
An upper bound for the total number of options to
implement an SDR multi-standard system
Patricia KAISER

Lebanese University and
Supelec Rennes

Email: patricia.kaiser@supelec.fr

Amine EL SAHILI
Lebanese University

Hadath campus - Lebanon
Email: sahili@ul.edu.lb

Yves LOUET
IETR/Supelec, Campus de Rennes

Avenue de la Boulaie, CS 47601, France
Email: yves.louet@supelec.fr

Abstract—The design of future multi-standard systems is very
challenging. Flexible architectures that exploit common aspects
between the different set of standards cohabiting in the device
offer promising solutions. In this paper, we adopt the theory of
graphs and particularly the study of directed hypergraphs, which
helps in providing a theoretical view of the graph structure of
the multi-standard system. This graph description exhibits all the
alternatives capable of implementing the system. On the other
hand, we further provide in this paper an exponential upper
bound for the total number of options which are capable of
implementing a multi-standard design.

Index Terms—Directed hypergraphs, SDR multi-standard sys-
tems, cost function, exponential upper bound.

I. INTRODUCTION

Radio system designers focus their attention nowadays
on developing flexible equipments that support a larger
number of air interface standards in order to cope with
the daily accelerating rate of technology innovation. The
Software-defined Radio (SDR) concept [1] was emerging as a
potential and efficient solution for making wireless networks
highly adaptable and flexible. Design of SDR equipments is
very challenging because it is very difficult to design a system
that preserves most of the properties of the ideal software
radio while being realizable with current-day technology.
The fields of research that aim at solving or at least
improving the methods and technologies implicated in the
SDR area are numerous. Nevertheless, the SDR community is
particularly driving the activities focusing on reconfiguration
and reconfigurability [2] in a heterogeneous context [3].

The possibilities to design software radio architectures
range from the ”Velcro” approach to the ”Very Fine Grain”
approach. The former approach aims to support several
communication standards through dedicated self-contained
complex communication components, while the latter is based
on manipulating small size operators to support different
standards. However, a promising approach to realize an SDR
multi-standard terminal is to identify the appropriate common
functions and operators between and inside the standards.
This is what’s called the ”parametrization” approach [4]. This
last approach aims at designing multi-standard systems made
of certain operators (or functions) whose operations can be
modified by a simple parameter adjustment. This approach
can be extended to lower level entities called common

operators [5]. It’s a very promising approach consisting of
designing radio systems entities in a way that permits to take
advantage of the programmable or at least reconfigurable
capabilities of the underlying hardware of SDR systems.

In order to explore the different possibilities of an SDR
design, it was necessary to describe the interrelationships
between the different components in the system. Thus a
graph structure representing the decomposition, into less and
less complex operators, of each standard which has to be
realized in the design was illustrated in [6], [7]. This graph
representation provides all the options of implementation
capable of realizing the multi-standard system for the
designer, who can select the option that meets his demands.
However, a cost function which calculates the cost of each
of these options is introduced in [5]. This cost function
combines both the flexibility and efficiency aspects. In this
paper, we will exploit the theory of graphs in this context.

Graph theory is rapidly moving into the mainstream of
mathematics mainly because of its diverse applications in
different fields. Graph theory [8] is the study of graphs used
to model pairwise relations between objects from a certain
collection. A ”graph” in this context refers to a collection
of vertices and a collection of edges that connect pairs of
vertices. A graph may be undirected, meaning that there is
no distinction between the two vertices associated with each
edge, or its edge may be directed from one vertex to another
in which case it is called a digraph. Hypergraphs and directed
hypergraphs [9] are generalizations of graphs and digraphs
respectively.

Our final objective is to optimize the cost function to its
minimum value possible and thus solving the optimization
problem that finds balance between flexibility and computing
efficiency. This will enable us to extract the most appropriate
Common Operators (COs) from the most convenient
granularity levels leading to the construction of an optimal
SDR multi-standard design which takes advantage of the
common aspects in use.
One issue towards solving our optimization problem is to try
to explore the total number of options which are capable of
implementing a multi-standard design, from which one with

a minimum cost is supposed to be extracted. In this paper,
we detail this point and work on finding out an upper bound
for the total number of the options of implementation of the
multi-standard system.

