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Abstract—In this paper, we study the sum rate performance of
zero-forcing (ZF) and regularized ZF (RZF) precoding in large
MISO broadcast systems under the assumptions of imperfect
channel state information at the transmitter and per-user dhannel
transmit correlation. Our analysis assumes that the number
of transmit antennas M and the number of single-antenna
users K are large while their ratio remains bounded. We
derive deterministic approximations of the empirical sigral-to-
interference plus noise ratio (SINR) at the receivers, whie are
tight as M, K — oo. In the course of this derivation, the per-user
channel correlation model requires the development of a nal
deterministic equivalent of the empirical Stieltjes trandorm of
large dimensional random matrices with generalized variace
profile. The deterministic SINR approximations enable us to
solve various practical optimization problems. Under sum ate
maximization, we derive (i) for RZF the optimal regularization
parameter, (ii) for ZF the optimal number of users, (iii) for
ZF and RZF the optimal power allocation scheme and (iv)
the optimal amount of feedback in large FDD/TDD multi-user
systems. Numerical simulations suggest that the determistic
approximations are accurate even for smallM, K.

Index Terms—Broadcast channel, random matrix theory, lin-
ear precoding, limited feedback, multi-user systems.

|I. INTRODUCTION

M. Slock,Fellow, IEEE

can only be efficiently mitigated by appropriate (i.e., ahnaln
aware) pre-processing at the transmitter.

It has been proved that dirty-paper coding (DPC) is a
capacity achieving precoding strategy for the Gaussian GHM
BC [4]-[8]. However, the DPC precoder is non-linear and to
this day too complex to be implemented efficiently in preaadtic
systems. It has been shown in [4], [9]-[11], that suboptimal
linear precoders can achieve a large portion of the BC rate
region while featuring low computational complexity. Thus
a lot of research has recently focused on linear precoding
strategies.

In general, the rate maximizing linear precoder has no
explicit form. Several iterative algorithms have been sy
in [12], [13], but no global convergence has been proved.
Still, these iterative algorithms have a high computationa
complexity which motivates the use of further suboptimal
linear transmit filters (i.e., precoders), by imposing more
structure into the filter design. A straightforward techreq
is to precode by the inverse of the channel. This scheme is
referred to as channel inversion or zero-forcing (ZF) [4].

Although [9], [12], [13] assume perfect channel state in-
formation at the transmitter (CSIT) to determine theosdlyc

HE pioneering work in [1] and [2] revealed that theop.timal performanqe,this assumption is un_tenab_le in pract

capacity of a point-to-point (single-user (SU)) muItipIe—” is indeed a partlcular_ly strong assumption, since the per
input multiple-output (MIMO) channel can potentially in-formance of all pr_ecodlng strategies is crucially depeg(_jln
crease linearly with the number of antennas. However, pra@" the CSIT quality. In practical systems, the transmitter
cal implementations quickly demonstrated that in most proph@s to acquire the channel state information (CSI) of the
gation environments the promised capacity gain of SU-Mim&ownlink channel by feedback signaling from the uplink.cgin
is unachievable due to antenna correlation and line-dftsign Practice the channel coherence time is finite, the infaiona
components [3]. In a multi-user (MU) scenario, the inhereHJ_the instantaneous channel state is mhergntlymcom,cﬂ'eﬂ'
problems of SU-MIMO transmission can largely be Overcon{.@s_reason, a_lot of research has been carried out to uaderst
by exploiting multi-user diversity, i.e., sharing the spht the impact of imperfect CSIT on the system behavior, see [14]
dimension not only between the antennas of a single receiVi@f & recent survey. o .
but among multiple (non-cooperative) users. The undeglyin N this contribution, we focus on the multiple-input single
channel for MU-MIMO transmission is referred to as th@utput (MISO) BC, where a central transmitter equipped
MIMO broadcast channel (BC) or MU downlink channel. AlWith A/ antennas communicates wifki single-antenna non-
though much more robust to channel correlation, the MIMcO0Operative receivers. We assumé > K, i.e., we do not

BC suffers from inter-user interference at the receiverglwh
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account for user scheduling, and consider ZF and reguthrize
ZF (RZF) precoding under imperfect CSIT (modeled as a

e_weighted sum of the true channel plus noise) as well as

per-user channel correlation, i.e., the vector charngle
0 and

%[hkh,'j] = O. To obtain insights into the system behavior,
we approximate the signal-to-interference plus noiseorati

(SINR) by a deterministic quantity, where the novelty ofsthi
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study lies in thelarge system approach. More precisely, wdetween RZF and MMSE filters when considering imperfect
approximate the SINR;, of userk by adeterministic equiv- CSIT. The RZF precoder in [9] has been extended in [20]
alent~; such thaty, — vy — 0 almost surely, as the systemto account for channel quantization feedback under random
dimensionsM and K go jointly to infinity with bounded ratio vector quantization (RVQ). The authors in [20] do not apply
1< limM7K_>OO% = [ < oo. Hence,~; becomes more tools from large RMT but use the same techniques as in [9] and
accurate for increasing/, K. To derive~;, we apply tools obtain different results for the optimal regularizatiomaraeter
from the well-established field of large dimensional randoand SINR compared to our results in Section VI.
matrix theory (RMT) [15], [16]. Previous work considered The first work applying tools from large RMT to derive the
SINR approximations based dyoundson the average (with asymptotic SINR under ZF and RZF precoding for correlated
respect to the random channéls) SINR. The deterministic channels was [21]. However, in [21] the regularization para
equivalentyy is not a bound but is aight approximation, eter of the considered RZF precoder was set to fulfill thd tota
for asymptotically largeM, K. Furthermore, the RMT tools average power constraint. Similar work [22] was published
allow us to consider advanced channel models like the péater, where the authors considered the RZF precoder in [9]
user correlation model, which are usually extremely difficuand derived the asymptotic SINR fancorrelatedGaussian
to study exactly for finite dimensions. Interestingly, slesu channels. Moreover, they derived the asymptotically ogktim
tions suggest that; is very accurate even for small systemegularization parameter*® = --, already derived in [9],
dimension, e.g.M = K = 16. Currently, the 3GPP LTE- which is a special case of the result derived in Section IV.
Advanced standard [17] already defines upglfo= 8 transmit Another work [23], reproducing our results, noticed thaa th
antennas further motivating the application of large systeoptimal regularization parameter in [9], [22] is indepentef
approximations to characterize the performance of wiselesansmit correlation when the channel correlation is it
communication systems. Subsequently, we apply these SIKR all users.
approximations to various practical optimization probéem In the large system limit and for channels with i.i.d. ergrie
the cross correlations between the user channels, anddtesre
the users’ SINRs, are identical. It has been shown in [24] tha
for this symmetric case and equal noise variances, the SINR
To the best of the authors’ knowledge, Hochwald et amaximizing precoder is of closed form and coincides with
[18] were the first to carry out a large system analysis withhe RZF precoder. Recently, the authors in [25] claimed that
M,K — oo and finite ratio for linear precoding under thendeed the RZF precoder structure emerges as the optimal pre
notion of “channel hardening”. In particular, they conseft coding solution forM, K — co. This asymptotic optimality
ZF precoding, called channel inversion (CI), fo&f > K further motivates a detailed analysis of the RZF precoder fo
under perfect CSIT, and showed that the SINR for independéamtge system dimensions.
and identical distributed (i.i.d.) Gaussian channels eoges
_to p(f — 1), where p i_s the signal-to-n_oisg ratio (SNR)'B. Contributions of the Present Work
independent of the applied power normalization strateggyT
go on to derive the sum rate maximizing system loaditg In this paper, we provide a concise framework that directly
for a fixed M. Their results are a special case of our analys@xtends and generalizes the results in [9], [18], [22], [22§]
in Section 111-B and Section V-A. The authors in [18] conatud by accounting for per-user correlation and imperfect CSIT.
by showing that for3 > 1, ZF achieves a large fraction of theFurthermore, we apply our SINR approximations to several
linear (with respect tak) sum rate growth. The work in [9] limited-feedback scenarios that have been previouslyyaadl
extends the analysis in [18] to the cad& = K and shows by applying bounds on the ergodic rate of finite dimensional
that the sum rate of ZF is constant M as M, K — oo, Systems. Our main contributions are summarized as follows:
i.e., the linear sum rate growth is lost. The authors in [9] « Motivated by the channel model, we derive a deter-
counter this problem by introducing a regularization pagten ministic equivalent of the empirical Stieltjes transform
« in the inverse of the channel matrix. Under the assump- of matrices withgeneralized variance profilethereby
tion of large M, K, perfect CSIT and for any rotationally- extending the results in [27], [28].
invariant channel distribution, [9] derives the regulatian o We propose deterministic equivalents for the SINR of
parameterc = o*° = -- that maximizes the SINR. Note ZF (8 > 1) and RZF (¢ > 1) precoding under im-
here that [9] does not apply the classic tools from large perfect CSIT and channel with per-user correlation, i.e.,
dimensional RMT to derive their results but rather find the deterministic approximations of the SINR, which are
solution by applying various expectations and approxiomesti independent of the individual channel realizations, and
In the present contribution, the RZF precoder of [9] is nefdr (almost surely) exact a&/, K — oo.
to aschannel distortion-unawar®ZF (RZF-CDU) precoder, « Under imperfect CSIT andommoncorrelation @, =
since its design assumes perfect CSIT, although in practice © Vk), we derive the sum rate maximizing RZF pre-
the available CSIT is erroneous or distorted. It has been coder calledchannel-distortion awardRZF (RZF-CDA)
observed in [9] that the RZF-CDU precoder is very similar  precoder.
to the transmit filter derived under the minimum mean square. For ZF and RZF, under common correlation atifferent
error (MMSE) criterion [19] and both become identical in the  CSIT qualities, we derive the optimal power allocation
large M, K limit. Likewise, we will observe some similarities scheme which is the solution of a water-filling algorithm.

