N

N

Towards a triple mode common operator FFT for
Software Radio systems
Ali Al Ghouwayel, Amin Haj-Ali, Zouhair El-Bazzal, Yves Louét

» To cite this version:

Ali Al Ghouwayel, Amin Haj-Ali, Zouhair El-Bazzal, Yves Louét. Towards a triple mode com-
mon operator FFT for Software Radio systems. ICT 2012, Apr 2012, Beyrouth, Lebanon. 6 p.,
10.1109/ICTEL.2012.6221243 . hal-00682888

HAL Id: hal-00682888
https://centralesupelec.hal.science/hal-00682888
Submitted on 27 Mar 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://centralesupelec.hal.science/hal-00682888
https://hal.archives-ouvertes.fr

Towards a Triple Mode Common Operator FFT for
SoftWare Radio Systems

Ali Chamas Al Ghouwayel, Amin Haj-Ali and Zouhair El-Bazzal

Lebanese International University
P.O.Box:146404 Mazraa, Beirut, LEBANON

Email:{ali.ghouwayel, amin.hajali, zouhair.bazzal} @liu.edu.lb

Abstract—A scenario to design a Triple Mode FFT is ad-
dressed. Based on a Dual Mode FFT structure, we present a
methodology to reach a triple mode FFT operator (TMFFT) able
to operate over three different fields: complex number domain C,
Galois Fields GF'(F;) and GF(2™). We propose a reconfigurable
Triple mode Multiplier that constitutes the core of the Butterfly-
based FFT. A scalable and flexible unit for the polynomial
reduction needed in the GF'(2™) multiplication is also proposed.
An FPGA implementation of the proposed multiplier is given and
the measures show a gain of 18 % in terms of performance-to-cost
ratio compared to a ’Velcro” approach where two self-contained
operators are implemented separately.

I. INTRODUCTION

In recent years there has been an enormous proliferation
of standards in broadcast television, radio and in mobile
communications. Current examples include digital television
(DVB, ISDB), digital radio (DAB), wireless LAN(Hiperlan,
802.11a, 802.11b, ..., 802.16m, ...), 2.5/3G, 4G and future
mobile communications. These standards form the basis for
an ever-growing number of sophisticated consumer electronic
devices, each with the potential to sell in very high volumes.

In typical designs, these complex standards are implemented
using dedicated architectures, which are optimized to reduce
cost to the absolute minimum. Products developed using
dedicated architectures are often difficult to upgrade in order
to support changes to the standards or to add new features.

At the beginning of the 90’s, a concept called SoftWare
Radio (SWR) has emerged from demonstrations in military
research to become a cornerstone of the third generation
strategy for affordable, ubiquitous and global communications
[1]. This SWR technology is a way to design a sufficiently
programmable and reconfigurable architecture able to support
many different transmission standards on a common platform.
The reconfigurability of a SWR system can offer a range of
benefits at different levels. A radio system implemented on a
reconfigurable architecture can be upgraded to fix bugs or to
add functionalities, and it can also support new standards as it
is assumed that there is sufficient flexibility in the architecture.

The communication chains of different standards, intended
to be implemented on a common platform, have some com-
mon signal processing operations such as channel coding,
modulation, equalization, etc. In order to exploit to a great
advantage the commonalities among these communication
tasks for different standards, one need firstly to identify

Yves Louét
SUPELEC-IETR, CS 47601
35576 CESSON-SEVIGNE Cedex, FRANCE
Email: yves.louet@supelec.fr

these commonalities and secondly find the optimal way to
implement a generic hardware platform with programmable
modules. In this sense, a technique called parametrization
has been introduced [2]. The key idea is to get an optimal
sharing between hardware and software resources and find
a best way to reuse some hardware and software modules
without affecting the system’s performances.