The rest of this paper is organized as follows. After the
present section, some basic definitions of directed hypergraphs
essential for our work are reported as well as a theoretical
description of the graph structure of the SDR multi-standard
system as a directed hypergraph. Section 3 briefly introduces
a cost function suggested in [5], which can calculate the cost
of each possible option of implementation. In the subsequent
section, an exponential upper bound for the total number
of options which are capable of realizing the multi-standard
design is derived. Finally, a conclusion’s section ends this
paper.

II. REPRESENTATION FOR SDR SYSTEM IMPLEMENTATION
USING GRAPH THEORY

In this section, we first explore a model for multi-standard
systems as a graph with different levels of granularity which
enables to select the convenient level depending on each
designer’s needs. Then, we introduce some required definitions
related to directed hypergraphs that will be key notations for
the rest of this article. All this was indispensable in order to
provide a theoretical representation of the graph structure of
the multi-standard system as a directed hypergraph, which is
finally presented in the section.

A. Graph modeling of SDR systems

An SDR multi-standard system is represented as a graph
in [6]. To model such systems as a graph, it is necessary to
distinguish between the different dependencies of the nodes
of different levels. A node of a higher level, called a parent
node, may have dependencies with nodes of underlying levels,
called descendant nodes. An ”OR” dependency (left part of
fig. 1) means that only one of the descendant nodes (B or
C) called several specific times is necessary to implement
the parent node (A). However, an ”AND” dependency
(right part of fig. 1), signifies that all descendant nodes via
the ”AND” dependency (B & C) are needed to implement
the parent node (A) accompanied with certain number of calls.

Fig. 1. ”OR” and ”AND” dependency

A multi-standard reconfigurable system is modeled as a
graph with several layers as shown in fig. 2. The roots of
this graph, at the top level, represent the standards to be
supported by the radio (Wifi and UMTS in the case of fig.

2). Each processing element (PE) occupies a certain layer
depending upon its granularity level, where more complex PEs
have higher granularity levels than less complex ones that can
form their functionalities. Each node in the graph represents
an elementary PE. In order to perform the functionalities of
this PE, it can be installed by itself in the design, as a unified
non divisible block, or it can be realized by some lower-level
building blocks. The goal of this approach is to provide the
options to the designer, to select a set of operators each of
which occupies a certain level of granularity, as dictated by
his needs.

Fig. 2. Global structure of a multi-standard graph (supporting Wifi and
UMTS) - transmitter side, including the levels of the blocks on the right side
of the figure

B. Basic definitions related to directed hypergraphs
1) Hypergraphs: A hypergraph H is defined by a pair

H = (X,E), where X = {x1, x2, · · · , xn} is the set of
vertices of H and E = {e1, e2, · · · , em}, with ei ⊆ V ,
ei 6= φ for i = 1, 2, · · · ,m, denotes the set of hyperedges of
H . Clearly, when |ei| = 2 ∀ i = 1, 2, · · · ,m, the hypergraph
is a standard graph.

2) Directed Hypergraphs [9]: A directed hypergraph
is a hypergraph but with directed hyperedges (also called
hyperarcs) where a directed hyperedge e is an ordered pair
e = (X,Y) of (possibly empty) disjoint subsets of vertices;
X is the tail of e denoted by T (e) and Y is its head denoted
by H(e) [9]. Fig. 3 is an example of a directed hypergraph
H = (X,E) where:

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9}
E = {e1, e2, e3, e4, e5, e6} where:
e1 = ({x1, x2}, {x3})
e2 = ({x3}, {x7})
e3 = ({x3, x4}, {x5, x6})
e4 = ({x7}, {x1})
e5 = ({x1, x7}, {x8})
e6 = ({x9}, {x8})

Fig. 3. A directed hypergraph H = (X,E)

3) Forward and Backward star [9]: Let v ∈ V . The
Forward Star and the Backward Star of node v are defined
by:
FS(v) = {ei ∈ E, v ∈ T (ei)} and
BS(v) = {ei ∈ E, v ∈ H(ei)} respectively.
Example In Fig. 3 we have:
FS(x3) = {e2, e3} and BS(x3) = {e1}.
FS(x8) = φ and BS(x8) = {e5, e6}.

4) BF-reductions of hyperarcs [9]: Let e = (T (e), H(e))
be a hyperarc in a directed hypergraph H . A BF-reduction of
e is a hyperarc ({x}, {y}) where x ∈ T (e) and y ∈ H(e).
Example: we have ({x3}, {x5}), ({x3}, {x6}), ({x4}, {x5}),
({x4}, {x6}) are all BF-reductions of the hyperarc E3 in Fig.3.