A. Related Literature



For uncorrelatedchannels, we obtain the following resultswhereh;, € CM is the random channel from the transmitter
« Under ZF precoding and imperfect CSIT, a closed-fori® userk, x e CM is the transmit vector and the noise terms
approximate solution of the number of usésmaximiz- nx ~ CN(0,0?) are independent. We assume that the channel
ing the sum rate per transmit antenna for a fixdd h;, evolves according to a block-fading model, i.e., the channe
« In large frequency-division duplex (FDD) systems, undes constant at every time instant but variedependentlyrom
RVQ, for 3=1 and high SNRp, to exactly maintain an one time instant to another.
instantaneous per-user rate gagwf, b bits/s/Hz, almost ~ The transmit vectox is a linear combination of the inde-
surely asM, K — oo, the number of feedback bif3 per pendent user symbols, and can be written as
user has to scale with

K
— RZF-CDA: B=(M —1)log, p— (M —1) log, (b2 — 1) X =Y \/Pk8kSk,
— RZF-CDU/ZF:B=(M-1) log, p—(M-1) log, 2(b-1) k=1
Thatis, the RZF-CDA precoder require®/ —1) log, *5*  whereg, € CM andpj, >0 are the precoding vector and the
bits lessthan RZF-CDU and ZF. signal power of usek, respectively. Subsequently, we assume

« In large time-division duplex (TDD) systems with chanthat userk has perfect knowledge df;, and the effective
nel coherence intervdl, at hlgh Upllnk SNR and down- Channe|hzgk_ In particu|ar' an estimate Ohggk can be
link SNR pg;, the sum rate maximizing amount of channeyptained through dedicated downlink training by precodirey
training scales asv7 and 1//log(pa:) for a fixed pilots of userk by g;.. The precoding vectors are normalized
par and T', respectively under both RZF-CDA and ZRyg satisfy theaveragetotal power constraint

precoding. ) "
The remainder of the paper is organized as follows. Section E[lx|I"] = x(PG"G) < P, @)
Il presents the transmission model and channel model. WhereG £ (81,82, -.,8K] € CM*XK P =diag(p1,...,pK)

Section Ill, we propose deterministic equivalents for thefS and P > 0 is the total available transmit power.

of RZF and ZF precoding. In Section IV, we derive the sum Denotep£ P/o? the SNR. Under the assumption of Gaus-
rate maximizing regularization under RZF precoding. Secti sian signaling, i.e.s, ~ CN(0,1) and single-user decoding
V studies the sum rate maximizing number of users for Zkith perfect channel state information at the receivers, th
precoding and the optimal power allocation when the CSISINR ~,, of userk is defined as [29]

quality of the users is unequal. Section VI analyses therogti Ho |2
pr|hi gl

amount of feedback in a large FDD system. In Section VII, we T = —% . 2
study a large TDD system and derive the optimal amount of Z -|hH .|2 g
uplink channel training. Finally, in Section VIII, we sumnze 4 #kpj k8

J=47

our results and conclude the paper.
Most technical poofs are presented in the appendix. In theE@e rateR;; of userk is given by

proofs, we apply several lemmas collected in Appendix VI. Ry = log (1 4+ ) 3)
Notation In the following, boldface lower-case and upper-

case characters denote vectors and matrices, respeciihely and the ergodic sum rate is defined as

operatorg-)", tr(-) and E[] denote conjugate transpose, trace K

and expectation, respectively. THé x N identity matrix is Reum = ZE [Ry], 4)

denotedI v, log(-) is the natural logarithm an&(z) is the k=1

imaginary part of> € C. || X|| and A (X) are the spectral where the expectation is taken over the random chartnels

radius and the minimum eigenvalue of the Hermitian maXjx

respectively. The imaginary unit is denoted’he setR* and B. Channel Model

C* are defined a§z : > 0} and{zx=r +iv:reRov >

0}. A random vectorx ~ CA/(m,®) is complex Gaussian ~Each user channdi is modeled as

distributed with mean vectam and covariance matri®©. hy =V M®,1€/22k, (5)
Il. SYSTEM MODEL where®,, is the channel correlation matrix of uskrand z;
This section describes the transmission model as well as fif i-I-d- complex entries of zero mean and variangd . The
underlying channel model. channel transmit correlation matric€, are assumed to be
slowly varying compared to the channel coherence time and
A. Transmission Model thus are supposed to be perfectly known to the transmitter,

Consider a MISO broadcast channel composed of a Centvrvglereas _recewebc has (_)nly knowledge abou. Moreovgr,
nly an imperfect estimatd, of the true channehy is

. . . . 0
transmitter equipped .W'tm/[ gntennas and ofC single- available at the transmitter which is modeled as [30]-[33]
antenna non-cooperative receivers. We assiime K, thus

user scheduling is not taken_ |n_to accoun_t. Furth(_armore, w%k _ \/MG)}@/Q ( /1 _Tng +quk) _ \/M@),lc/zik, )
suppose narrow-band transmission. The sigpaleceived by

userk at any time instant reads wherez, = /1 — T,fzk + 7Lqr, qi has ii.d. entries of

Yk = h,';'x+ ng, k=12,....K, zero mean and variandg’ M independent of; andn. The



parameterr;, € [0, 1] reflects the accuracy or quality of theimplicit equation instead of multiple systems of coupled
channel estimathy, i.e., 7, = 0 corresponds to perfect CSIT,implicit equations. A further simplification occurs whereth
whereas forr, = 1 the CSIT is completely uncorrelated tochannels are uncorrelateéfl, = I,; Vk, in which case the
the true channel. The variation in the accuracy of the avadpproximated SINRs are given explicitly.

able CSITh;, between the different user channdls arises ~ The model in (7) has never been considered in large
naturally. Firstly, there might be low mobility users andgjthi dimensional RMT and therefore no results are available. The
mobility users with large or small channel coherence irgk;v most general model studied, assumes a variance profile, first
respectively. Therefore, the CSIT of the high mobility ssetreated in [27] and extended in [28], which is a special cdse o
will be outdated quickly and hence be very inaccurate. Ghe model in (7). Therefore, to be able to derive determmist
the other hand, the CSIT of the low mobility users remaireqjuivalents of the SINR, we need to extend the results in [27]
accurate since their channel does not change significarf@g] to account for the per-user correlation model in (7)jckih
from the time of the channel estimation until the time ois done in the next section.