This paper addresses the problem of parametrization tech-
nique under the CO approach where it is in line with the
optimal design of a SWR system intended to support several
communication standards. In [8], we have investigated the
frequency processing of cyclic codes particularly RS codes
with the aim to insert the classical FFT operator, initially used
for complex Fourier transform, in the encoding and decoding
processes of RS codes. By examining the characteristics of the
Fourier transform FFT-GF2 used to process the encoding and
some decoding processes of classical RS codes defined over
GF(2™), we found that the adequacy of its structure to the
structure of FFT defined over C (FFT-C) is challenged by the
transform length. That is, the most efficient algorithms applied
to a transform of length 2" in the case of FFT-C computations
cannot be applied to compute FFT-GF2 since its transform
length is of the form 2™ — 1. For this, we thought to seek
out a transform satisfying the FFT-C criteria while keeping in
mind to find a way to include the FFT-GF2, used in the RS
coding defined over GF'(2™), in the intended common and
reconfigurable FFT structure.

To be able to exploit the whole FFT-C structure we explored
finite field transforms having a highly composite length. The
candidate transforms were the Fermat transforms defined over
GF(F;) [3] [5]. These transforms are used to deal with a
specific class of RS codes defined over GF'(F;). These codes
were studied in 1976 where the authors have emphasized the
importance of their codeword length allowing the use of effi-
cient algorithms to compute their associated Fermat transforms
[4] [6]. These codes were also recommended for the use in
spacecraft communications [7] where the RS(256,224) over
GF(257) was studied to be used together with a convolutional
code.

As a first contribution, we have investigated the redesign
of the FFT-C in such a way to be able to provide two func-
tionalities: complex Fourier transform and Fermat transform.
Conceptually, the design of such a dual mode operator implies

the design of arithmetical operators capable to operate over
the two domains: C' and GF(F}). We have proposed reconfig-
urable architectures for the multiplier, adder and subtracter [9]
[10]. These operators implemented on the complex butterfly
(available in the FFT-C) led to a reconfigurable butterfly that
will constitute the core of the dual mode operator. Based on the
FFT-C structural strategy, we have designed the architecture
of the DMFFT operator [11].

To evaluate the complexity and speed performances of this
operator, we have considered its implementation on ALTERA’s
FPGA devices. Compared to a Velcro FFT/FNT operator, the
DMFFT presented an important gain in terms of ALUTS
and memory saving. We have shown that for a transform
length N = 64 implemented with different wordlengths
9 < n. £ 16), the DMFFT presents a memory saving
between 20 and 30%, a gain in ALUTs and performance-
to-cost ratio gain that go from 9.2 % up to 26 % and from
9.7 % up to 37.4 % respectively. This deviation of gain in
ALUTs and in performance-to-cost ratio is directly related to
the wordlength, so as n. increases, these gains decrease. For
N = 256, the DMFFT presents the same memory saving and
the other gains evolve in the same manner of that of DMFFT-
64 but with lower values. This is due to the fact that the
complexity of the DMFFT architecture is mainly dominated
by the FFT-C architecture complexity which increases with the
increase of the wordlength and the transform length. The high
n. values are necessary to get a good FFT-C computations
precision while in the Velcro FFT/FNT, a 9-bit wordlength is
sufficient to implement the FNT. Then, for a transform length
N < 256, the use of the DMFFT is largely efficient and allows
to process RS codes which have codeword length N < 256
and whose principals are N=64, 128 and 256.

In [12], we have proposed a hardware design and efficient
implementation of the FFT over GF'(2™). The proposed de-
sign is based on the cyclotomic decomposition of polynomials
representing the input data. A very high throughput rate is
attained, that makes the FFT to be a Common Operator while
it is capable to produce its functionality at least twice faster
than the existing solutions.

Nevertheless, RS codes implemented in the various actual
standards (ADSL, ATSC, DVB, GSM,...) are codes defined
over GF(2™). Then, the inclusion of the finite field Fourier
transform defined over GF'(2™) as an extra functionality to
be provided by our designed CO is a necessity to be on actual
standardization’s trend.

In this paper we propose a scenario that aims to combine the
FFT-GF2 with the DMFFT by exploiting the same logical cells
at the gate level to obtain a reconfigurable Triple Mode FFT
(TMFFT) operator. We propose a generic combined multiplier
able to perform a standard binary multiplication and GF'(2™)
multiplications for m=6, 7 and 8. We also show that this
multiplier can be easily implemented into the reconfigurable
multiplier proposed in [10] which leads to a triple mode mul-
tiplier able to operate over three different fields: C, GF(F})
and GF'(2™). Having this triple mode multiplier and taking
into account that the addition in GF(2™) can be realized by

XOR gates, the necessary arithmetical tools to implement the
FFT-GF2 are available in the DMFFT operator.