C. A mathematical model of the graph structure of the SDR
multi-standard system

A theoretical representation of the graph structure presented
in subsection II-A can be concluded. Formally speaking, the
graph structure of a multi-standard system can be viewed
as a directed hypergraph defined by the couple (V,E). The
set of vertices V will include the blocks (functions and
operators) present in the graph structure (example V = {wifi,
UMTS, randomizer, convolutional coder, · · · , or} in the graph
structure of Fig. 2) and a directed hyperedge e ∈ E will
include the parent node as a tail node while all the necessary
descendent node(s) capable of performing its task will form
the head node(s) of e. So this means that whenever we have
an ”AND” dependency, the hyperarc is formed such that the
parent node is the tail node and all the descendent nodes via
this ”AND” dependency are its head nodes. Whereas when
faced with an ”OR” dependency, the hyperarc will have the
parent node as the tail node and only one of its descendent
nodes (if more than one exists) via the corresponding ”OR”
dependency will be the head node. In this way, we form
the set of hyperarcs E including all the ”OR” and ”AND”
dependencies present in the corresponding graph structure.
For instance, we have ({randomizer},{Flip Flop,XOR}) and
({interleaver},{LUT}) belong to the set of hyperarcs E of
the directed hypergraph of fig. 2.

III. THE COST FUNCTION

The graph structure of the multi-standard system
(introduced in the previous section) provides all the options

capable of implementing the standards to be supported.
However, the cost function (CF) yields the cost imposed by
any one of these options of implementation.

A. A Cost Function expression

Three key parameters enter the CF introduced in [6]:
• The Building Cost is the cost of the building PE capable

of realizing a certain function. This cost is paid once
independently of the number of times in which this PE
is going to be called.

• The Computational Cost is considered to be the comput-
ing time required to perform a particular function. This
cost has to be paid every time a PE is invoked or called
by higher level PEs.

• The Number of Calls (NoCs) parameter stands for the
number of times a processing element at a lower granu-
larity level will be called to perform the task of the com-
ponent at higher granularity level. A NoC is associated
to every BF-reduction of every hyperarc.

We consider the following cost function:∑
i

BCi.Ni +
∑
n

∑
k

CCk((Sn)n∈{1,2,··· ,N}). (1)

where:

•
∑
i

BCi.Ni is the total BC of all the PEs that are

present in the multi-standard system, where Ni ∈ {0, 1}
depending on whether Bk

i is installed in the design or
not.

•
∑
k

CCk((Sn)n∈{1,2,··· ,N}) stands for the total CC im-

posed by one of the N standards, Sn.
•

∑
n

∑
k

CCk((Sn)n∈{1,2,··· ,N}) is the total CC of all the

N standards together.
An alternative theoretical expression of the above cost function
can be found in [10].

B. An example for Cost Function derivation

In this subsection, we’ll explain the computation process
of the just introduced cost function expression through an
example. In Fig. 4, the numerical values under each node will
represent the building cost (BC)/ computational cost (CC) of
the PE. For what follows, the term weight will be used to
represent the NoCs. For instance, the NoCs (7) on the BF-
reduction ({A}, {E}) of the hyperarc ({A}, {D,E, F}) in fig.
4 will be expressed as w({A}, {E}) = 7.

Note that there are cases in which we have the same
BF-reduction via different hyperarcs, as in Fig. 4 for example,
we have ({A}, {D}) is a BF-reduction of both E2 and
E3. Thus, it was necessary to specify the weight of each
by adding the index which is the hyperarc from which it
was derived. For the sake of simplicity, the BF-reduction
({A}, {D}) will be abbreviated by (A,D). Consequently,
we will write: wE2

(A,D) (= 20 in Fig. 4) and wE3
(A,D)

(= 15 in Fig. 4) for the weights of the BF-reduction (A,D)
via E2 and E3 respectively.

In the following, we will compute the implementation cost
of the S block at different levels of implementation.
As a first case, suppose that S is going to be installed by
itself as a unique nondivisible block. Then the cost to be paid
to perform the functionality of S will be:

Cost(S)(Using S) = BC(S) + CC(S)

= 300 + 180

= 480.

Now, suppose that a designer chooses to use a block
of lower level than S (the A block) to implement the S
functionality. Block A will be installed and it will be called
wE1

(S,A) times (2 times) in order to perform the required
tasks. Consequently, the cost becomes:

Cost(S)(Using A) = CC(A)× wE1
(S,A) +BC(A)

= (20× 2) + 50

= 90.

