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Synchronization Analysis of Networks of Self-
Sampled All-Digital Phase-Locked Loops

J. M. Akré, J. Juillard, D. Galayko, and E. Colifdember, |IEEE

Abstract— This paper analyses the stability of the synchrared
state in Cartesian networks of identical all-digitd phase-locked
loops (ADPLLs) for clock distribution applications. Such
networks consist in Cartesian grids of digitally-catrolled
oscillator nodes, where each node communicates onlyith its
nearest neighbors. Under certain conditions, we sho that the
whole network may synchronize both in phase and fguency. A
key aspect of this study lies in the fact that, ithe absence of an
absolute reference clock, the loop-filter in each BPLL is
operated on the irregular rising edges of the locabscillator and
consequently, does not use the same operands depagdon
whether the local clock is leading or lagging. Unde simple
assumptions, these networks of so-called “self-satep” all-digital
phase-locked-loops (SS-ADPLLs) can be described pgecewise-
linear systems, the stability of which is notoriouy difficult to
establish, The main contribution of this paper is asimple design
rule that must be met by the coefficients of eachobp-filter in
order to achieve synchronization in a Cartesian netork of
arbitrary size. Transient simulations indicate that this necessary
synchronization condition may also be sufficient fo a specific
(but important) class of SS-ADPLLs. A synthesis ofhe different
approaches that have been conducted in the study dhe
synchronization of SS-ADPLLs is also done.

|. INTRODUCTION

identical all-digital phase-locked loops (ADPLL®ach of
which may be regarded as an oscillator trying tdcmahe
phase of its neighbors. With such an oscillatothat core of
each synchronous area of a SOC, the synchronizhétween
all neighboring synchronous areas can be guarandeeidthus
the synchronization of the entire system. This apph solves
some of the problems inherent to the traditiongdrapches
(e.g. H-tree), which suffer among others from pscalability
and high skew. The reliability of this approach watblished
in 1995 by Pratt and Nguyen [1]. An implementatioas
proposed by Gutnik and Chandrakasan [2]
Nevertheless, the PLL implemented by them sufférech the
drawbacks associated with the use of analog teubrigThe
HODISS project, funded by the ANR ARFU program, siat
pursuing the work in [1] and [2] by performing aock
distribution system based on a fully digital desigpw, in
order to be easily integrated, compatible with thectional
digital blocks of the chips and to benefit from theise-
immunity of digital components.

The present work is the continuation of some pnevipapers
in which so-called “self-sampled” ADPLLs (SS-ADPLLs
were introduced [8-9]. A typical SS-ADPLL can beoken
down into three components: a digital phase det¢EXBD), a

N LARGE-SCALE synchronous systems-on-chips (SOCsMigital filter and a digitally-controlled oscillatqdDCO) (Fig.

clock distribution systems of synchronized osailtat[1-2]
are an alternative approach to classical tree-ldteck
distribution methods [3-4]. In such systems, a oekwof
synchronized oscillators deals with the distribotaf time and
frequency over a wide geographical area. The géahe
designer of the network is then to guarantee tmatime and
frequency scales of all the clocks are aligned aftinite time.
The subject of synchronization - and, more gengrdhe
subject of consensus - has received considerabdeest in
past years: good entry points are [5], mostly dmeid to
natural synchronization phenomena, and [6-7],
specifically devoted to network synchronization.

1). The DPD outputs a signal which is proportictaaihe time
difference between the rising edges of the locaticland of
the neighbor clock. Its main characteristic is that the
absence of an absolute reference clock, the loler fis
operated on the rising edges of the local timeingrglock.
Consequently, the loop filter does not use the saperands
depending on whether the local clock is leadintagging: for
example, when the local clock leads, the outpuhefDPD is
updated after the loop filter is operated (Fig. l®cause the
rising edge of the neighbor clock has not beenivedeyet. In

mondis respect, our work differs from many recent kgoon the

subject of ADPLLs, such as [10-12], which are famlisn the

The system considered here is composed of N nofles nonlinearity of the DPD and neglect the influende tioe
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sequencing of events, as opposed to [8-9,13].

In the current study, which synthesizes and extemals
previous works to Cartesian networks of arbitraize swe
investigate what filter coefficients to choose nder to ensure
stability and, hence, synchronization. It has bslemwn in [8-
9], that the study of the synchronization of oneAESPLL, or
of a network of such devices, breaks down to thdysbf the

in 2000.
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Fig. 1 - Block-diagram of a self-sampled PLL.