II. TOWARDS A COMBINED TRIPLE MODE FFT OPERATOR
(TMFFT)

We propose a scenario that aims to combine the FFT-GF2
structure with the DMFFT structure on the same die area to
obtain a combined and reconfigurable operator TMFFT. This
combination can be achieved if the following two steps can
be realized.

1) Providing the GF'(2™) operations, mainly the multipli-
cations, with the binary multipliers implemented in the
DMFFT operator.

2) Incorporation of the FFT-GF2 physical structure into the
DMEFFT structure.

We begin the discussion with the first step where the
approach for a combined multiplier exploits the fact that the
partial product generations of both GF(2™) multiplier and
standard binary multiplier can be performed using the same
array and interconnections between cells.

A. Basic binary multiplication

Let us consider the basic principle of the standard binary
arithmetic multiplier. In 1964, Wallace [13] introduced a
notion of a carry-save tree constructed from one-bit full adders
as a way of reducing the number of partial product bits in a
fast and efficient way. Later, Dadda [14] refined Wallace’s
method by defining a cell placement strategy that minimizes
the number of full-adders and half adders, at the cost of a
larger carry propagate adder. For our multiplier design, we
will consider the Wallace’s method since it is structurally more
regular.

Wallace’method is based on parallel counters and the multi-
plication of two binary numbers is performed in the following
sequence.

o Form all partial products in parallel with an array of AND
gates.

o Reduce the partial products through a series of reduction
stages to two numbers by strategically applying (3,2)
and (2,2) counters. Architectures of counter (3,2) (or full
adder) denoted by "W3” and (2,2) counter (or half adder)
denoted by "Wy are illustrated in Fig. 1.

e Sum the two numbers produced in step 2 using a fast
carry-propagate adder to generate the final product.

OO o0

Fig. 1. The W3 and W2 architectures

B. GF(2™) multiplication

As for the GF'(2™) multiplication, it is viewed as a polyno-
mial multiplication modulo f(x), where f(x) is the irreducible
polynomial characterizing the field GF(2™).

Let us consider the multiplication of two GF'(2™) numbers
A and B. A and B can be represented by means of the vector
basis {a™1, ...,a!,a"}, where « is a primitive element of
the field, as

A=apm_ 1™ 4+ . +aal + apa™ L,
-1 1 -1
B=bp_1a" " 4+ ..+ ba +ba™ ",

where a;, b; are coefficients in GF'(2).
The polynomial multiplication C(z) = A(x)B(x) mod
f(x) can be calculated by firstly building the partial products

Pi(z) = A(z)b;, for i=0,...,m—1.

Secondly, since the polynomial’s coefficients belong to
GF(2), all partial products P;(x) have to be added modulo 2.
A partial result C),(x) can be obtained with

Cp(z) = ZPZ(QU) mod 2
Cp(z) = co + 17 + oo + Com_ox®™ 2,
which is obviously not an element of the field GF(2™) and
should be reduced modulo f(x).

A GF(2™) multiplier then performs two basic operations.
The product of two elements and the modulo f(z) correction.
The first operation can be performed by ANDing the corre-
sponding a; and b;, for ¢ = 0,...,m — 1, and subsequently
adding the partial products modulo 2. These partial products
must be arranged in rows, with each row shifted ¢ positions to
the left as shown in Fig. 2. This step is similar to the standard
binary product with the only difference that the sum of partial
products in this case is done modulo 2. Thus, an opportunity
to exploit cells and the interconnection structure of partial
product generator of a typical binary multiplier unit is possible.
The modulo correction should be performed separately.