The task of S can be performed with the aid of components
that are at even lower granularity level, lower than that of A.
Here we have two options: either use B, D, & E or select the
operators D, E, & F .
First we’ll consider the former case. The total CC to perform
the functionality of one A block using this option is:

CC(A)(Using B,D,E) = CC(B)× wE2(A,B) + CC(D)×
wE2

(A,D) + CC(E)× wE2
(A,E)

= 1× 30 + 2× 20 + 10× 5

= 30 + 40 + 50

= 120.

Now since we need to call the tasks similar to the As tasks
twice, then the CC that is going to be paid to realize S from

Fig. 4. A simple directed hypergraph showing the breakdown of block S up
to 2 lower levels

B, D, & E operators will be:

CC(S)(Using B,D,E) = CC(A)(Using B,D,E) × wE1
(S,A)

= 120× 2

= 240.

The final total cost of this choice will be to add the total
CC of S (using B, D, & E) with the BC of each of B, D,
& E only once. So:

Cost(S)(Using B,D,E) = CC(S)(Using B,D,E) +BC(B)

+BC(D) +BC(E)

= 240 + 5 + 10 + 20

= 275.

Similarly, we’ll calculate the cost of realizing S via D, E,
& F (again according to equation 1) and we’ll get:

Cost(S)(Using D,E,F) = (CC(D)× wE3
(A,D) + CC(E)×

wE3
(A,E) + CC(F)× wE3

(A,F))×
wE1

(S,A) +BC(D) +BC(E)+

BC(F)

= (2× 15 + 10× 7 + 10× 8)× 2+

10 + 20 + 15

= (30 + 70 + 80)× 2 + 45

= 360 + 45

= 405.

The following summarizes all the attained costs to imple-
ment S:

Cost(S)(Using S) = 480
Cost(S)(Using A) = 90.

Cost(S)(Using B,D,E) = 275.
Cost(S)(Using D,E,F) = 405.

If for instance a designer seeks a least cost design to
implement S, then he will be choosing the A operator to install
inside the system because realizing S using the A operator
yielded a minimum cost (90).

As you can see in this example, there were four options able
to realize the functionalities of the S block. In the next section,
our aim will be to provide a generalization for the total number
of options capable of implementing the functionalities of the
multi-standard system. In particular, we find an upper bound
for this number, providing and explaining all the necessary
derivations.

IV. AN UPPER BOUND FOR THE NUMBER OF OPTIONS OF
IMPLEMENTATION

In this section, we will provide an exponential upper
bound for the total number of options that are capable of
implementing the multi-standard system. This is done by first
introducing a computational cost vector Xv on each vertex
v in the graph structure of the multi-standard system, whose
dimension will represent the total number of options that can

realize block v. Then, we find an upper bound for dim(Xv),
thus achieving our goal.
Remark that one component in the Xv vector will represent
the total computational cost of an option which is capable of
realizing the functionalities of block v, where this cost will
be calculated with the aid of the cost function introduced in
the previous section.

A. Introducing the computational cost vector Xv

We’ll associate a vector Xv to each vertex v in the directed
hypergraph H of a multi-standard system. Each entry of Xv

evaluates the total computational cost resulting from one
particular choice of implementation chosen to realize block
v. This vector will include all the possible implementations
of v and thus the dimension of Xv will be exactly equal to
the total number of options capable of realizing v.

For all the rest, we’ll denote the dimension of the vector
Xv by |Xv| i.e |Xv| = dim(Xv).
The parameters that we need to form the entries of the Xv

vector are the BC, CC and the NoCs.

The vector Xv is defined recursively from blocks of lowest
levels up until those of highest ones. This means that first we
have to find Xv for all v block in level 1, then Xv for all v
block in level 2, · · · .
First, for blocks v in level 1, we have only one entry in Xv

(i.e |Xv| = 1) because the only choice of implementation of
such a block is by installing it itself. This only entry in Xv

will be the CC of block v, because this will be the total CC
in case where the block is installed by itself.