precoding and coherent data transmission. Secondlyyelifte

CSIT qualities arise when the feedback rate varies among Ill. A D ETERMINISTIC EQUIVALENT OF THE SINR

the users. For instance, if the CSIT is obtained from uplink Thjs section introduces deterministic approximationshef t
training, the training length of each user could be différeng|NR under RZF and ZF precoding for various assumptions
leading to different channel estimation errors at the tmatisr. 5 the transmit correlation matrice®,. These results will

Similarly, if the users feed back a quantized channel, thgys ysed in Sections IV-VII to solve practical optimization

could use channel quantization codebooks of dlfferentssaﬁrouem&

depending on their chanr_lel q_u_ality and the ayailaple uplink The following theorem extends the results in [27], [28],]135

resources. However, for simplicity, we assume identicallCSpy assuming a generalized variance profile. This theorem is

qualitiesT, = 7 Vk for the optimization problems consideredrequired to cope with the channel model in (5) and forms the

in Section VI and Section VII. mathematical basis of the subsequent large system analfysis
Remark 1:The model for imperfect CSIT in (6), is ade-the MISO BC under RZF and ZF precoding.

quate for instance in a FDD system, where the chatnel  Theorem 1:Let By = XH Xy + Sy with Sy € CVxN

is finely quantized using a random codebook of i.i.d. vectorgiermitian nonnegative definite andy € C**V random.

Since the correlation matrice®; are known at both ends, The jth columnx; of X" is x; = ®,y;, where the entries

userk solely quantizes the fast fading channel compomgnt of y. ¢ C™ are i.i.d. of zero mean, variance/N and

to the closest codebook vectay, which can be accurately have eighth order moment of orded (%x). The matri-

approximated asz, = /1 — 77z, + 7.qi. Subsequently, ces W, ¢ C¥*" are deterministic. Furthermore, 1€, =

the user sends the codebook index back to the transmitigr,gH < CN*N and defineQy € CY*N deterministic.

where the estimated downlink channel is reconstructed B¢sumelimsupy .. sup,<;<, [|©:]| < oo and letQy have

multiplying with v/A7©,’%. For uncorrelated channels, thisuniformly bounded spectral norm (with respectt. Define
specific FDD system is studied in Section VI.

N 1 _
_Define the compound estimated channel mathx % mBy.qy(2) = NtrQN (By — 2Iy) " ". (8)
[hi,hy, ..., hg|" € CEXM, Therefore, the matrix; H'H , _
can be written as Then, forz € C\ R*, asn,N grow large with ratios

ﬁN,i 4 N/T‘i and BN L N/TL such that0 < lim inf 5 ﬁN <
K . .. .
1 ane 1/2. AHel/2 limsupy Sy < oo and 0 < liminfy By, < limsupy By, <
i H= PBICTE T C I (M) 5, we have that
k=1
o N —o00
. — — 0 9
The per-user channel correlation model (also called gen- mBy.Qx (2) = Mhy.qy(?) ’ ©)
eralized variance profile) is very general and encompassdsiost surely, withng = o (2) given by
various propagation environments. For instance, all ceann .
coefficients hy, ; of the vector channeh; may have dif- . 1 1 0;
ferent variancesr; ; resulting from different attenuation of mBN,QN(z):NtrQN NZ 1+en .(Z)+SN_ZIN
the signal while traveling to the receivers. This so called = "

variance profile of the vector channel is obtained by setting (10)
Oy, = diag(}, 1,07 5. - -, 07 ), S€€ [27], [28], [34]. An- where the functionsen.1(2),...,enn(z) form the unique
other possible scenario consists of an environment whére gjytion of
user channels have identical transmit correlatrbut where -1
the users are heterogeneously scattered around the ttarsmi 1 1 — O;
and hence experience different channel gainsSuch a setup en,i(z) = Ntr@i N 4 . WJFSN_ZIN

= .

can be modeled wit®; = d;®. From a mathematical point
of view, a homogeneous system with common user channel (11)
correlation®;, = © Vk is very attractive. In this case, thewhich is the Stieltjes transform of a nonnegative finite nueas
user channels are statistically equivalent and the detéstiti  on R*. Moreover, forz <0, the scalarsy 1(z), ..., enn(2)
SINR approximations can be computed by solving a singége the unique nonnegative solutions to (11).



Note that (11) forms a system af coupled equations, from with probability one.
which (10) is given explicitly. Remark 2: Assumption 3 holds true ifupy [{® : k =
Proof: The proof of Theorem 1 is given in Appendix I.1,2,..., K}| < oo, where | 4| denotes the cardinality of
B the setA. That is, {©®;} belongs to &inite family [36]. In
Proposition 1 (Convergence of the Fixed Point Algorlthm)particular if®) = © Vk, then Assumption 3 |s satisfied, since

Let ze(C\IE&+ and {e{¥ ( )} (k>0) be the sequence definedl |HYH|| < ||©||||Z"Z]||, whereZ = [z,....,2x]" and both
by eNi( z)=-1 and |i®|i and||Z"Z| are uniformly bounded for aII larg&/ with
’ _ probability one [37].
“ o 1 o 1 & o, s . A deterministic equivalenty . of vy .,¢ is provided in the
en,ilZ) = 7o N - 1+€(k 1)( ) N —zly following theorem.

Theorem 2:Let Assumptions 1, 2, and 3 hold true and let

i (k) , ) 12) >0 and~y .-+ be the SINR of usek defined in (16). Then
for k>0. Then,limj_. ey’ (2) =en,i(z) defined in (11) for

e 2 ) o X )
Proof: The proof of Proposition 1 is given in Appendix
I-B and I-C. m almost surely, wherey, ., is given by
To derive a deterministic equivalent of the SINR under RZF )
and ZF precoding, we require the following assumptions on_ . pe(1—13) (m}) (19)
the correlation matrice®;, and the power allocation matrR. forat = To(1— 21— (1+mp)?]) + %(1 +mg)?’
Assumption 1:All correlation matrice®d,;, have uniformly ) -
bounded Spectral norm (M, |e’ with mz = €L, where th%l, e EK form the unique pOSItlve
solutions of
limsup sup [|©] < oo. .
M,K—00 1<k<K e = —tr®,T (20)
Assumption 2:The powerp.x = max(pi,...,px) is Of M .
orderO(1/K), i.e
"\ Z (21)
[P|| = O(1/K). (14)
A. Regularized Zero-forcing Precoding and¥° and T} read
Consider the RZF precoding matrix K
-1 = i Z pJe] (22)
Gui = ¢ (AMH + MaLy ) BY, (15) M & (T+e¢;)?
~ ~ ~ ~ K
whereH= [hy, hy, ..., hg]H € CE*M js the channel estimate p;e J k
_ S N Z (23)
available at the transmitte is a normalization scalar to 7:1 P (1+4e5)?
fulfill the power constraint (1) and >0 is the regularization ’
parameter. Hereq is scaled byM to ensure thatv itself with ¢ =[e],... e} ]" andej = [¢] ;... ek ,]T given by
converges to a constant, a8, K — oo. .
From the total power constraint (1), we obtdfh as e =(Ig—-J) v, (24)
. P P e, =Ix —J) " v, (25)

T wPH(HWH + Maly)—2HH
where we definedr 2 trPH(H"H + Mal,,)~2H". Denot-

wheredJ, v andv,, take the form

N PN 1 ) )
ing W= (H"H + Maly )", the SINR~; ., Of userk in [3];; = M,
(2) under RZF precoding takes the form M(1+ej) .
- 1 1
hHWh2 = | —=tr®,T?,..., —tr®xT?
Vieownt = H pkl k| , (16) v |:M %5 9 ’M Ok 9
WhereH[k] hy,... .0 1, by, ... he™ e(CK*“M and Vi = [Mtr@lT@kT"'"MU@KT@’“T] :

P[k] dla’g(plv"'7pk*17pk+17"'7pK)‘
To derive a deterministic equivalem,@ o Of the SINR ¢
]\I—>oo

defined in (16) such thay, ..r —7; ., — 0, almost surely,
we require the following assumption.
Assumption 3:The random matrix%HHH has uniformly

bounded spectral norm ol with probability one, i.e., Pp/}{mou —72) [622 + af(1 +m°)2e ]

an T en( =B LA me )+ Hr(Lz()s)

