.
Fichier principal
Vignette du fichier
AES_R1.pdf (864.92 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00659834 , version 1 (04-03-2020)



Guilhem Pailloux, Philippe Forster, Jean-Philippe Ovarlez, Frédéric Pascal. Persymmetric Adaptive Radar Detectors. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47 (4), pp.2376-2390. ⟨10.1109/TAES.2011.6034639⟩. ⟨hal-00659834⟩
207 View
120 Download



Gmail Facebook Twitter LinkedIn More