stability of a piecewise-linear system (PLS), pagtarized by
the coefficients of the loop filter and the numioémodes in
each line and column of the Cartesian network. &hmually
exists no analytical means of deriving necessadysafficient
conditions for the stability of such a family of 8LOn the
other hand, given an individual of this family, omay test for
its stability in different ways. In our previous W we have
explored two of these methods, neither of whichveso
completely satisfactory. The first approach is tigto transient
simulation of the PLS, which can easily be perfatnfier a
network of arbitrary size. However, it is only pi¥s to
establish stability in this manner for a giventinset of initial
conditions. The second approach is based on thetraation
of a piecewise-quadratic Lyapunov function (PQLE}-[L5].
For a given PLS, one may solve a system of lineatrim
inequalities (LMIs) to determine whether a PQLFs&xi in
which case the system is stable. However, thereseveral
problems with this approach: first of all, the ¢aiwe of a
PQLF is only a sufficient condition for the statyilof a PLS.
For example, there are several cases of stable[33-As for
which no PQLF can be constructed, as shown in [
Moreover, solving the system of LMiIs
computationally intensive as the size of the nekwocreases.
The main contribution of this paper is the derioatiof a
necessary condition for the stability of a Cartesiatwork of
SS-ADPLLs. In the case when the loop filter is scdéte Pl
filter, parameterized by two coefficients, we shitww to
determine the region of the parameter-space in twiihe
coefficients must be chosen as a prerequisite talbildy,
regardless of network size. This results in sing#sign rules,
which can easily be extended to more general diltdihis
necessary condition may or may not be sufficieepeshding
on the particular type of SS-ADPLL being used.

In section I, the general model of a single SS-ADRNd its
governing equations are presented. In particularskow how
differing implementations of the loop filter resitt different
system dynamics. Section 1l is dedicated to Cates
networks of SS-ADPLLs. It is shown that the filezrefficients
must satisfy a certain condition in order for thework to be
stable. Interestingly, this condition is indeperntdehnetwork
size. In section IV, the validity of our theoretia@sults is
illustrated with simulation results.

Il. GENERAL MODEL OFSS-ADPLLS
An SS-ADPLL is represented in Fig. 1. It is compbsé a

becomes

2

>< > > < >

Reference ‘ ‘ ‘
clock

Local \ \ \
clock

DPD
output

Fig. 2. - When the local clock leads, the outputhef DPD is updated on
a rising edge of the reference clock, after thterfis operated.

digital phase detector (DPD), a digital loop filtand a
digitally-controlled oscillator (DCO). Throughotuti$ paper, it
is assumed that the loop filter is a proportiomagral (PI)
filter. The use of a PI filter in a classical PLegign makes it
possible to synchronize both in frequency and iaseh[16].
The PI filter is driven by the rising edges of thatput of the
DCO (the local clock). The DPD is assumed to bedmand
outputs a code proportional to the value of theesponding
timing error, i.e. to the time elapsed betweensagi edge of
the reference clock and a rising edge of the lotadk. Note
that this description is valid only when the PLLd®se to
synchronization: however, this assumption is nstrigtive for

studying the stability of the synchronized stafaces we are
only interested in small perturbations of the syoaoized

state. In practice, the DPD has a saturating cleniatic,

which ensures that the PLL behaves as a bang-babhddP

from synchronization and, thus, has a wide lockange. A
detailed description of these building blocks canfund in
[17]. For the study of the single SS-ADPLL, it iggposed that
the input signal comes from a regular referencekclo

9,]31. Governing equations

Let tr[n] and ti[n] designate the time at which th&'

rising edge of the reference clock and the DCO wutp
respectively happen. We can write:

t, [n+1=t,[n]+T,, (6N
where T, is the period of the reference clock, and, knowing
that the output of the Pl filtey; [n] is updated at time, [n]:

ti[n+l]:ti[n]+Ti +oLy, [n] @)
where T, is the period of the DCO internal clock amdis a

multiplicative coefficient. Note that, in the presease, it is
the period of the DCO which is controlled, notfitsquency.
Indeed, although modeling a PLL as a frequency rotiad
oscillator is the traditional way to proceed, thealgsis
presented here is carried out completely in thes tdomain,
allowing an easy mathematical modeling of all thecks in
the real SS-ADPLL to be implemented for the HODISS
project.

Now, it is clear that ifti[n]<t,[n] (i.e. if the local clock is
leading), the timing error

&[n]=t[n]-t[n] ©)
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cannot be known at timg [n] (Fig. 2). In order to update the
value of y, [n] at every rising edge of the local clock, it isrthe
necessary to provide the PI filter with an estimate, [n] of
e, [n] whenever the local clock is leading. Throughdus t
study, it is assumed that

& [n] =6 [n _1] , (4)
which is possible sincee, [n—l] is always known at time
t; [n] Depending on the practical implementation of filier
(see Appendix A), the control quantityy, [n] is either
governed by:

y[n]=yi[n-1+C¢, [n]+ C,e, [n-1] (5-a)

or

Y, [n] =Y [n_1]+clgri [n]+CZ£[n—1], (5-b)

where g,,[n] = e,ln] if e[n]<0 (6)
" &,[n] otherwise

and C, and C, are the filter coefficients. Equation (5-a)

corresponds to the implementation shown in Fig.aA@iHter
type 1), (5-b) corresponds to the implementatioovehin Fig.
A2-b (filter type 11). Note that in an ideal PI tir, not
accounting for self-sampling, the control quantitguld be
governed by:

v[n|=y[n-1+Cie,[n]+Cpe, [n-1]. (5-¢)
From (1) and (2), we have:

eri[n+1]:eri[n]+Tr -T —gl:yi[n] (7
and one may then eliminatg from (5-a) to obtain:

eri [n +1] - 2eri [n] + eri [n _1] = _Klgri [n] -K 2eri [n _1] ! (8_a)
or from (5-b) to obtain:

€ [n +l] —2e; [n] &, [n _1] =-K.&, [n] — K&, [n _l] (8-h)

IONNUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

defined by (8-a) or (8-b) are asymptotically stafflaus, it is
of interest for the designer to determine the $tgllomain of
the PLL, defined as the region of t(iel, Kz) plane for which

(8-a) or (8-b) is stable.