oooooooao
oooooooao
oooooooao
oooooooao
oooooooao
oooooooao
oooooooao
oooooooao

Fig. 2. Partial product matrix

Early designs of GF'(2™) multipliers used a serial approach.
Although serial GF'(2") multipliers have low hardware re-
quirements, they are very slow. Consequently, several parallel
designs have been proposed in the literature [15] [16] [17]
[18]. In [19] [20], the idea to combine G F'(2™) with a standard
binary multiplier on DSP processor was investigated. In [19],

the proposed design is based on a Wallace tree multiplier
which has been modified to perform either conventional binary
or GF(2™) multiplication. Their polynomial reduction (or
modulo correction) introduces a linear delay. In [20], a new
wiring scheme, to avoid adding carries of partial product
reduction, is proposed and a parallel polynomial reduction is
used. The authors designed a multiplier capable of performing
either 16-bit two’s complement or unsigned multiplication, or
two independent 8-bit G F'(2%) multiplications. In the follow-
ing, we propose a general approach allowing the implemen-
tation of any GF(2™) multiplier, for 6 < m < 8, in the
reconfigurable multiplier proposed in [10]. We start here from
the standard binary structure of the multiplier shown in Fig. 3.
The partial product generation or bitwise ANDing of a;b; is
A

B
J(N bits % N bits

Partial Product Generation

N words by N bits

Partial Product Reduction

2 words by 2 N bits

Carry propagate Addition

%2 N bits

AB

Fig. 3. Steps for N by N multiplication

performed regardless of the type of multiplication (GF(2™) or
standard binary multiplication). The partial product reduction
should be redesigned in such a way to avoid the carries prop-
agation if the GF(2™) multiplication is to be performed. This
can be realized by reconfiguring the wire connects of the "W3”
cells. The new wiring scheme is illustrated in Fig. 4. This
wiring scheme can be easily realized in a reconfigurable way
on FPGA devices using a reprogrammable LUTs. Arriving at

2900 ou) 20 20
W3 wZ
20 2l 20

o1
x
Fig. 4. The (3,2) and (2,2) counters in GF'(2™) multiplication

the last step (the polynomial reduction), it can be performed
in parallel by using the method considered in [17]. Let P(«)
be the extended result before the polynomial reduction. P(«)
can be expressed as

2m—2

m—1
Pla)=) pa'+ Y pc,)
i=m =0

where o for m < i < 2m — 2 can be substituted by

m—1
Al(()() = Z ai,joﬂ.
7=0

The A;(a) are the canonical representations in the field’s
base of the field elements o that appear in the first summation
in Equation 1.

Let us consider an example of multiplication of two ele-
ments A and B in GF(2%). Let f(z) = 2* + 2 + 1 be the
primitive polynomial and

A=al"=0.03+a®+a+1=(0111),
B=a2=a®+a?>+a+1=(1111).

The multiplication operation is described in Fig. 5. The
classical method of multiplication shown in the upper left
side of Fig. 5 is expressed by hardware circuit which is based
on Wallace tree. This tree, originally designed to perform the
standard binary multiplication, is modified in such a way to
avoid the carries propagation between the cells constituting the
tree. In this approach we have considered the disconnection
of the carry’s outputs and the corresponding neighboring
cell inputs that are set to zero. The disconnected wires are
represented by black dots. This wiring scheme can be realized
by means of reprogrammable LUT1s that connect the carry
outputs of each A’B? unit to the corresponding entries of
the W3 cells. A LUT1 maintain the carry propagation (by
connecting the input to the output) in the case of standard
binary multiplication and set its output to zero in the case of
GF(2™) multiplication.

) Partial product generation

a": 0111

Partial product reduction

‘
01 0 110 11104411 1 1

0101101

P@)=0a’+a’ +0a* +a’ +a* +0a' +a°:

f 0
la’=0a’+a’+a+0=0110 0
0
1

AB=a"a" =a”=a"a’ =a’+a+1=(1011) —>

Polynomial reduction

Fig. 5. Multiplication of two elements in G F(24)

Fig. 5 shows an example of G F'(2*) multiplier whose whole
architecture, except the polynomial reduction, is implemented
on the standard binary multiplier. This implementation can be
extended for any GF'(2™) multiplier provided that the size
of the original binary multiplier can support the size of the
GF(2™) multiplier to be implemented.