Proof: The proof of Theorem 2 is given in Appendix II.
[ |
Corollary 1: Let Assumptions 1 and 2 hold true and let
a>0and®; = © Vk, theny; . takes the form

1 s
lim sup HMHH < 00,

M,K— o0




wherem® is the unique positive solution of

m° = Ltr@T

The reader is referred to [38] or [39] for a detailed largeetys
analysis of the MF precoder. In the casecof- 0, the RZF

Vi (27) precoder converges to the ZF precoder, which is discussed in
Y -1 the next section.
T = ( S + OZIM> (28)
1+m B. Zero-forcing Precoding
ande;; is given by For =0, the RZF precoding matrix in (15) reduces to the
1 1 i - ZF precoding matrixG,¢ which reads
€ij = mﬁtre T, ( )

~ A A —1
G,i — ¢H" (HHH)
Proof: Substituting®, = © Vk into Theorem 2, we have . ) . i
e; = mS = mP given in (27),¢} = ¢’ = [B(1+m°)2e1]/(B— where¢ is a scaling factor to fulfill the power constraint (1)

e22) andel , = & = [B(14+m°)2es0]/(B—e32). Therefore, the 2N 1S given by

terms¥° and Y become P/K)e12/(B—ea2) and(P/K[1— 2 _ P _ P
pr/P))eaa/ (B — ea2), respectively. Furthermoren® can be trp(ﬂﬂH)fl v’
written as

where ¥ 2 trP(HH")"!. Defining W £ H"(HH")2H,

m° = itr@T ( ©/ + aIM> T the SINR~; .+ Of userk in (2) under ZF precoding reads
M 14+ me° A
©)2 1 ° Vhzt = pilby Wh [ (33)
oltrm et glemien G0 “ BWHY Py Hy Wh + 7

Substituting these terms into (19) yields (26) which cortgde  To obtain a deterministic equivalent of the SINR in (33),
the proof. m we need to ensure that the minimum eigenvalueFHf"
Note that under Assumption 2, the terfs in (26) can be is bounded away from zero for all large/, almost surely.
omitted since the convergence in (18) still holds true. WEherefore, the following assumption is required.
will make use of this simplification when studying different Assumption 4:There existss > 0 such that, for all large
applications of the SINR approximations. M, we haveln, (4 HH™) > e with probability one.

Corollary 2: Let Assumption 2 hold true and let>0and ~ Remark 3:If ®; = © Vk and \pin(®) > ¢ > 0 (i.e,
O, =1y Vk, then'y,ierc takes the form in contrast to Theorem 2@ must be invertible), for all

M, then Assumption 4 holds true i# > 1. Indeed, for

prem® (1= 17) [1+aB(l+m°)?] B > 1, from [37], there exists{ > 0 such that, for all
— B[ -2 (1= (L +m)2)] + 11 +me)2’ large M, Amin(ZZM) > ¢, whereZ = [z4,...,2x]", with
(31) probability one. Therefore, for all largk/, )\min(ﬁHHH) >
Amin(ZZM Amin (®) > e > 0 almost surely.

Furthermore, we require the following assumption for the
channel model with per-user correlation.

vz,rzf = (1

wherem® is given as

o B—1-pBa++/(B—-1)2+201+pB)af + a?p?

2a8 Assumption 5:Assume thae; = lim,_,o ae;(a) exists for
(32) all s ande; > ¢ Vi for somee > 0, for all M.

Proof: Substituting® = I, into Corollary 1, we have ~Remark 4:Under these conditions, ths, ..., ¢, are the
e12 = ez which yields (31). Moreover, (27) becomes alnique po§|t|ve solutions of (36). In particular, Assumpt.|5
quadratic equation imx® with unique positive solution (32), holds true if@; = © Vk, 3 > 1 and Ayin(©) > € > 0. This
which completes the proof. m s detailed in the proof of Corollary 3.

In particular, we will consider two different RZF precoders Theorem 3:Let Assumptions 1, 2, 3, 4 and 5 hold true and
The first RZF precoder is defined by = -1 and is let 4.+ be the SINR of usek under ZF precoding defined

referred to as RZRhannel distortion unawar¢RzF-CDU) in (33). Then
precoder. Under imperfect CSIT the RZF-CDU precoder is
mismatched to the t_rue c_hannel. The second RZF preCOdeélir%ost surely,
called RZFchannel distortion awaréRZF-CDA) precoder and

does account for imperfect CSIT. The optimal regularizatio

o M— o0
Vezf — Vet — 0,

where; ; is given by

2
1—7;

parameter for the RZF-CDA precoder is derived in Section IV. Tkat = Pk 270 4 GO (34)
Moreover, there are two limiting cases of the RZF precoder R . B ?

corresponding tax — oo anda — 0. For a — oo the Rz Where¥” and T, read

precoder converges to the matched filter (MF) prec@gr = 1 K ;i

¢HM. A deterministic equivalenty . for the MF precoder v° = i Z ﬁ,

can be derived by taking the limify , = lima oo Yy ,p¢- j=1"J

However, since the performance of the MF precoder is rather . 1 K gg. X

poor andy; .., does not involve Stieltjes transforms anymore, T = i Z pje—é_- (35)

we will not discuss this precoding scheme in the present work



The functions,, ..., e, form the unique positive solution of Dividing Y; by % [1 — %] and¥° = 6—1;1 by P/K, we obtain
X° given in (40) and¥® given in (39), respectively, which

1
& = 77O (36) completes the proof. [ |
X -1 Corollary 4: Let Assumption 2 hold true and I&t> 1 and
T — 1 Z 9, . 37) ©,=1Ium Vk, thenn; . takes the explicit form
- M e
j=1 —J o Pk 1-— ’7']3
e B—1). 44
Further, definee, = [¢} ., ..., ¢ .]T, which is given as Tt T PIR - B+ %( ) “
(e — )L 38 _ Proof: By substituting® = I, into (41), e is explicitly
(I =J) vy, (38) given bye= (8 — 1)/8. We further haveZ = 1 and ¥° =
whereJ andyv, take the form T =(B-1)"" - [ ]
Ltr®, TO,T o
3] = W, C. Rate Approximations
=J

T We are interested in the individual rat& of the users as
v, = itr@1l®kl, o LU"@KI@]@I _ yvell as the average system sum rﬁ’g@m. Since '_[he Iogarithm_
is a continuous function, by applying the continuous magpin

Proof: The proof of Theorem 3 is given in Appendix II1.theorem [40], it follows from the almost sure convergence

B -0 800, that
Corollary 3: Let Assumptions 1 and 2 hold true. Further, o M—oo
let 8> 1, ©, = © Yk With A\uin(©) > &, > 0, for all M, By — Ry — 0, (45)
then Theorem 3 holds true ang ,, takes the form almost surely, where?;, = log(1 + ~;). An approximation

Reum Of the ergodic sum raté,,,, is obtained by replacing

1— 2
Vot = P];kK ey Z’: o the instantaneous (i.e., without averaging over the cHanne
T~ [ - ?} 5 distribution) SINR~;, with its large system approximatioyy,
with i.e., «
1
20 = -, (39) Reum Z 1 + 7]@ (46)
Be k=1
o — ey/€? _ (40) It follows that
T B/ 1 ) P
1 ° 2 s (Rsum - Rsum) ]W:> Oa (47)
ey = —tr@®3T K
_ _ M _ holds true almost surely.
wheree is the unique positive solution of Another quantity of interest is the rate gap between the
1 achievable rate under perfect and imperfect CSIT. We define
€= Mtr@l’ (41)  the rate gapA R, of userk as
—1 _
1 A
T— <IM o ) . (42) ARy, 2 Ry, — Ry, (48)
e = . .
where Ry, is the rate of usek under perfect CSIT, i.e., for
Proof: For ®; =®© Vk, we obtain from (20) 72 = 0 Vk. Then, from (45) it follows that a deterministic
e; = 1111% aei(@) =¢ equivalentAR; of the rate gap of usét such that
a—
o ARk—ARO M~>oo 07
li ! —tr® (1 © +1 )
= 111m I —_— y .
a0 | M Ba+ae(a) M almost surely, is given by
1 e -1 ARS = RS — RS (49)
= —tr1®( — +1 , 43 A
M <ﬁ§ " M> *3)

where R} is a deterministic equivalent of the rate of uger
A lower bounded of (43) is given as> \y,in(®)(1 —1/3) under perfect CSIT.

which is uniformly bounded away from zero@® is invertible Since we will require the per-user rate gaps for uncorrdlate
and 8 > 1. Thus, under these conditions, Assumption 5 ishannels ®, = I,; Vk) in the limited feedback analysis in
satisfied. Moreover, the/; ; in (38) rewrite Sections VI and VII, we introduce hereaft&rR; for RZF-
CDU and ZF precoding.