(a)

i >
(b)
A

&i[n-1]
Cel 3 a
Az
&iln]
Cdl 2
Ao

Fig. 3. Transition diagrams of type | (3-a) anpetyl (3-b) SS-ADPLLs.

Cell 4

cell 1
A1

1) Type| SSADPLLs
In [8], the following sufficient stability conditits on K,

and K, were established for (8-a):

Ky +Ky >0
Ki2 = 4Ky +K,)>0
1+K, >0 '
0<K;<2

(10)

where Ky =g[C; andK; =g[CT, . Note that (8-a) (resp. _(8'b)) However, transient simulations showed that theselitions,
may be recast as two (resp. four) separate lingaat®ns based on analytical considerations, were rathesamwative.
where only g, [n+1] and its past values appear, each equatiggnother approach, based on the averaging of (§d)fo an

corresponding to a possible value of [n] and ¢, [n—l].
These autonomous equations may also be rewrittethen
classical state-space PLS form:

x[n+1=A,x[n] ©)

where x[n] = [eri [n] €, [n —1] € [n - 2]]T and A, is the state

from cell to cell are represented in Fig. 3 fortbdgpes of
filter.

The synchronization of type | and type Il SS-ADPLhas
been addressed in [8-9]. Sub-sections II-B and i@ a
summary of the main results that can be foundésetpapers.

B. Synchronization analysis for a single SS-ADPLL
A single SS-ADPLL synchronizes whes) [n] goes to zero
or, equivalently, when the piecewise-linear systdirkSs)

over-estimation of the stability domain. More pesty, a so-
called “average system” was defined by replaoiqén] in (8-

a) by:

& [n]:%(eri [n] +e,[n-1). (11)

om the position of its poles. The stability domsiobtained
with the three approaches are represented in Fig. 4

Note that the stability of a PLS with one (or mouestable
cell cannot be assessed with PQLFs, unless, bytrootien,
the PLS leaves the unstable cell(s) immediatelgr edhtering
it [9,14-15]. Hence PQLFs cannot be used to detegntihe
stability domain of type | SS-ADPLLs, because tlogiaion
governing the system in cell 2 (Fig. 3-a), corregfing to
€, [n]>0, is unstable and there is no guarantee that

system will bounce back into cell 1 immediatelyeaféntering

. . . The resulting system is linear and its stabilitpy ¢& assessed
matrix of thek™ cell of state-space. The transition d|agram§r g 5y 7

the
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cell 2. General results concerning the use of PQBFs C.Synchronization analysisfor an autonomous network of two
summed up in Appendix B. SS-ADPLLs

(@) Although the results concerning the synchronizatimhn
single type | or type Il SS-ADPLLs with an outsideference
clock are rather inconclusive, we showed in [8484ttsmall
autonomous networks of two identical SS-ADPLLs @amech
simpler to study. For example, suppose the referetmck is
replaced by another SS-ADPLL of the same type {(gog 1),
as shown in Fig. 5. One of the PLLs is then gowime (8-a),
whereas the other is governed by:

€ [n +1] -2, [n] +€, [n _1] =-K.&; [n] -K,e, [n _l] ) (12)
where the same conventions as above are used.tNewiéar

Stability domain of a SS-PLL (filter type I)

that:
eri [n] = _eir [n] ! (13)
and also, from (6), that:

(b) i [n] - & [n] =& [n] tTE; [n _1] ' (14)

Thus, subtracting (12) from (8-a) yields a singlaeéar
equation governing, :

e.lne-28 [ e ln-} =~ e [k, + e -1

(15)
It is then very simple to determine the roots ok th
characteristic polynomial of (15) and establish teaditions
under which this small network synchronizes.

We show in section Il that, in some way, this rekable
linearization property can be extended to Cartesetmworks
of arbitrary size.

Fig. 4. Stability domain of a single type | (4-a)tgpe Il (4-b) SS-ADPLL.

The dark grey areas are obtained by transient aiionk and the light gray ~ Ill.  SYNCHRONIZATION OF CARTESIAN NETWORKS OFSS-
areas are derived by calculating the poles of fleeage systems. In (4-a), the ADPLLS OFARBITRARY SIZE

black area is the one defined by (10) whereas-in) (4 is calculated through

PQLFs. The dashed lines are the limits of the Btplomain of an ideal 1) Framework

ADPLL governed by (5-c). An autonomous Cartesian network of SS-ADPLLs cdsisis
in a rectangular (two-dimensional) grid of self-gd@d nodes,
2) Typell SSADPLLs each node being connected to at most 4 neighbotgpidal

The study of the stability of a single type Il SBRLL is  network and node are represented in Fig. 6. Theuowf the

more involved than that of a type | SS-ADPLL: werdeen pppD of thek" node on the" rising edge of the local clock
unable to derive analytical bounds for the filte@efficients. tk[n] is equal to:

However, PQLFs can be used to derive sufficienbilia
conditions for type Il SS-ADPLLs: although the etjoias of

cell 2 and cell 4 can be shown to be unstable,stfsem e fn = |V Z£|k[n] (16)
leaves these two cells immediately after enterfiregnt with “
The stability domains of type || SS-ADPLLs deteretinby
PQLFs (as explained in Appendix C), by transientutation [ = e[ if e, [n]<0 (17)
and by averaging are represented in Fig. 4-b. Omoe, we li elk[n—]_] otherwise
find that the sufficient stability conditions estiabed through
[n]=t,[n]-t,[n] =&, [n] (18)

PQLFs are rather conservative, whereas the av«yaglﬁ'k _ o _
approach leads to over-estimate the stability donwdithe where V, is the set of the indices of the nodes in a

system. neighborhood of th&" node and)V,| is the cardinal oV,

ie. |Vk| is equal to 2 for corner nodes, 3 for edge nodesda

otherwise. From (17) and (18), the following fundanal
equality can be derived:
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v 3
DPDy, | PIFiter | Y1 [ pog [t t [ pco 2| P!Filter
¥ (K1, K2) | (K1, K2)

Fig. 5. An autonomous network of two SS-ADPLLs
1 2 3
' ’ PI i’lt te
ilter :
+—»{ DCO > !
4 5 6 (K1, K2) :
3 4
7 8 9 i

Fig. 6. Two Cartesian networks of 4 or 9 SS-ADPLAseach node, the total error is defined as teamvalue of the outputs of the DPDs.

For a network ofl lines andJ columns, a node numbed¢
Elk[n]_gkl [n]:elk[n]+elk[n_1]' (19) being given, we can unambiguously define the limdex I,

Let us also define[n] a vector whos&” coordinate is¢, [n] ~ @nd the column indey, so that

and n], a vector whosk™ coordinate is k=(i, ~0J + ], (24)

1 wherei, O{,...,1¢, j. 0,...,d; .
€ [n] v Zelk[n]' (20) K {:L } Ji {1' }
i 1% Let us define a vectov of size |J, such that:
Each SS-ADPLL usest, [n] (16) to update the local filter o
output at timet, [n], as in section Il. One may then assembl& = (_ 1)k * |Vk| (25)
the equations governing the whole network and fiadtype |  For example, for the 3-by-3 network of Fig. 6, vevéx
SS-ADPLLs:
vi=[2 -3 2 -3 4 -3 2 -3 2. (26)
en+1] - 2¢n]+ efn -1 = -L (K £[n] + K ,efn - 1]), (21-2) Finally, we introduce the “master equation” of thetwork
and, for type Il SS-ADPLLs: governing the quantity:
dn+d-2dr] vdn-1=L(Kell+Koe-1) @10 E[o]= vieln]. o),
where L is the normalized Laplacian matrix of the networkgg:
defined as: o ) )
Definition 1 - The master equation of the network is the scalar
1 if k=1 equation obtained by projecting the governing equations of
L, = _1 if 10V, . (22) the network ((21-a), (21-b) and more generally (23)) on
Vil v (25).
0 otherwise

_ _ _ _ ~ This master equation is a restriction of the oa$iRLS to a
More generally, given an arbitrary loop filter witine pole in  one-dimensional subspace, to which it stays codfifiethe
zero (in order to ensure phase synchronizationyjllitalways jnitial state vectore[O] is collinear tov . Hence, it is clearly

be possible to write the equations governing tite/ork in the necessary that the master equation be stabledoxtitiole PLS

form: to be stable.

eln+1]-2¢n]+ eln-1] = Now, we shall prove that, for a network of SS-ADRL the
P Q (23) master equation is in fatinear. It is then straightforward to

L(F,ZOKPS[n_ p]+ququ[n—ciJ find a necessary condition for the stability of thole

network, by computing the roots of its characterist
polynomial. We shall then demonstrate the followtiingorem:

Theorem 1 - The master equation of an autonomous
Cartesian network of identical SSADPLLs is linear. A
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necessary condition for the stability and the synchronization
of the network is then that the roots of the characteristic
polynomial of the master equation are within the unit circle.

2) Proof of Theorem 1
The proof is organized as follows. First, we prabe
following property:

Property 1 - V' is the left eigenvector of the normalized
Laplacian matrix associated to the eigenvalue A1 =2.

Then, we establish:

Property 2 - In an autonomous Cartesian network of identical
SS-ADPLLs verifying (19), the following equality holds:

st[n]=%(E[n]+E[n—]]).

If Properties 1 and 2 hold, the projection of (31{21-b) or,

eigenvector associated to the largest eigenvaluethef
normalized Laplacian.

b) Proof of Property 2

The second step of the proof is straightforwardt, tasher
tedious. First, we shall show that:

S= ﬁ: (=)t Z‘Elk [n] + gkl[r] =0.

