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Abstract—A model to simulate SMPS (Scanning Mobility
Particle Sizer) measurement and the associated uncertainty
analysis when axial DMA (Differential Mobility Analyser)
classifier operates under scanning mode conditions is de-
scribed. Starting from simulated SMPS raw data, a fast
estimation of aerosol size distribution measurement using
regularization technique is performed. Then, global sensi-
tivity analysis is used to discriminate significant parameters
of the system and, as a preliminary result, a 95% confidence
region is obtained by Monte Carlo simulations on an atmo-
spheric aerosol size distribution.

Index Terms—Aerosol Size distribution measurement,
Electrical classification, uncertainty analysis, Data inversion

I. INTRODUCTION

MONG devices using electrical mobility methods to

measure aerosol particle size distribution, the SMPS
(Scanning Mobility Particle Sizer) is the most widely used
to characterize particles smaller than 0.1pm. Since it can
be applied in fields like: indoors air quality measurement,
vehicle exhaust pipes, atmospheric studies, toxicology test-
ing, etc., it has become of interest to assess the uncertainty
associated with its outputs. So far, although some works
have been carried on the adequacy of particle size mea-
surements made by this device, such a dimensional fea-
ture uncertainty cannot be provided. First, a full SMPS
model is presented when DMA operates under scanning
mode. Then, an alternative to common data inversion
performed in aerosol science that allies fast reconstruction
of the aerosol size distribution and accuracy is described.
Fast reconstruction of the solution is a requirement here
due to the fact that when dealing with uncertainty prop-
agation in a numerical code, a large number of calls is
necessary. Last section pays a particular attention to un-
certainty analysis and Monte-Carlo simulations lead to a
95% confidence region on an atmospheric aerosol size dis-
tribution. Figure 1 illustrates how to perform one simula-
tion of the numerical code: starting from a known aerosol
size distribution n(dp), dp € [dmin,dmaz| being the interval
of scanned diameters, the code returns an estimate 7(dp).

II. SCANNING MODE THEORY

SMPS is composed of a Differential Mobility Analyser
(DMA) and a Condensation Particle Counter (CPC). First
one selects particles mobility diameters while the other is
an optical counter used for the detection phase. First,
aerosol passes through an inertial impactor to avoid largest
particles to enter the DMA column, then the aerosol enters
the charge neutraliser to be conditioned. Indeed, aerosol
particles are usually charged. TSI neutraliser is used here
to create a bipolar charge distribution by exposing aerosol
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Fig. 1. Scheme of the simulation principle

to a radioactive Krypton source, so, particles that carry
several charges lose their charge excess. Once aerosol is
well conditioned particles are selected using electrical clas-
sification inside DMA column: an electric field is created,
and the airborne particles drift in the DMA according to
their electrical mobility.

Fig. 2. Schematic diagram of a cylindrical DMA column

Flow rates system inside the DMA column and also ge-
ometrical parameters are described in the figure 2. Lpasa,
r1 and ro represent the length of the column, radii of the
inner and outer electrodes, respectively. Qg is the clean
sheath air flow, @), being the aerosol flow, ()¢, the mono
disperse flow that goes to the aerosol detector and finally
Qeze the excess flow.

Once selected, particles reach the CPC to be counted.
Scanning mode is based on Wang and Flagan research [1]:
voltage at the center rod of the DMA is ramped exponen-
tially to ensure particles trajectories to remain unchanged
during the all scanning time. Let ¢, the scanning time,
Vinin and V4. respectively the minimum and maximum



value of the voltage defined by the user, Collins and al. [2]
give the following expression for the tension:

V(t) = Vininexp(t/7) ,with 7 =ts/In (Vinin/Vinaz) -

CPC detects particles carried by flow rate Qp. during time
A;. Usually, CPC results are expressed in terms of con-
centration. Choice is made here to work with CPC raw
data. Let d, be the particle mobility diameter, Zy the
corresponding electrical mobility, p the number of charges
carried by each particle, A¢(V') a function of the geometry
and the supplied voltage of the DMA and n(d,) the aerosol
size distribution, then basic equation for electrical mobility
measurement leads to the CPC raw data response:

80 = [ k(b Zatody). A0V i, 1)

where r(t + A¢) is the number of particles counted by the
CPC at time t + A, for particles selected in the DMA col-
umn set at voltage V(¢) that is the tension of selection
defined as the mean tension for a passage inside the col-
umn of the classifier:
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NB: Particles counted by the CPC at time ¢t + A; have entered the
DMA at time t —ty —ty and have left it at time ¢t —t4. So, valid
counts start from ¢ >tg+ty and end at t > ts + 4.