Q;, p=€ = ﬂ§262 Corollary 5 (RZF-CDU precoding)Let ©, = I, Vk,
T pr = P/K Vk, 72 = 72 Vk and defineA Ry, ,,¢—cau as the rate
and therefore, gap of usek under RZF-CDU precoding. Then a deterministic
e,/c® P i equivalentARy ¢ 4, = AR .4, SUch that
L= === |1— —} . o0
T B-5K -7 AR st —cdn — ARG cqy 5 0



almost surely, is given by 10° p ‘ ‘ I I
- %@k#IM,TgZO.l
i B0, =Iy, =0

1 o
AFilcr)zf—cdu = log m

me(1—72)[1+1(14me°)?] |’ £ | |
1+ 1—T2+(1+m0)2[72+%] Q:?
wherem?® is given in (32). 3 1071 E
Proof: With Corollary 2, computeAR_; 4, as defined 8:5 ! |
in (49), whereR; . . = log(1 4+ m°). u | |

Corollary 6 (ZF precoding):Let @, = Iy Vk, pr =
P/K Vk and defineA Ry, ,¢ to be the rate gap of usérunder o2

ZF precoding. Then 1072

M—o0

ARk,Zf —AR;Zf — 0

almost surely, WitkAR,‘;Zf given by 35 10 15 20 25 30 35 40
1+p(B—1) > M
AR . =log| —————~2_
kot =108 (1 + pwi(8 —1)

Fig. 1. RZF,(Rsum — RSum)/Rsum Vs. M for a fixed SNR ofp = 10 dB

wherewy, is defined given by with M=K, a =1/p.
2
o = Tk (50) 180 ——
L+7ip —Op=Iy 1
Proof: Substitute the SINR from Corollary 4 into (49). 1601 Or#Iy 4
B 40 A
Remark 5:In practice, one is often interested in the average% 1201 2_0 S
system performance, e.g., the ergodic SINRy;| or ergodic & k g
rate E[Ry]. Since the SINR~, is uniformly bounded on & 100 2~ f
M for the considered precoding schemes, we can applyo 30l il |
the dominated convergence theorem [40, Theorem 16.4] and® E
obtain E 60f e i
Eh/k]_’ngigoov @ 40 |- ’,’/’/i_,—— |
where the expectation is taken over the probability space 20 ’;:1‘“’ 201 sl ]
generating the sequencfH(w), M > 1} with H = I k
hi,..., l_rlK]H €CExM, T?Ie_ii\me holds true for the per-user 00 é 1‘0 1‘5 2‘0 2‘5 20
rate Ry, i.e., E[R;] — Ry, — 0.
p [dB]
D. Numerical Results Fig. 2. RZF, sum rate vs. SNR with/ = K =30 anda = 1/p, simulation

We validate Theorem 2 and Theorem 3 by comparing tlé%?/?;lattsioﬁfe indicated by circle marks with error bars intificathe standard
ergodic sum rate (4), obtained by Monte-Carlo (MC) simu-
lations of i.i.d. Rayleigh block-fading channels, to thega
system approximatiofs..,, for finite system dimensions andnarrow angle. Thus, the correlation model (51) yields rank-
equal power allocatio®® = %IK. deficient correlating matrices for some users. The tramemit
The correlatior®,, of the kth user channel is modeled as iris equipped with a uniform linear array (ULA). To ensure
[41] by assuming a diffuse two-dimensional field of isotpithat ||@;]| is bounded as\/ grows large, we assume that the
scatterers around the receivers. The waves impinge thizeecedistance between adjacent antennas is independevt, dfe.,
k uniformly at an azimuth anglé ranging from6y i, t0o the length of the ULA increases with/.
Or,max- Denotingd;; the distance between transmit anterina  The simulation results presented in Figure 1 depict the ab-

and j, the correlation is modeled as solute error of the sum rate approximatifig,,, compared to

1 Ormax the ergodic sum rat&,,,,, averaged ovet0 000 independent

(O] = W/ e iXdizcos®) g9 (51) channel realizations. The notatio®} # I,,” indicates that
kmax = Vkmin JOy min

®), is modeled according to (51) with;;/A = 0.5. From
where) denotes the signal wavelength. The users are assunféglire 1, we observe that the approximated sum fage,

to be distributed uniformly around the transmitter at anlangbecomes more accurate with increasing

vr=2rk/K and as a simple example, we choésg,in = —7 Figures 2 and 3 compare the ergodic sum rate to the de-
and 0y max = r — m. Note that for smalby max — 0k.min (in terministic approximation (46) under RZF and ZF precoding,
our example for small values &}, the corresponding signal of respectively. The error bars indicate the standard deviadf
userk is highly correlated since the signal arrives from a verfhe MC results. It can be observed that the approximatian lie



sum rate [bits/s/Hz]

p [dB]

Fig. 3. ZF, sum rate vs. SNR with/ =30, K =15, simulation results are
indicated by circle marks with error bars indicating theng&d deviation.

roughly within one standard deviation of the MC simulations, | |_known solutiona*®

From Figure 2, under imperfect CSITA = 0.1), the sum

Proposition 2:Let @, =0, 0 < 7, =7 < 1 Vk andP =
+1Ik. The approximated SINRy, ., of userk under RZF
precoding (equivalently, the approximated per-user raig a
the sum rate) is maximized for a regularization parametér
«a*°, given as a positive solution to the fixed-point equation

L+ v(ar) + pied] 4

*0 Bp
« =
1—72)1 4 v(a*®)] + 72v(a*°)[1 + m°(a*°)]?
( )+ v(ar)] (a*°)] ( )](53)
wherem?®(«) is defined in (27) and(«) is given by
1 €13 [622 623]
= e |=_ = 54
v(a) (14+mP)eazera €12 €13 &4
with e;; defined in (29).
Proof: The proof is provided in Appendix IV. [ ]

Note that the solution in Proposition 2 assumedixad
distortion 72. Later in Section VI the distortion becomes a
function of the quantization codebook size and in Sectioh VI
it depends on the uplink SNR as well as on the amount of
channel training.

Under perfect CSIT#? = 0), Proposition 2 simplifies to the
Bip' independentf ®©, which has
previously been derived in [9], [22], [26]. As mentioned 8],

rate is decreasing for high SNR, because the regularizat%rp large M the RZF-CDA precoder is identical to the MMSE

parametera. does not account for?

decreasing at high SNR, because the CHITs much better

conditioned. The optimal regularization is discussed in-Semo(
tion V. Further observe that in Figure 2 the deterministig,, haveey, = eg and v
approximation becomes less accurate for high SNR. Thg| tion
reason is that in the derivation of the approximated SINR,

we apply Theorem 1 in = —a = —1/p and thus the bounds

ara \ and thus the matrix precoder in [19], [43]. The authors in [26] showed that, unde
HYH + Mal,, in the RZF precoder becomes ill-conditioned

Figure 3 shows that, foM > K, the sum rate is not

perfectCSIT, o*° is independent of the correlaticd®. How-
ever, for imperfect CSIT+(* # 0), the optimal regularization
parameter (53) depends on the transmit correlation through
«) and e;;(a). For uncorrelated channel®( = I,),

() = 0 and therefore the explicit

<1+7’2p) 1

1—72 ﬂ_p

*O

(55)

in Proposition 12 (Appendix I-A) are proportional to the SNR

Therefore, to increase the accuracy of the approximate®Sl
larger dimensions are required in the high SNR regime.