1DV
Let L, (resp.C,) be the set of the indices of the nodes in the

neighborhood and on the same line (resp. columnpdsk .
It is clear that:

(32)

more generally, (23) orv then results in a linear equation S:Z(_l)ika 25|k[n] +£kl[r]

governing E[n], from which a necessary stability condition

can be inferred, as explained in sub-section Ithlis proving
Theorem 1.

a) Proof of Propertyl
Letu’ =v'L . We have:
1J . .
u = kzvk Lkl = kz (_ 1)Ik 3 |Vk||-k| .
=1 =1

From (22), the only non-vanishing terms under the sign
correspond to the valuek =1 or k/I [V, . Now we note

1J

(28)

that, in a Cartesian network, IfJV,, we are in one of the
following to cases:

=i %l

or

I =ic£L

Hence we find that, if OV, :
(_1)i|+J| =_(_ 1)ik+Jk .
Thus (28) becomes:

1J

b =EY - S

k=1

(29)

(30)

Now the last term on the right-hand side is thelicad of V. ,
so that we have:

u =2(-1)""V|=2y,. (31)
This completes the first step of the proof. It igable that the
eigenvalues of the normalized Laplacian matrix faatesian
network are necessarily inferior to 2 [18]. Thus, is the

vV, =L, UC,. (33)
Thus, S may be rewritten:
1J
k=1 101
5 » . (34)
ONCIRED I KV
k=1 10CK

Letting S, (resp. S.) be the sum over the lines (resp.

columns), i.e. the first (resp. second) sum on rthbt-hand
side of (34), we have:

S =3 (0" Y e [+ £l

:ZZ(_l)i+j Z£|,(i—1)J+j[n]+‘9(i—1)J+j,| [n]

|I:1 j=1 J 10L(i-1)a+j (35)
= _ (_1)i Z Z (_1)j (‘9| (i-1)3+j [n] + g(i—l)J+j,I [n])

i=1 JELI0OL(-1)0+
=Y (-)'e,

i=1
NOW, one may expand)i .

O,

(e

i-93+2(i —1)J+1[n] T E(Yraafi-gae2 [n])}l =1

(
+ (5(i -3+2(; —1)J+1[n] * E(-9a+ai —1)J+2[n]) =2
+ (f (i-90+3(1-1)3+2 [”] * Ei-9a+2( —1)J+3[n])
(‘E i-03+3(i-1)3+2 [n] + 5(i -03+2(i-1)3+3 [n]) 3

( -
(5 (i-)3+4(i-13+3 [n] FE(-Yrs3(i-0a+a [”])}J

N (_ 1)J_l (‘9(i 4)3+3-2,i-1)3 +J—1[n] T E( )y v 1i-2)1+1-2 [n])}j —3-1
J

+

+ (_ 1)J_1 (E(i -1)3+3(i-1)3 +J—1[n] + E(i4)3+3-1(i-1)3+3 [n])

+ (_ 1)J (g(i—l)Jﬂ,(i -1)3 +J—1[n] + Eli4)1+3-1(-1)3+3 [n])}J =
(36)
and find that every line of (36) is cancelled ouwt the
following one. Hence,®, =0 and S =0. Similarly, one

may show thatS. =0, which proves (32).
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Now, we may complete the rest of the proof by wgti

vien] :k'i(—l)ik”‘k VeIl

" 37)
=2 (D Y, In]
Using (32), we may rewrite (37) as:
VTa[n] :%Z (_1)ik+jk 25|k[n] - ‘Ekl[r] ; (38)
which simplifies, using (19) ,into:

T 13 i+ ik
vieln| =2 (" Yefn] +e[n -]

1Y et 1
:E;(_l)k k|vk|(m|§QK[n]+elk[n_]])' (39)

=~ (€l +Eln-1)

This completes the second part of the proof.

3) Discussion
Before illustrating these results, we stress tlet fhat the

master equations obtained by projection of the askw
equations onv are independent of the number of lines and

columns in the network. They only depend on thedfier
function of the loop filter and its practical impientation.

vi=s[-2 2 -2 4 -2 2 -2

1 2
¢
3 4 5
6 7

Fig. 7. An incomplete Cartesian network of 7 SS-AD®with the
corresponding vector'.

Furthermore, it is quite simple to extend Theorentol
incomplete Cartesian networks, i.e. Cartesian nétvwaith
one or more nodes missing (Fig. 7) and thus tobbskathe
following corollary:

Corollary 1 - Theorem 1 holds for any incomplete
autonomous Cartesian network of identical SSSADPLLSs.

Properties 1 and 2 are unchanged by the incomgss$enf the
network, the only difference being in the proofRybperty 2,
where one must pay attention to the presence dé¢$hin O, .

Finally, suppose we have chosen to predict thentinairror
in a more elaborate way, according to:

eln] if g [n]<0

ulnl= iai e [n-i] otherwise (40)
i=1
Fundamental equality (19) then becomes:
|
Elk[n]_‘gkl[ri:elk[d +i§aieu[n_] ; (41)

It is then possible to derive a master equationguiBiroperty
1 and the following property:

Property 3 - In an autonomous Cartesian network of
identical SSADPLLs verifying (41), the following equality
holds:

vTe[n| :%(E[n]+§ai E[n—i]j.

The proof of Property 3 is almost the same asah&roperty
2, except it is (41) (as opposed to (19)) whicijscted into
(38), the previous part of the proof being indeparaf which
fundamental equality is verified.