Indeed, particles reach the CPC only after transport
through the DMA and transport through the tubing which
connects the CPC with the mono disperse outlet port of
the DMA. Transport times are respectively called ¢y and
tq. First is assumed to be equal to the mean residence time
of the aerosol inside the DMA column and second depends
on the internal CPC delay time and flow rates system (de-
fault value is for 10 inches connection to CPC in our case),
SO

m(r3 —r{)Lpma
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DMA and CPC are respectively characterized by the trans-
fer function 2 and size detection efficiency ncpc when
charge conditioner is modelled with function ¥. For a
given time ¢, the kernel function k is given by the following
expression:

ty =

 (dy, Zap.dy), A6V

= QY Wy nerc(dy) (Zalpdy), AV

Charge conditioning model is extracted from both Wieden-
sohler [3] and Gunn [4] while ncpe is obtained by fitting
experimental data made by Quant [5] by using cubic inter-
polation.

Next, modelling DMA transfer function requires the
electrical mobility to be known for each mobility diameter
dp. Let e the charge of the electron, p4 the dynamic gas

viscosity, C. the slip correction factor, electrical mobility
is then linked to a specific mobility diameter d, via:

Za(p, dp) = (peCe(dp))/ (3mpgdy),

where C, is defined as

Ce(dp) = 1+ Kp(dp) [+ Bexp(—v/Kyn(dyp))],
Kn(dp) = (2)‘m)/dpv

(2)

where K, is the Knudsen number and J,,, is the mean free
path of a particle. Triplet (a,f3,7) is taken from experi-
ments made by Kim and al. [6].

An other expression of the electrical mobility, denoted

by Z, is:
(3)

v, being the drift velocity and F the electric field strength.
Starting from equation (3), solving electromagnetic wave
equation while assuming: quasi stationary system, unifor-
mity of the velocity profiles inside the DMA column, and
laminar flow regime instantaneously reached, one can get
the electrical mobility Z, for a set voltage V' at the center
rod voltage of the DMA:

_ Q@
A A(V)

Zy, =1,/E,
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From both expressions (2) and (4), knowing the voltage at
which the particle has been selected, one can get its corre-
sponding mobility diameter. Neglecting diffusional effects
inside the column of the classifier, Whitby [7] showed the
following expression for the DMA transfer function:

Z,(V) ,with Ag(V)

(4)

Q(Za A0V (1))

= Qi max (0, [min(Q,, Qepes [(Qa + QC;DC)/2 —[2m

ZaAp(V (1) + (Qsh + Qezc) /2])])-

Until there, a deterministic model that takes into account
the physical considerations of the system has been built.
The physic is here represented through analytical func-
tions, so the need of having a code that runs quickly is
fulfilled.

III. DATA INVERSION

Reconstruction of an unknown aerosol size distribution is
a general mathematical problem: starting from CPC mea-
surements, problem consists in the estimation of original
concentration n. Through years several techniques have
been found to reach this purpose [8], [9], [10], etc.. Nev-
ertheless, industrial approaches have to fulfill other con-
straints such as a fast reconstruction of the signal. Main
problem here is to reach enough accuracy in a short time.

A. Common approach

Since Spectrometers operate at high resolution, at each
time of the scanning process, the support of 2 is narrow
and it is common to consider that only a particle of diam-
eter d;(t) is extracted from the classifier. When assuming
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that particles only carry one charge, this diameter is com-
puted by solving the following equation:

Za(p=1,d5(t)) = Z,(V (1)),

and if 7 denotes the estimate of the aerosol size distribu-
tion, its expression takes the following form:

r(t+ Ay) (0Z4(1,d,)/0d,)

(3 (1) = BIEE
QaA¢¥(1,dx(t))ncpc(dy(t) [52 Qdz,
where
+ _ I/ (+\ I/ Qa + Qcpc
7F = 2,(V(D) + AZ,(V{D)) = (1 e Qm) Z2(VD).

Multiple charge correction is used afterwards to estimate
aerosol size distribution. Indeed, since electrical mobility
function described in (2) is not bijective: El(pl,d;)) such
that Zd(p/,d;)) = Z4(p,dp), large particles carrying mul-
tiple charges have the same mobility as smaller particles
carrying less charges. n(d,) is to describe aerosol particles
carrying only one charge, so is the necessity of the correc-
tion.

B. Alternative approach

Estimation of the aerosol size distribution can be per-
formed regardless of the DMA resolution being used and
without assumptions concerning the number of charges
carried by each particle. The method proposed here is
based on the discretization of the mobility diameter space.
It is somehow comparable to what has been developed by
Alofs and Hagen [9] when the DMA operates under step-
ping mode.

First step is to discretize the mobility diameter space
using log scale. Let (dp,;),;_, ; the points of reconstruc-
tion of the solution, because the particles diameters typi-
cally range over several orders of magnitude, a convenient
choice for integrating (1) is the variable transformation
f(dp) =In(d,). Second step is to foresee the behaviour of
the size distribution over a narrow diameter range. Linear
interpolation is chosen here because changes in the solution
are slow. Moreover, the more points is used to interpolate,
the less the assumption will be strong. When using nota-
tions f = f(d,) and f; = f(d, ;), equation (1) is further
converted to:

480 = [ k(#7400 AT i)y,

and it can be written in a matrix form as R = KN, where
both solution vector N and vector of the observations R
are defined as

Ri = T(ti)
Nj =n(f;)

while element (4,5) of matrix K corresponds to the follow-
ing sum of integrals:

/f f ()L (D + [

K fi

’ tz :t0+iAt7
7j: 17"'»J7

fi+1

dpk(f)(1 = L;(f))dy,

where L; is the linear interpolant. Good point of this
method is that multiple charges correction won’t have to
be performed any longer because it is corrected by con-
struction.