We conclude that the approximations in Theorems 2 and
are accurate even for small dimensions and can be applie(}rl

various optimization problems discussed in the sequel.

IV. SUM RATE MAXIMIZING REGULARIZATION
The optimal regularization parametet® maximizing (46)
is defined as
K

a® = arg maxz 10g (1 + Vz,rzf) :
>0

(52)

In general, the optimization problem (52) is not convexin

and the solution has to be computed via a one-dimensional

line search.

In the following, we confine ourselves to the case of com-

ote that in this case, it can be shown thaf in (55) is the
uniguepositive solution to (52).

3For imperfect CSIT £2 > 0), the RZF-CDA precoder and
8 MMSE precoder with regularization parametgfyisg =
72371 +1/(Bp) [43] are not identical anymore, even in the
large M, K limit. Unlike the case of perfect CSIp*° now
depends on the correlation matr® throughm°(a*°) and
e;;(a*°). The impact ofm® ande;; on the sum rate of RZF-
CDA precoding is evaluated through numerical simulations i
Figure 5. Further note that sinee®(«) ande;; are bounded
from above under the conditions explained in Remark 6 below,
at asymptotically high SNR the regularization paramet&t
in (53) converges tavyY = lim, . *°, wherea? is a
positive solution of
72 e2n(al?)
B e1z(ax?)

1—72)1+v(ax T2u(ax2)[1 + me(ax2)|?”
( )L+ v(a)] + m?r(ex)[l + (oo)](%)

*0
Qoo =

mon correlation®; = © vk, since for per-user correlation apor uncorrelated channels, the limit in (56) takes the form
common regularization parameter is not optimal anymorg [12

[42]. Under common transmit correlation, we subsequently _
assume that the distortiomg of the CSITh,, are identical for (1-712)p

all users, since the users’ channels are statisticallyvatgnt. Thys, for asymptotically high SNR, RZF-CDA precoding
Under these condition® = I maximizes (46) and the js not the same as ZF precoding, since the regularization
optimization problem (52) has the following solution. parametera*® is non-zero due to the residual interference

2

*O T

«

o0
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caused by the imperfect CSIT. Similar observations have bee 16 ‘ ‘ ‘ ‘ ‘

made in [43] for the MMSE precoder. 7 a=o* —o-a=a"  ——a=a’
Remark 6:Note that in (56) we apply the limip — oo - a=g - a=0(ZF)

on a result obtained from an SINR approximation which

is almost surely exact a3/, K — oo. This is correct if

[
[

[—t
N}

N
<
0
[2]
E
¥ = trPH(H'H + Mol,)"2H" in (16) is bounded for g 10
asymptotically high SNR ad/, K — oo. For 72 > 0 it is IS
clear that¥° is bounded since*° > 0 for all SNR. In the £ 8
case where? = 0, we havelim,_,., o*° = 0 and thus for ? 6
B = 1 the support of the limiting eigenvalue distribution of %
%HHH includes zero resulting in an unboundé&d. From S 45
Remark 3, for3 > 1, ©®; = © Vk and\ i, (®) > & > 0 there 3]
exists¢ > 0 such thathm (HHY) > ¢ for all large M. 2
Thus, ¥° is bounded. On the contrary, f@; # ©; (k # j), 0 | | | | |
B > 1 and Anin(®x) > ¢ > 0 Vk, it has not been proved 0 5 10 15 20 25 30
that )\min(ﬁflf{H) > ¢ and we have to evoke Assumption p [dB]

4 to ensure that° is bounded. Thus, for? = 0, the limit

(56) is only well defined fos > 1. Further note that ift° is  Fig. 4. RZF, ergodic sum rate vs. SNR witf = K =5, @, = Is Vk,
bounded as\/, K — oo the limits M, K — oo andp — co P = wlx andr?=0.1.

can be inverted without affecting the result.

For various special cases, substituting (53) into the de- .
terministic equivalent of the SINRg . in (26) yields the CoroIIaryQQ (RQZF'CDA precoding)Let © =1L Vk, pi =
following simplified expressions. P/K Vk, m; = 72 Vk and defineA Ry, 1,t—cda s the rate gap

Corollary 7: Let Assumptions 1 and 2 hold true and lePf Userk under RZF-CDA precoding. Then,

O,=0, T2=0, pr = P/K Vk, a*° = L andyk,rzf_cda be ) _ ° M—oco
the sum rate maximiziné SINR of useunder RZF precoding. Afyrut-cda = Al —can — 0
Then almost surely, with
o M— oo
Vekzf—cda = Viraf—cda — 7 0, ARC. —1o ( 1+ P(ﬂ - 1) + X(l) )
almost surely, where; ;... is given by vef—eda =08 \ T 0B — 1) + x() )

Ve s E Ao = MO (—a*°) (57) wherew andy are defined in (59) and (60), respectively.
,rzt —cda rzf —cda ?

Proof: With Corollary 8, computeAR;, ;. as defined
wherem®(—a*°) is the unique positive solution to in (49). m
1 ©/p -1 The impact of the regularization parameter on the ergodic
) _ *O — _t @ *OI ' . . . . .
m°(—a*?) T <71 e () +a I\[) sum rate is depicted in Figures 4 and 5.

In Figure 4, we compare the ergodic sum rate performance
Proof: Substitutinga™° = Bip into (26) together with for different regularization parametesiswith CSIT distortion
72 = 0, we obtain (57) which completes the proof. m 77 = 72 = 0.1 Vk. The upper boundx = o* is obtained
For uncorrelated channe®, = I,; Vk, the solution to by optimizing o for every channel realization, whereas
(57) is explicit and summarized in the following corollary. maximizes the ergodic sum rate. It can be observed that both
Corollary 8: Let ®, =1y, 72 =72, pp = P/K Vk and &* anda*° perform close to the optimal*. Furthermore, if
Virzf—cda DE the sum rate maximizing SINR of useuunder the channel quality? is unknown at the transmitter (and hence
RZF precoding. TheMk vt —cda — V5 vyt ed M=o 0, aimost assumed to be equal to zero), the performance is decreasing
surely, wherey? . . is given by ’ as soon as? dominates (i.e. the inter-user interference limits
’ the performance) the noise powef and approaches the

Ve rat—cda 2 Vot oda = %p(ﬂ 1)+ g _ %, (58) sum rate of ZF precoding for high SNR. We conclude that
(i) adapting the regularization parameter yields a sigaiftc
wherew €0, 1] and x are given by performance increase and (ii) that the proposed RZF-CDA
1— 72 precoder witha*° performs close to optimal even for small
W= (59) system dimensions.

555 In Figure 5, we simulate the impact of transmit correlation
X@) = V(B -172w? +2(1+ Bwp+1. (60) i the computation ofv*° on the sum rate. For this purpose,
Proof: Substituting® = I,, into Corollary 7 leads to a We use the standard exponential correlation model, i.e.,

quadratic equation im°(—«*°) for which the unique positive @], = li=l
solution is given by (58), which completes the proof. m Y '
A deterministic equivalentAR? ., of the rate gap We compare two different RZF precoders: A first precoder

ARy +4f—cda Under RZF-CDA precoding is provided in thecoined RZF common correlation aware (RZF-CCA) that takes
following corollary. the channel correlation into account and computescording
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T T A. Sum Rate Maximizing Number of Users

—6-RZF-CCA 5 Consider the problem of finding the system loadifitf

N . i . —

% 8- RZF-CCU i : maximizing the approximated sum rate per transmit antenna
3 12 for afixed M, i.e.,

=

=~ 10 L X 11 & .