IV. ILLUSTRATIONS AND RESULTS

A. Master equations of typel and type Il SSADPLLs

Let us, as an illustration, derive the master d@quoatof type
and type Il SS-ADPLLs. The projection of (21-aj) v leads

|
to:
E[n+1] - 2E[n] + E[n -1 =-K v"Le[n] - K,v"Le[n-1] . (42)
Using Property 1, (42) becomes:

E[n+1]-2E[n|+ E[n-1 =-2K,v"e[n]- 2K ,E[n-1].  (43)

Using Property 2, the master equation of type IABBRLLS
can then be derived from (43):

E[n+1]-2E[n]+ E[n-1] =

~ Kl (K, + 2K, )1 e
Similarly, for type Il SS-ADPLLs, we obtain:
E[n+1]-2E[n]+ E[n-1] = (44-b)

- KlE[n] _(Kl + Kz)E[n _]1 - KzE[n _d

Incidentally, it is always possible to find a netwaf ideal
ADPLLs, i.e. which are not self-sampled, with thame
topology as the original one, whose master equaothe
same as that of the self-sampled network. For elgni4-a)
and (44-b) are also the master equations (i.epriections on
V) of the networks governed by:

efn+1]-2¢[n]+¢n-1] =
{3t

and

(45-a)
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eln+1]-2efn] +¢ln-1] =
K K, +K K . 45-b
L Sl e g+ B d-g [
2 2 2
It is also interesting to notice that the resultidgal networks
are in fact the “average networks”, as defineduio-section II-
B-1, which can be obtained from (21-a) or (21-b)épglacing
in these equations[n] by:

ol =2l +dn-1).

Whether some properties of the original self-sachpletwork
can be derived from those of the associated “aeenagwork”
remains to be demonstrated.

(46)

(&)
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Fig. 8. Stability domain (grey area) of the mastguation of networks of type
| (8-a) or type Il (8-b) SS-ADPLLs, determined kipding the roots of the
characteristic polynomials of (44-a) and (44-b).

B. General master equation

More generally, assuming the general form (23) tméhg
error prediction (40), the master equation is fotmde:

E[n+1]-2E[n|+E[n-1] =

S K, Eln-pl+25 K EHn-q + ¥ ¥ ak,gn-p-] = 47
p=0 q=0 p=0i=1

As in IV-A, the corresponding “average network” tbibe
obtained by substituting in (2&1n] by:

E[n]:%(e[n]+izl_‘iaie[n—i]j. (48)

C. Sability domains of autonomous networks of type | and
typell SSADPLLs

The stability domains derived from the charactarist
polynomials of (44-a) and (44-b) are representdeign 8. It is
remarkable that the stability domains derived frahe
transient simulation of (21-b) or from solving th&lls of
Appendix B yield exactly the same results, regasllef the
network size. This suggests that the stability £4-6) is a
necessanand sufficient condition for the synchronization of
autonomous Cartesian networks of type II SS-ADPLLs.
Furthermore, it is simple to verify that the averagetwork
(45-b) also has the same stability domain.

On the other hand, the results obtained with typ®&SkH
ADPLLs from simulation depend on the size of théwwmek:
for small networks of 2 or 4 SS-ADPLLs, the stdbillomain
given by simulation or PQLFs does indeed coincidt whe
one derived from (44-a). However, as the networke si
increases, the actual stability domain becomes lem#ian
predicted with the master equation (Fig. 9). Thetidacode
used for the transient simulation of the differeetworks is
given in Appendix D. If the norm of E_N_MINUS_1 ssall
after a sufficient number of edges (depending ersthe of the
network and the values oK; and K,), the network is

assumed to be stable.

D.Transient behaviour of networks of type | and type Il SS-
ADPLLs

Transient simulations of networks of 4 SS-ADPLLs (a
depicted in Fig. 6) are now performed. First, awoek
composed of type | SS-ADPLLs is simulated. The ficiehts
of the PI filter are chosen ak, =16 and K, =-14, in

order to enforce a strong correction while remajngtable.
The total error of each node, calculated from (Rlisa
represented in Fig. 10, along with that of the fage

network” (45-a), launched from the same initial ditions.

The results show that, although the two networksmsdo

synchronize in the same amount of time, their fears
behaviour is quite dissimilar. AX; and K, decrease, the
responses of both networks become more alike (beir t
settling time increases).

On the other hand, the response of a network & ty®S-
ADPLLs (21-b) is very similar to that of the corpesding
“average network” (45-b), even for large values Kf and
K,. A typical response is plotted in Fig. 11, f&r = 08 and

K, =-07.
These observations and those of sub-section IVa@ s to

the conclusion that the average network is a gasiskfor the
design of networks of type Il SS-ADPLLs. Its belmui is
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Stability domain of a netwaork of 9 PLLs (fiter type )

Stability domain of a network of 16 PLLs (fter type 1)

Stability domain of a netwark of 256 PLLs (iter type 1)
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Fig. 9 - Stability domains of complete Cartesiatwoeks of (from left to right) of 9, 16 or 256 typ&S-ADPLLs. All networks have the same numbéirads
and columns. The dashed lines represent the lohitse stability domain derived from the masteraépn (44-a).