Knowing R and K expressions, problem now is to re-
trieve N. Nevertheless, K is badly conditioned. Regular-
isation technique described by Tikkhonov [11] is used to
overpass this problem. So, if typical least-square method
leads to the minimization of the quadratic error ||[KN —
R||?, Tikkhonov suggests to minimize || K N — R||?+\|| N ||2.
A prior on the solution to rebuild can be carried by the
second term multiplied by regularisation parameter A. An-
other prior is the positivity of the searched vector N as it
represents a concentration. As decided by Seinfeld [8], non
smooth solutions are penalised here and the minimization
becomes

min [|[KN — R||> + \|DN||?,
N>0

where D is the finite difference matrix chosen to approxi-
mate the integral of the second derivative of IV:

-1 2 -1 0 -+ 0

Phillips-Twomey method is used here: a regularization pa-
rameter A is chosen to calculate the corresponding regular-
ization matrix K, K = K'K + AD'D and then minimiza-
tion of ||[KN — R||? using Non-Negative-Least-Squares de-
veloped by Lawson [12] is performed. The regularization
hyperparameter is chosen with a graphical technique using
the L-curve criterion [13]. Indeed, data are noisy and we
choose not to give any prior knowledge on the input er-
ror structure, so this technique seems convenient. At this
point, model of measurement and inversion have been de-
veloped. A question that naturally rises from here is how
perturbations in the input space parameters affect the re-
construction of the size distribution. Figure 3 illustrates
the necessity of sensitivity analysis for the all set of pa-
rameters.
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Fig. 3. Sensitivity of the estimate of the aerosol size distribution
when flow rate Qg is varied from +10%. The mode value is esti-
mated with an absolute error around 6%.



IV. UNCERTAINTY ANALYSIS

In this part, a first uncertainty analysis is carried out to
determine a confidence region on a simulated aerosol size
distribution. Let’s consider M : R? — R’ the modelling
function such that:

N=M(0,R),

where N € R’ is the estimated aerosol size distribution
vector and 6 = (0y,6s,...,04) is the d-dimensional real
vector of input parameters (geometrical parameters, en-
vironmental parameters, physical parameters, etc.) that
is then decomposed in two sets of parameters: uncer-
tain parameters denoted as vector 6, and fixed param-
eters with vector ;. So, 6 becomes § = (6,6,) with
9f = (Gf,h...,ef,df) € R4 and 0., = (Qu’h...,eu,du) € Rd“,
d=d,+dys. As afirst approach, uniform probability distri-
butions are assigned to uncertain parameters 6,, to model
their associated uncertainty as follows:

9%1' Nu([ai,bi]) s 1= 1,...,du.

However, the number of input parameters is high (d ~ 40),
so comes the priority to reduce the problem’s dimension. It
can be done with global sensitivity analysis methods. Since
n(dp) is not a scalar but a function of the mobility diame-
ter, we pick some convenient functional as peaks width or
peaks position. They play the role of surrogate measure-
ments used for the global sensitivity analysis. According
to the screening method called OAT Morris method [14],
parameters that have been found to impact the most the
reconstruction of the size distribution are denoted as the
vector Q;T; GZL = (Qsh; Qaa Qcp07 Qemm 1,72, LDMA7 Aty '7)
Since the dimension of the problem has been significantly
reduced, Monte Carlo simulations can now be performed.
Now that significant parameters have been discriminated,
others are fixed. Let 9,{ these part of uncertain parame-
ters considered as fixed, then new vector #,, can be written
as 0, = (61,6™). If exponent ] denotes the k-th Monte
Carlo simulation, then

N = M(0y, (61,07, R).

Figure 4 represents a 95% confidence interval based on un-
certainty propagation results when an atmospheric aerosol
is simulated. According to our knowledge, this is the first
time that a confidence region is associated to an aerosol
size distribution. Monte Carlo simulations have become
possible in this case thanks to requirements expressed in
terms of modeling and inversion.

V. DISCUSSION

A SMPS measurement model and associated uncertain-
ties has been presented. They allow SMPS users to check
their inversion method and also provide them with an idea
of how uncertain the estimation of the aerosol size distri-
bution can be. The uncertainty propagation is performed
through the full model (measurement and inversion). How-
ever, In order to answer more precisely to SMPS users’
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Fig. 4. 95% Confidence region on an atmospheric aerosol size distri-
bution

need, the uncertainty analysis could be rethought as a
decomposition of the global model into two sub-models.
Moreover, improvements have to be brought concerning
the probability distributions assigned to every uncertain
parameter in order to get closer to the physical reality. Fol-
lowing this statement, a counting noise will also be added
to the raw data response function.
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