Having defined Xv for all the blocks v such that l(v) � i,
we can find the vector Xv where l(v) = i+ 1 as follows:
• If we face an ”or” hyperarc e ∈ FS(v) (recall that an

”or” hyperarc means that |H(e)| = 1) and suppose that
H(e) = {r} (so e = (T (e), H(e)) = ({v}, {r})), then
this means that v can be realized by r associated with
certain number of calls. Since r can be implemented in
|Xr| ways, then this will impose |Xr| choices capable of
realizing v by using r because the total CC of any option
that implements r, multiplied by the number of times v
calls r (w(v, r)), represents the total CC of an option that
realizes v. Thus, any entry in Xr multiplied by w(v, r)
will be an entry in Xv describing the total CC of one of
the options of implementation of v via r.

• If an ”and” hyperarc e ∈ FS(v) is encoun-
tered, then v will need the functionalities of all the
blocks in H(e) to be implemented. Suppose that
H(e) = {si1, si2, · · · , sin} (so e = (T (e), H(e)) =
({v}, {si1, si2, · · · , sin})). In this case, the calculation
of the total computational cost of an option chosen to
implement v via this hyperarc e will be:
choose one entry from each of Xsik , k ∈ {1, 2, · · · , n}
(which represents the total CC of one of the options that

can realize the functionalities of sik), multiply it by the
number of times v calls sik (which is w(v, sik)), and then
add all the answers obtained for all k ∈ {1, 2, · · · , n}.
This will form an entry of Xv , because this is the way
how the total CC of an option that can realize v will be
calculated when facing an ”and” connection (as indicated
in the previous section). Consequently, it’s obvious that
this hyperarc imposes |Xsi1 | × |Xsi2 | × · · · × |Xsin |
options capable of realizing v.

• One more option of implementation which is worth
mentioning is characterized by using v itself as a unified
nondivisible block. This adds one more entry to the vector
Xv which is the CC of block v.

To make things clearer, we’ll start with a simple example
and then introduce a generalization.

Fig. 5. two alternatives to implement v5

1) Example: Fig. 5 shows an ”or” (e1 = ({v5}, {v1})) and
an ”and” (e2 = ({v5}, {v2, v3, v4})) connection related to the
implementation of block v5.
Suppose that:

Xv1 = (x1, x2, · · · , xm) ; |Xv1 | = m
Xv2 = (y1, y2, · · · , yn) ; |Xv2 | = n
Xv3 = (z1, z2, · · · , zp) ; |Xv3 | = p
Xv4 = (l1, l2, · · · , lq) ; |Xv4 | = q

We’ll denote Zv by the set obtained from Xv by
just listing its components. So, for example, we have
Zv1 = {x1, x2, · · · , xm} , Zv2 = {y1, y2, · · · , yn}, · · · .

Set Ue1 = Zv1 (related to the ”or” connection)
and Ue2 = Zv2×Zv3×Zv4 (concerning the ”and” connection).

In this case, Xv5 will be a vector of dimension
m+ n× p× q + 1 where:
• The m entries result from Ue1 as follows:
w(v5, v1)× xi ∀i = 1, · · · ,m.

• The n× p× q entries which result from Ue2 are:
w(v5, v2)× a+ w(v5, v3)× b+ w(v5, v4)× c
∀(a, b, c) ∈ Ue2 (where |Ue2 | = n× p× q)

• The remaining entry is the result of the direct
implementation of block v5 itself. This entry, as
mentioned before, is equal to the CC of block v5.

2) Generalization: Let H be a directed hypergraph of a
multi-standard system. Let v ∈ V (H).
The components of Xv will be found as follows:

Let e ∈ FS(v). Set Ue =
∏

r∈H(e)

Zr

∀e ∈ FS(v), ∀a = (ar)r∈H(e) ∈ Ue we have:∑
r∈H(e)

w(v, r).ar is an entry in Xv .

One more entry of Xv is the computational cost of v which, as
mentioned previously, presents the direct installation of block
v.

B. An upper bound for |Xv|
1) The dimension of Xv , |Xv|: Based on all what’s ex-

plained and discussed before in this section, we can easily
conclude that :

|Xv| =
∑

e∈FS(v)

∏
r∈H(e)

|Zr| + 1 (2)

defined recursively from lowest to highest levels.