In the next section, we propose a reconfigurable architecture
of a combined multiplier that can support either a binary
multiplication or GF'(2") multiplication for m=6, 7 and 8.

III. PROPOSED TRIPLE MODE MULTIPLIER

In this section we consider the combination of GF(2™)
multiplier, for m = 6, 7, 8, with the standard binary multiplier.
Fig. 6 shows a block diagram of the combined triple mode
multiplier 8 x 8 bits. In this design, we restrict the sizes of
GF multipliers according to the code lengths of RS codes
used in the practical applications.

m

t 8 bits % 8 bits

Partial Product generation

i 8words by 8 bits

Partial Product reduction

i 15 bits.

Polynomial reduction

2 words by 16 bits i

Carry-propagate adder

Fig. 6. Block diagram of the combined multiplier

The architecture we propose is based on the Wallace’s tree
for the partial product reduction. A tree of size 8 x 8 is
sufficient to perform GF'(2%) multiplication. However, the tree
size is fixed according to the desired precision for the complex
Fourier transform. As discussed in [11], a 13 bit-wordlength
represents a good complexity-precision tradeoff. Thus, for
GF(2™) multiplication, the Wallace’s tree can process any
two words for m < 13 but a further attention should be taken
into account for the realization of the polynomial reduction.
For this, in the following we restrict the values of m to the
more practical ones. The multiplier receives a control signal
S to pilot the switching from the standard binary addition
to modulo 2 addition and to manage the configuration of the
interconnection between the neighboring cells according to the
model previously shown in Fig. 5. The multiplier performs the
partial product reduction regardless of the size of the operands.
If the size is smaller than 13, the operands can be concatenated
by ”0”. The rest of the architecture is the carry-propagate adder
(for the standard binary multiplication) and the polynomial
reduction unit (for the GF(2™) multiplication).

The part which will be influenced by the variable length of
the GF multiplier is the polynomial reduction unit since the
reduction is based on the binary representation of the powers
of a which varies with the order of the Galois field. For
this, we propose a reconfigurable polynomial reduction unit
as shown in Fig. 7.

This polynomial reduction unit receives 15 bits from the
partial product reduction block and a parameter m which
defines the size of GF'(2™) multiplication to be performed.
According to the chosen GF, the corresponding powers of
are selected from the ROM blocks. By ANDing these powers

I A A A N AR

AR ARARAN

R

LR

ROM
RIR][R|R

Al

Q_

fs bits

Fig. 7. Parallel polynomial reduction for m = 6, 7 and 8.
TABLE I
CONFIGURATION OF THE LUT1s
multiplier size L1 L2 L3 L4
m==6 0 0 Ps Pr
m=7 Ps 0 0 P7
m =8 Ps Pr 0 0

of a with the corresponding P;, for m < ¢ < 2m — 2, and
XORing their results with the word {P,,—1 ... P, Py}, the
GF(2™) multiplication is provided on 8 bits. Four LUTIs
(L1, L2, L3, L4) are needed to select the corresponding
entries of the two first XOR gates depending on the GF'(2™).
These LUT1s are configured to provide their outputs according
to Table I. If m < 8, the most significant bits of P;s are
pre-initialized to zero and the rest of bits will contain the
useful result. The latency of the polynomial reduction unit is
equivalent to the time needed to perform one 8-bit AND and
four 8-bit XOR.

The combined multiplier shown in Fig. 6 can be easily
integrated within the reconfigurable multiplier designed in [10]
leading to triple mode multiplier (Fig. 8) able to perform three
different multiplications: (i) conventional binary multiplication
(ii) multiplication over GF(F};) and (iii) multiplication over
GF(2™). We note that n. and n represent the complex and
Galois field wordlengths respectively.

With this multiplier and by taking into account that a
modulo 2 addition can be realized by means of XOR gates,
the arithmetical resources required to design the TMFFT are
designed.

To achieve the TMFFT scenario, further studies, considered
as future, will focus on the design of a triple mode butter-
fly, appropriate dataflow schedule and a new wiring scheme
allowing the integration of the structure of the GF'(2™)-FFT
within the DMFFT operator.