very close to that of the self-sampled network @atability

domain, similar transient behaviour) and it has treat

advantage of being linear. Thus, all the classioals from

linear analysis (stability margins, for exampleh ¢z used as
a first step in the design, and their results testBerwards
with transient simulations of the actual SS-ADPldtworks.

el

x10°

V.CONCLUSION

The study of the stability of a clock distributioretwork
based on SS-ADPLLs was described in this papershidaved
that (networks of) SS-ADPLLs can be modeled asqigse-
linear systems. Three approaches were tested ier cal
determine their stability (or synchronization) dansa The
most rigorous approach, based on PQLFs, is quisdycn
computing effort and requires a huge amount of keeging,
even for networks of moderate size. Moreover, iinta be
applied as is to all sorts of SS-ADPLLs and yielsly
sufficient stability conditions. The most straigitfard
approach, based on transient simulation of the orétwyields
some results which may be dependent on the imitintlitions
of the system. The third approach, which is the nmai
contribution of this paper, may seem quite limitédelies on
5 a particular network topology (Cartesian), is valfdr
4 autonomous networks only and it yields necessamgt (n
3 sufficient) stability conditions. However, it dogsovide us
2
1

Fig. 10 - Total errors in a network of 4 type | 8BPLLs (black bold lines)
compared with the total errors of the correspondiverage system (colored
dashed lines).

-3 e, [n] 3 eq[n]

with a very simple tool (the so-called master eiumt to
determine, as a starting point, the limits of tendin in which
the filter coefficients must be chosen to ensurabibty.
Furthermore, our study indicates that the properti®t only
stability, but also settling time) of Cartesianweitks of type-

I SS-ADPLLs can safely be derived from those o€ th
corresponding average network. A rigorous demotistraf

2 this property remains yet to be established.

4 The study of non-autonomous networks of SS-ADPLhg a
of the influence of the nonlinearity of the chagaidtic of the
DPD is the subject of ongoing work.

10 20 30 40 ) 10 20 30 40

Fig. 11. Total errors in a network of 4 type Il 88PLLs (black bold lines) ACKNOWLEDGMENT
compared with the total errors of the correspondingrage system (colored Thjs work is supported by the French National Agent
dashed lines). Research (ANR) through the HODISS project.
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(1]

(2]

(3]

(4]

(5]
(6]
(7]
(8]

9]

[10]

DPD
Reference Measure '
(lil(())((::;(tr) i e oo | Absolute error . \ 4
Eakal B PI Filter
clock (t) fa | 4 oeo
' Son sH [ 9 ]

Fig. Al. Detailed block-diagram of an SS-ADPLL.

£t

Y

Yi

Fig. A2 - Implementation of type | (a) and typ€H) Pl filters.
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APPENDIXA - IMPLEMENTATION OF TYPEI AND TYPEIIl SS-
ADPLLs

A detailed schematic of an SS-ADPLL is shown in. FAg.
The DPD consists in an edge detector and in a tirbgital
converter (TDC). The edge detector delivers twoakjin
signals: Measure (equal to 0 when a measure is being
performed, to 1 otherwise) aisign (equal to 1 when the local
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clock is leading, to O otherwise). The outpabgolute error)
of the TDC is then multiplied byEgn to obtain theError
signal, which is updated whéweasure goes to 1.

Type | and type Il filters can then be implemendsdshown
in Fig. A2. Note that, in order to implement typélters in a
network of PLLs, the K, branch must be reproduced
number of times equal to the number of neighbouriades,
which makes this solution less attractive. One khalso note
that in both cases the value of the outgutchanges only on
the rising edges of the local clock. If this werat 0 (for
example, if all clocked blocks were operated onesdgf the

11

are satisfied, whereM, is a matrix such thak'M x>0,
Ox 0§, which can be constructed as follows. Since this ce
S, are polyhedral, it is easy to build for each @rtha matrix
E, such thatE;x has non-negative entrigsx 0§ . Then, for

a@ny positive matrixu; (i.e. any matrix with non-negative
entries):

X'ETUEx=0, OxOS§ (B-5)

and M, can then be chosen &, =EU,E,. The main result
in Feng's work [14] applied to discrete-time PLSs i

Measure signal), (2) would no longer hold. The behavioéir osummarized in the following theorem.

the filter would be simplified, but that of the DCG@ould be
much more complex.

APPENDIXB - PIECEWISEQUADRATIC STABILITY OF PLSs

A classical approach to the determination of tladitity of
nonlinear systems is via Lyapunov functions. A Lyapv
function is a positive function of the states afystem whose
value decreases along all the possible trajectoofeghe
system. The existence of a Lyapunov function isufficient
condition for proving the stability of an autononsosystem.
Except in the most trivial cases, there exists ewegic method
to construct or check for the existence of sucturction.
However, in the particular case of PLSs, the problef
finding a Lyapunov function can be broken down is&veral
sub-problems.