% . gre = arg;naxﬁg glog (1+v4), (61)

U% wherey; denotes eithefy, . with 3 > 1 orvp . with 8 > 1.

pe) 6 In general (61) has to be solved by a one-dimensional line
8 4 search. However, in case of ZF precoding and uncorrelated
2 H antennas, the optimization problem (61) has a closed-form
5 )

solution given in the following proposition.
Proposition 3: Let ®; = I, 7. = 7 Vk andP = %110

O | | | | |

0 5 10 15 20 25 30 the sum rate maximizing system loading per transmit antenna
5 [dB] £*° is given by
o 1 1
Fig. 5. RZF, ergodic sum rate vs. SNR witf = K =5, P = %IK and p = (1 B E> <1 + W(gg)) ’ (62)
72=0.05.

wherea = 717_{ z = %=1 and W(z) is the Lambert W-

function defined as =W(z)e"V(?), z€C.
to (53), and a second precoder, called RZF common correlatio  p,qof: Substituting the SINR in Corollary 4 into (61) and
unaware (RZF-CCU) that does not tat& into account and differentiating along3 leads to

computesx as in (55). We observe that for high correlation,

i.e.,v = 0.9, the RZF-CCA precoder significantly outperforms _ a8 =log(1+a(8—1)) (63)
the RZF-CCU precoder at medium to high SNR, whereas 1+a(f—1)

both precoders perform equally well at low SNR. Therefor@enotingw(3) = a(ﬂa%ll)ﬂ, we can rewrite (63) as

we conclude that it is beneficial to account for transmit

correlation, especially in highly correlated channelsrtiver w(ﬁ)ew(ﬁ) =Z.

simulations (not provided here) suggest that the sum rate gﬁloticing thatw(3) = W(x) and solving for3 yields (62),
of RZF-CCA over RZF-CCU precoding is less pronounced f%hich completes the proof -
lower CSIT qualities (i.e., increasing’), because in this case Forre[0,1], 8 > 1 we ha.vew> _1andz > —e-1. In this
the impact of the CSIT quality? is more significant than the caseW(z) is a well-defined function. 152 — 6 we obtain the

impact of® on the sum rate. results in [18], although in [18] they are not given in closed
form. Note that forr? = 0, we havelim,_,., 8*° =1, i.e.,
V. OPTIMAL NUMBER OF USERS ANDPOWER the optimal system loading tends to one. Further note thst on
ALLOCATION integer values of\//5*° are meaningful in practice.

In this section, we address two problems: (i) the determing- power Optimization under Common Correlation
tion of the sum rate maximizing number of users per transmit

antenna for a fixed/ and (ii) the optimization of the power
distribution among agiven set of users with unequal CSIT
qualities. . .
Consider problem (i). Intuitively, an optimal number of Rsum = Zk’g (L + prvic(7e)]
users K* exists because serving more users creates more k=1
interference which in turn reduces the rates of the users. With v;(7x) = 7;/pk, where the only dependence on user
some point the accumulated rate loss, due to the additiohagtems fromr,. The user powerg;° that maximize (64),
interference caused by scheduling another user, will oigtwe subject 03"+ py < P, py > 0, are thus given by the
the sum rate gain and hence the system sum rate will decregéssical water-filling solution [44]

From Corollaries 1 and 3, the approximated sum rate (46)
for both RZF and ZF precoding takes the form

K
(64)

In particular, we consider a fair scenario where the SINR 1 +

approximation of all users are equal. Here, the (approxniat i = [u - O—} , (65)
optimal solution can be expressed under a closed form for ZF vi(7)

precoding. where [z]t £ max(0,z) and x is the water level chosen to

In problem (ii), we optimize the power allocation matrixsatisfyz,{(:lp;C = P. For7? = 72 forallk, the optimal user
P for a given K. More precisely, we focus on commonpowers (65) are all equal, i.en}° = p*° = P/K andP*° £
correlation®;, = © Vk with differentCSIT qualitiesr?, since diag(p}°,...,p52) = %IK. In this case though, it could still
in this case the (approximated) optimal power distribuli®®i  be beneficial to adapt the number of users as discussed in
is the solution of a classical water-filling algorithm. Section V-A.
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24

22 H—— K*°=M/p*°, (62) | —
© 90||--- K* from exhaustive search i T
S 5
=] 2
5 8,
@ )
2 s
e
©

3}
£ =
s S
(] o—P = P*°
1 =P = %IK |
0 | | | I I
0 5 10 15 20 25 30
p [dB] p [dB]
Fig. 6. ZF, sum rate maximizing number of users vs. SNR v@h = Fig. 8. RZF-CDU,Rsum Vs. p With aa=1/p, O =I5, Vk, P=1 and
Iy Vk, 72 =0.1andP = LIk, TReT,U_78 =T1 (M=5)andr?eT2,U}_ 72 = T2 (M =3).
35 I I
- K=K~
0-8- K=K*| @ b}

From Figure 7 we observe that (i) the approximate solution
N K*° achieves most of the sum rate and (ii) adapting the
number of users with the SNR is beneficial compared to a
fixed K. Moreover, from Figure 6, we identify{ = 8 as

an optimal choice (forM = 16) for medium SNR and, as
expected, the performance is optimal in the medium SNR
regime and suboptimal at low and high SNR. From Figure
6 it is clear thatK = 4 is highly suboptimal in the medium

20

15

ergodic sum rate [bits/s/Hz]

51 | and high SNR range and we observe a significant loss in sum
0 ‘ ‘ ‘ ‘ ‘ rate. Consequently, the number of users must be adapted to
0 5 10 15 20 25 30 the channel conditions and the approximate resit is a
p [dB] good choice to determine the optimal number of users.
Fig. 7. ZF, Reum vs. SNR withM =16, ®), = I Vk, P = tIx and In Figure 8, under RZF-CDU precoding, we compare the
m2=0.1. ergodic sum rate performance with power allocatiBn=

P* from (65) to equal power allocatiof? = %IK. We
consider a system withl/ = K = 5, where the CSIT
qualities vary significantly among the users, i€ € 7; with
Figure 6 compares the optimal number of uséfs® = 7; = {0.8,0.3,0.2,0.1,0.05}, U?_, 72 = Ti. We observe
M/p*° in (62) to K* obtained by choosing thél € a significant gain over the whole SNR range when optimal
{1,2,..., M} such that the ergodic sum rate is maximizeghower allocation is applied. In contrast, if the CSIT disitmn
whereas Figure 7 depicts the impact of a suboptimal numlgfrthe users’ channels with/ = K = 3 does not differ con-
of users on the ergodic sum rate of the system. siderably ¢7 € 72, Ui _, 72 = T2 with 73 = {0.2,0.15,0.1}),
From Figure 6, it can be observed that (i) the approximatede only observe a small gain at high SNR. For increasing
results K*° do fit well with the simulation results even forSNR, the SINRs become increasingly distinct depending on
small dimensions, (i K*, K*°) increase with the SNR andthe 2. Therefore, it might be optimal to turn off the users
(iii), for 72 # 0, (K*, K*°) saturate for high SNR at awith lowest CSIT accuracy as the SNR increases, which
value lower thanM. Therefore, under imperfect CSIT, it isexplains why the sum rate gain is larger at high SNR than
not optimal anymore to serve the maximum number of useat low SNR. However, recall that the water-filling solutian i
K = M for asymptotically high SNR. Instead, depending onptimal under Assumption 2|P|| = O(1/K)) and largeM.
72, a lower number of user& < M should be served evenWe thus conclude that the optimal power allocation proposed
at high SNR which implies a reduced multiplexing gain of th&n (65) achieves significant performance gains, especatlly
system. The impact of different numbers of users on the surigh SNR, when the quality of the available CSIT varies
rate is depicted in Figure 7. considerably among the users’ channels.