For all the following, we’ll denote ui by an upper bound
for |Xv|, where v occupies the ith level i.e:

∀ v / l(v) = i, |Xv| ≤ ui

An expression of ui will be our desired upper bound. ui
will be, as well, defined recursively from lowest to highest
levels.
The following two parameters will be used:

M = max
v∈V (H)

(|FS(v)|+ 1)

r = max
e∈E(H)

(|H(e)|)

Taking into consideration equation. 2, we obtain recursively
the following:

u1 = 1(obvious)

u2 =M(u1)
r =M

u3 =M.(u2)
r =M(M)r =Mr+1

u4 =M.(u3)
r =M(Mr+1)r =Mr2+r+1 · · ·

So generally, we can express the recursive relation as
follows:

u1 = 1,

us+1 =M(us)
r ∀ s ≥ 1

(3)

Here is a brief explanation. Suppose that we want to find us,
which is an upper bound for the number of options that can
realize v (equivalently represented by |Xv|) where l(v) = s.
We consider the following remarks:
• We have a maximum of M − 1 hyperarcs such that v is

the parent tail node (by the definition of M).
• Each one of these hyperarcs contains a maximum of r

head nodes.
• The worst case is that all the r head nodes are in level
s− 1, which will impose a larger upper bound.

We can easily conclude, from equation 2, that each one of
these (maximum) M − 1 hyperarcs imposes a maximum of

(us−1)
r options. And thus the M − 1 hyperarcs all together

will yield a maximum of (M − 1)(us−1)
r options. It remains

to add the last option of implementation characterized by using
the block v by itself. So as a whole, we get a maximum of
(M − 1)(us−1)

r + 1 alternatives of implementation which is
obviously less than M(us−1)

r = us (M ≥ 1).
This recursive relation can be easily solved with a simple

induction on s and we obtain: us = Mrs−2+rs−3+···+r+1 or
alternatively:

us =M
1−rs−1

1−r (4)

In this section, we have found an exponential upper bound,
as function of the selected parameters M and r, for the total
number of options that can implement any PE in the design.
Consequently, we can derive an upper bound for the total
number of options of implementation of all the top level
standards to be supported, and thus have explored the number
of alternatives that can realize the multi-standard design.

V. CONCLUSION

After having theoretically described the graph structure of a
multi-standard system as a directed hypergraph and introduced
a cost function equation, we have provided an exponential
upper bound for the total number of options which can
implement the multi-standard system. This is an important step
that might help in solving our optimization problem, which
states to select the option capable of implementing the design
and which has a minimum cost. This could be a clue towards
discovering the complexity of this optimization problem, i.e
whether it’s a polynomial (P) or Non-deterministic Polynomial
(NP) problem, which is an issue to be addressed in the future.
Moreover, trying to improve this upper bound by finding a
smaller one might be a very beneficial aspect to be explored.

REFERENCES

[1] F.Jondral, ”Parametrization: A technique for SDR implementation,” Chap-
ter 8 of Software Defined Radio Enabling Technologies, edited by W.
Tuttlebee, Wiley, 2002.

[2] A. Kountouris, C. Moy, L. Rambaud, ”Reconfigurability: a Key Property
in Software Radio Systems,” in Proceedings of 1st Karlsruhe Workshop
on Software Radios, Germany, March 2000.

[3] A. Kountouris, C. Moy, ”Reconfiguration in Software Radio Systems,” in
Proceedings of 2nd Karlsruhe Workshop on Software Radios, Germany,
March 2002.

[4] Alaus L, Palicot J, Roland C, Louet Y and Noguet D, Promising
Technique of Parameterization For Recongurable Radio, the Common
Operators Technique : Fundamentals and Examples, march 2009, Revue
Journal of Signal Processing Systems, diteur Springer New York.

[5] Moy C, Palicot J, Rodriguez V, Giri D, ”Optimal Determination of
Common Operators for Multi-Standard Software-Defined Radio”, 4th

Karlsruhe Workshop on Software Radios, March 2006.
[6] Sufi T. Gul: Optimization of Multi-Standards Software Defined Radio

Equipments : A Common Operators Approach, PhD thesis, 2009.
[7] Patricia Kaiser, Sufi Tabassum Gul, Christophe Moy, Yves Louet ”Graph

theory approach for optimization of Multi-standard software Defined
Radio equipments”, ERRT 6th karlsruhe, Mainz, Germany, June 2010.

[8] Reinhard Diestel. Graph Theory. Fourth Edition 2010. Springer-Verlag,
Heidelberg Graduate Texts in Mathematics, Volume 173.

[9] G. Gallo, G. Longo, S. Pallottino, and Sang Nguyen. Directed hyper-
graphs and applications. Discrete applied mathematics, 1993.

[10] Patricia Kaiser, Yves Louet, Amine El Sahili ”A cost function expression
for SDR multi-standard systems design using directed hypergraphs ”,
URSI 2011, August 2011, Istanbul, Turkey.