™

multiplier

Combined

mux 2

18

Fig. 8. Triple mode multiplier

IV. FPGA IMPLEMENTATION OF THE PROPOSED TRIPLE
MODE MULTIPLIER

In order to evaluate the complexity of the proposed multi-
plier circuit, we consider its implementation on FPGA (Field
Programmable Gate Arrays) devices. The complexity C of
the FPGA-based circuit is determined by the number of logic
blocks called Adaptive LUTs (i.e. ALUTs). The performance
is measured in terms of the execution time 7' expressed
in nanoseconds (ns). The advantage the common operator
approach presents is emphasized when compared to an obvious
approach called Velcro approach. This latest considers the
separately implementation of two self-contained operators:
Dual Mode Multiplier and GF'(2™) multiplier.

The comparison of the two approaches can be drawn by
evaluating an overall metric that takes into account both the
hardware complexity and the execution time. This metric,
called performance-to-cost ratio and denoted by 7, is expressed
as % % 105 [21]. The higher the metric 7, the better the
complexity-performance tradeoff is.

The choice of the target device is based on the considered
devices in [10] [11]. We have written a synthesizable VHDL
code! of the dual, Velcro and triple mode multipliers. Table
IT summarizes the complexity and performances measures for
different number of bits n that represents the multiplier size.
As shown, the integration of the GF'(2™) multiplier causes
an excess of only 6% of the total complexity. The metrics 7y
and 7¢ denotes the performance-to-cost ratio of the Velcro
and Common Operator approach respectively. The last row of
Table II indicates the performance-to-cost ratio gain which is
around 18 % in favor of the common operator approach. These
measures show a good result which enforces the effectiveness
of our adopted approach of reconfigurability and common
operators.

" All experiments described in this paper were performed on a PC (Intel(R)
Core(TM)2 Duo CPU, 2.1 GHz, 3 GB of memory) running Windows Vista.
The VHDL code was synthesized using Quartus II version 6 and implemented
on STRATIX II, EP2S15F484C3 Device with the option ”Standard Fit” as the
level of the Fitter’s effort.

TABLE II
IMPLEMENTATION RESULTS OF THE DUAL AND TRIPLE MODE
MULTIPLIERS ON STRATIX II, EP2S15F484C3 DEVICE

Multiplier “n=6 n=8 n=10
Dual Mode 103 ALUTs 194 ALUTs 289 ALUTSs
3.97 ns 4.1 ns 4.86 ns
Velero 131 ALUTs 245 ALUTs 364 ALUTs
3.97 ns 4.13 ns 4.87 ns
Triple Mode 109 ALUTs 206 ALUTs 307 ALUTs
p 3.97 ns 4.17 ns 4.9 ns
n= nv =1922 | ny = 988 ny = 564
i % 100 ne =2310| nc =1164 ne = 664
Performance-to|), , 17.8 % 177 %
-cost ratio gain

™ n: nb. of bits

V. CONCLUSION

We have presented a hardware design and efficient imple-
mentation of a triple mode multiplier able to operate over three
different fields. A parameterizable polynomial reduction unit is
proposed allowing the execution of the GF'(2™) multiplication
for various sizes of Galois field. The proposed multiplier is
implemented on FPGA devices and the obtained measures
show an excess of only 6% in terms of ALUTs compared
to the complexity of the dual mode multiplier proposed
in [10]. In terms of performance-to-cost ratio, the common
operator approach represented by the triple mode multiplier
outperforms the Velcro approach by a gain of around 18 %.
An approach to design a TMFFT operator is described which
will be further developed in near future works. The intended
TMFFT operator can be used in two different contexts: modu-
lation/demodulation OFDM and Reed Solomon encoding and
decoding over GF'(F;) and GF(2™).

REFERENCES

[1] J. Mitola, Software Radio Architecture, Wiley, 2000.

[2] F. Jondral, A. Wiesler and R. Machauer, A Software Defined Radio
Structure for 2nd and 3rd Genaration Mobile Communications Standards,
IEEE 6th Int. Symp. On Spread-Spectrum Tech. and Appli., New Jersey,
USA, Sept. 6-8. 2000.