A discrete-time PLS can be represented for itsyaisby:

x[n+1]=Aix[n], xOs (B-1)
where xOR" is the state of the systenfS} , OR" is a

partition of the state-space in a number of clogelyhedral
subspaces| is the set of the indices of the subspacesAand

the matrix of thei™ local model of the system. Let us also

define Q the set representing all the possible transitfoms

one region to another, i.e.:

Q={i,j/x[nos.xn+]0s,, | #i} (B-2)
In some cases, it is possible to prove the stghufiPLSs by

finding a common quadratic Lyapunov function (CQLE¢. a

function V(x) =x"Px, P=P" >0, such that

A'PA -P<0, TiOl (B-3)

Determining the existence of a CQLF can be done
solving the set (B-3) of linear matrix inequaliti€¢sMIs),
which can be achieved with software such as Matlab.

However, many PLSs are stable, even though no CQLF

exists. It may then be possible to prove stabilly
constructing piecewise-quadratic Lyapunov functifi$-15],

Vi(x) =x"Px, i0l, so that the following relaxed stability A=

conditions:

ATPA, -P +M, <0, i 01 (B-4)

Theorem (Feng)

Consider the discrete-time PLS (B-1). If there £sgme
symmetric matricesP,, U;, W,and Q;, i,jO1 such that

U, W, and Q; are positive and the following LMIs are
respected:

0<P-E/UE, ,iOl, (B-6-a)
APA -P+E/WE <0,i0l, (B-6-b)
AiTPin -R +EiTQijEi <0, {i’ J} 0Q. (B-6-c)

then the origin of the PLS is asymptotically staldtoreover,
the function:

V(X)=x"Px, xO§ (B-7)
is a Lyapunov function for the system. Qualitatyyé¢B-6-a)
enforces the positiveness »f P,x for x 0§ . Equation (B-6-

b) guarantees that some energy is lost while thesyresides
in S, . Finally, (B-6-c) ensures that some energy is kdsbas

the system moves from one cell to the other.

APPENDIXC - APPLICATION OFPQLFTO TYPEIl SS-ADPLLS

A single type Il SS-ADPLL is governed by (8-b), whican
be rewritten in state-space form as (9), with:

[2-K, -1-K, O]
A =| 1 o of, (C-1-a)
|0 1 0
2 -1-K,-K, 0]
A,=|1 0 0|, (C-1-b)
by LO 1 0
2 -(1+K) -K,
A;=1 0 0 ) (C-1-¢)
o 1 0 |
2-K, -1 -K,
1 0 0 (C-1-d)
0 1 0

For a given couple(Kl, Kz), one may try to solve the LMIs
(B-6) and thus establish the stability of the systesSome
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proper care must be taken to remove unfeasible LMts
example, A,
larger than 1. Thus, it is impossible to satisfy-G8) for
i =2. However, by construction, the system cannot eegid
S, for more than one time step. Thus, the corresmondMl

does not have to be satisfied. The same goesSforThe

remaining matrix inequalities can easily be solveith
Matlab.

One of the main difficulties in using this approaekides in
the bookkeeping effort that must be made to rulé ou
unfeasible LMIs from the original set. As shown abothis is
fairly simple in the case of a single SS-ADPLL. brfinately,
the number of cells in the state-space increaspsnextially
with the size of the network, making it exceedinglrd to
keep track of all possibilities, even for modenaggwork sizes.

APPENDIXD - MATLAB CODE FOR TRANSIENT SIMULATION

Define :
* N_EDGES, maximum number of rising edges (i.e.
maximal simulation duration)
* N_NODES, number of nodes in the network
* LAP, normalized Laplaciath. of the network
+ Kl and K2, the tested values Bf, and K,

» PERIODS, column vector containing the values of
the nominal periods of the DCOs
 T_START, column vector containing the moment of
the first rising edge of each DCO
* TYPE, type of PLL, may be 'I'or 'Il' in the followig
code
Execute :
% Define network adjacency matrix ADJ
ADJ=eye(N_NODES)-LAP ;
%Initialize network
T_N_MINUS_1=T_ START;
% Define DCO inputs at edge N
Y=zeros(N_NODES,1);
EPSILON_N=zeros(N_NODES,1);
% Define total error of each node at edge N-1
E_N_MINUS_1=zeros(N_NODES,1);
T_N=T_N_MINUS_1+TO;
T_OLD=T_N_MINUS_1(:,ones(1,N_NODEYS));
% Define error between all the nodes at edge N-1
ERRORS_OLD=T_OLD'-T_OLD;
DT=zeros(1,N_NODES);
N=1;
%Loop over edges
while N<N_EDGES,
T_NEW=T_N (:,ones(1,N_NODEYS));
% Define error between all the nodes at edge N
ERRORS_NEW=T_NEW'-T_NEW;
%Define M so that M(i,j)=1 if node i is leading
%with respect to node j
M=ERRORS_NEW>0;
if stremp(TYPE,'II)
E_N_MINUS_1=EPSILON_N;

always has an eigenvalue whose modulus is

end

else
E_N_MINUS_1=sum(A.*ERRORS_OLD,2);

end

EPSILON_N=sum(A.*(M.*ERRORS_OLD+(1-

M).*ERRORS_NEW),?2);

% Update DCO input

Y=Y+K1*EPSILON_N+K2*E_N_MINUS 1;

DT=TO+Y;

T_N=T_N+DT;

ERRORS_OLD=ERRORS_NEW;

N=N+1;
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