[3] R. C. Agarwal and C. S. Burrus, Fast digital convolution using Fermat
transforms, in Southwest IEEE Conf. Rec., Houston, Tex., pp. 538-543,
Apr. 1973.

[4] J. Justesen, On the Complexity of Decoding Reed-Solomon Codes, IEEE
Trans. Inform. Therory, vol. IT-22, pp. 237-238 Mar. 1976.

[5] R. C. Agarwal and C. S. Burrus, Fast Convolution Using Fermat Number
Transforms with Applications to Digital Filtering, IEEE Trans. on Acou.
Spee. and Sig. Proces., vol. ASSP-22, no. 2, Apr. 1974.

[6] I. S. Reed, T. K. Truong and L.R. Welch, The Fast Decoding of Reed-
Solomon Codes Using Fermat Transforms, IEEE Trans. Inform. Theory,
vol. IT-24, no. 4, July 1978.

[71 M. R. Best; H. F. A. Roefs, Technical assistance channel coding
investigation (spacecraft Telemetry), [Final Report] 1981.

[8] A. Al Ghouwayel, Y. Louét and J. Palicot, A Reconfigurable Architecture
for the FFT Operator in a Software Radio Context, IEEE ISCAS’2006,
Island of Kos, Greece, May 2006.

[9] A. Al Ghouwayel, Y. Louét and J. Palicot, A Reconfigurable Butterfly
Architecture for Fourier and Fermat Transforms, 1EEE WSR’2006,
Karlsrhue, Germany, March 2006.

[10] A. Al Ghouwayel, Y. Louét and J. Palicot, Complexity Evaluation of a
Re-Configurable Butterfly with FPGA for Software Radio Systems, IEEE
PIMRC’07, Athens, Greece, September 2007.

[11] A. Al Ghouwayel and Yves Louet, FPGA implementation of a re-
configurable FFT for multi-standard systems in software radio context,
IEEE Transactions on Consumer Electronics, Vol. 55, No. 2, May 2009.

[12] Ali Al Ghouwayel, Yves Louét, Amor Nafkha and Jacques Palicot, On
the FPGA Implementation of the Fourier Transform over Finite Fields
GF(2™), IEEE ISCIT’2007, Sydney, Australia, Oct 16-19, 2007.

[13] C. S. Wallace, A Suggestion For A Fast Multiplier, IEEETransactions
on Computers, vol. EC13, pp. 14-17, Feb. 1964.

[14] L. Dadda, Some Schemes for Parallel Multipliers, Alta Frequenza, vol.
34, pp. 349-356, 1965.

[15] E. D. Mastrovito, VLSI Designs for Multiplications over Finite Fields
GF(2™), in Proc. Sixth Int. Conf. Applied Algebra, Algebraic Algo-
rithms, and Error-Correcting Codes (AAECC-6), pp. 297-309, 1988.

[16] C.S. Yeh, L. S. Reed, and T. K. Troung, Systolic Multipliers For Finite
Fields GF(2m), IEEE Transactions on Computers, vol. c-33, pp. 357-360,
Apr. 1984.

[17] L. Gao and K. K. Parhi, Custom VLSI Design of Efficient Low Latency
and Low Power Finite Field Multiplier for Reed-Solomon Codec, In
IEEE International Symposium on Circuits and Systems ISCAS’01, pp.
IV 574-577, 2001.

[18] Texas Instruments, TMS320C64x Technical Overview.

[19] W. Drescher, G. Fettweis and K. Bachmann, VLSI Architecture For Non-
Sequential Inversion Over GF (2™) Using the Euclidean Algorithm, in
Int. Conf. On Signal Processing Applications and Technology, 1997

[20] J. Garcia and M. J. Schulte, A Combined 16-bit Binary and Dual
Galois Field Multiplier, In IEEE International Symposium on Circuits
and Systems ISCAS’02, pp.63-68, 2002.

[21] William W.H. Yu and Shanzhen Xing Fixed-Point Multiplier Evaluation
and Design with FPGA, Proceedings of SPIE, vol. 3844, September 1999.