C. Numerical Results
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VI. OPTIMAL FEEDBACK IN LARGE FDD MULTI-USER In the following, in particular under RVQ, we will derive

SYSTEMS the necessary scaling of the distortiohto ensure that
Consider a frequency-division duplex (FDD) system, where Moo
the users quantize their perfectly estimated channel veatuwd ARy —logy b "—" 0,

send the codebook quantization index back to the trangmitt : , . .
over an independent feedback channel of limited rate. TRANOSt surely, wheré Jz; is defined in (48) and > 1. Thatis,

feedback channels are assumed to be error-free and of Z%Ipoonstant rate gap dbg; b is mamtameobxactlyasM,K_ -
delay. The quantization codebooks are generated prior 3p A constant rate gap ensures that the full multiplexing gain

transmission and are known to both transmitter and resec K |sba(t:h|eve;j. 'I;hu? the ptropt)ﬁsed ?calllngglé,o gluatllranteirsl a
receiver. Due to the finite rate feedback link, imposing graer but constant rate gap fo th€ optima sotion wi

- ; : %erfect CSIT. The choice of a rate offdeg, b is motivated
finite codebook size, the transmitter has only access to nmere mathematical convenience to avoid terms of the form
imperfect estimate of the true downlink channel. To obtali

tractable expressions, we restrict the subsequent agalysi af‘f] tﬁ.be compliant W;th [?51' I h
i.i.d. Gaussian channels, ~ CA’(0, 1) Vk. With this strategy we closely follow [45]. In [45, Theorem

In the sequel, we follow the limited feedback analysis ifll]' the author derived an upper bound of thgodicper—user
[45], where each usershannel directionh;, 2 —h:_ js 9a@p ARy for ZF precoding with)/ = K and unit norm

hyl2 i i i i
guantized usingB bits which are subsequently fgd W)ack t(precodmg vectors under RVQ, which is given by

the transmitter. Under Rayleigh fading, the charimglcan be
decomposed aB;, = ||hg||2 - hi, where we suppose that the

channel magnitudghy || is perfectly known to the transmitter : _ .
9 #hl> is p y We cannot directly compare the deterministic equivalents

since |t_ can be efficiently q_uan'uzed with only a few b't?o the upper bound in (68) for two reasons, (i) under ZF
[45]. Without loss of generality,we assume random vector : L ;
precoding and// = K, a deterministic equivalent for the per-

quantization (RVQ), where each ugedependentlgenerates user rate gap does not exist and (ii) [45] considers unit norm

a random codebook;, £ {wy;,..., Wy} containing2”? : . ) )
vectorswy; € CM that are isotropically distributed on the - precoding vectors, whereas in this paper we only impose a
. N . . .. total power constraint (1). Concerning (i), at high SNR, we

dimensional unit sphere. Subsequently, usequantizes its o : :
channel directiori. to the closestv.. according to can use the deterministic equivalent for RZF-CDU precoding
R b ki g given in Corollary 5 as a good approximation for ZF pre-
h, = arg max HleWkiH- coding, since for high SNR the rates of RZF-CDU and ZF

Whi €Cr precoding converge. Regarding (i), deriving a deterntiis
Under RVQ, the quantized channel directicﬁq €Cis equivalent of the SINR under linear precoding with a unit

isotropically distributed on th&/-dimensional unit sphere duenOrm power constraint on the precoding vectors is difficult,

to the statistical properties of both, the random codeh@ok since it introduces an additional non-trivial dependenoe o
and the channell,. Thus, forfine quantizationwith small the channel. However, it is useful to compare the accuracy

errors, the entries of bothy, and by, — b > - b, can be of the upper bound in (68) and the deterministic equivalent

modeled with good approximation as i.i.d. Gaussian of ze%R{“Zf—Cd“ n Cprollary 5 at high SNR. .
Figure 9, depicts the per-user rate gap as a function of

Lneezn ?gii;r;:e\aag:n(f'cx‘&una;‘t;Z;'c;Zgr\rvoer (\:/gﬁksvcrﬁz the feedback bits3 per user under ZF precoding at a SNR
PP k M of 25 dB. We simulated the ergodic per-user rate gaR,¢

hy = /1 — 72hy, + Trey, (66) and E[ARy, ,¢] of ZF precoding with unit norm precoding
vectors and total power constraint, respectively. We compa
where 77 is the quantization error variance. The scaling ithe numerical results to the upper bound (68) and to the
(66) is required to ensure that the elementshgfhave unit deterministic equivalenARy ¢ 4, for M = K =5 and
variance. Therefore, the effect of imperfect CSIT under RVQy — K = 10. For both system dimensionAR,; and

in (66) is captured by the channel model (6). For RVQ, the|AR, ] are close, suggesting that our results derived under

quantization error? £ HBEflkH can be upper bounded as [45the total power constraint may be good approximations fer th

Lemma 1] case of unit norm precoding vectors as well. As mentioned in
2 < 9~ W=t (67) [45], the accuracy of the upper bound increases with inangas

: o . B but the deterministic equivale®® R} . .4, appears to be
The bound in (67) is tight for larg# [45]. Moreover, since more accurate for both/ — K — 5 and M — K — 10.

the quantization codebooks of the users are supposed to, b B - o ;
of equal size, the resulting CSIT distortions can be assumlgd act, for M = K = 10, AR, ¢ _cq, approximates the

. ! : : ! er-user rate gap significantly more accurately than thewupp
identical, i.e.,7? = 72 Vk. Under this assumption and equa| :
power allocation, for largell, the SINRA® is identical for Eound (68) for the given SNR. We conclude that the proposed

I ; ... deterministic equivalenf\Ry, . 4, iS sufficiently accurate
all users and, hence, optimizing is equivalent to optimizing . ;12 —cdu .
o o b and can be used to derive scaling laws for the optimal feddbac
the per-user rat&° = log,(1+~°) bits/s/Hz and the sum rate

b KR rate.
s ' In the following, we compare the scaling of under RZF-
1The derived scaling results hold fany quantization codebook [45]. CDA, RZF-CDU and ZF i/ > K) precoding to the upper

AR, < log, (1 +p- 2*%) : (68)
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—— AR, B~ E[ARy 4] results hold also for ergodic per-user rates as a conseguenc
-a- (68) - *- AR} Lt cdu of the dominated convergence theorem, see Remark 5.

Consequently, a comparison of the results in [45] to our
solutions is meaningful, especially for larger values Xdf
where our results become upper bounds.

In the following section, we apply the deterministic equiva
lents of the per-user rate gap under RZF-CDA, RZF-CDU and
ZF precoding provided in Corollaries 9, 5 and 6, respedfjvel
to derive scaling laws for the amount of feedback necessary
to achieve full multiplexing gain.

A. Channel Distortion Aware Regularized Zero-forcing Pre-

per-user rate gap [bits/s/Hz]

coding
—tal Proposition 4: Let ®; =1I,; Vk. Then the CSIT distortion
0.5 % B S — ____ _—_—3 72, such that the rate gap\Rj ,.t—cdn Of USerk between
|

0 RZF-CDA precoding with perfect CSIT and imperfect CSIT
28 29 30 31 32 33 34 35 36 37 38 satisfies

M—o0

B ARk.,rszcda - 10g2 b"—"0
Fig. 9. ZF, per-user rate gap vs. number of bits per user with 25 dB, almost surely, has to scale as
®k :Ij\/j Vk o
7_2 _ ¢rzf—cda(p’ b) (69)
P

bound given for ZF ¥/ = K) precoding in [45, Theorem 3]. pl(1+B)b+8(8—-1)] - L( 62 — b?)
For the sake of comparison, we restate [45, Theorem 3]. Drzi—cdalp,b) = 1+ B8)b+00B8—1)+ i(b p2)

Theorem 4: [45, Theorem 3]. In order to maintain a rate b (70)
offset no larger tharlog, b (per user) between zero-forcing
with perfect CSIT and with finite-rate feedback (LAR(p) < §=1=b+x(1)+p(B-1),

log, b Vp), it is sufficient to scale the number of feedback b'tv':&/herex is defined in (60). With3 = 1, the distortionr? has
per mobile according to

to scale as
By = (M —1)logy p— (M — 1) logy(b — 1) , 1+4p_5_21
M—-1 2= " -
~ 3 PdB — (M— 1)1Og2(b—1) 3+ p
where pas = 101log;, p. It is also mentioned that the result ~ Proof: SetAR,,¢ 4. given in Corollary 9 equal ttog, b
in [45, Theorem 3] holds true for RZF-CDU precoding fognd solve forr?. ]

high SNR, since ZF and RZF-CDU precoding converge fdkthough the proposed scaling of in (69) converges to zero

asymptotically high SNR. Furthermore, it is claimed, ctrro for asymptotically high SNR, we can approximate the term

orated by simulation results, that [45, Theorem 3] is trudain ®g,;_.q4.(p; ) in the high SNR regime.

RZF-CDU precoding fomll SNR. Proposition 5: For asymptotically high SNR, the term
In order to correctly interpret the subsequent resultss it #5,;_.q.(p,b) defined in (70) converges to the following

important to understand the differences between our approdimits,

and the approach in [45]. The scaling given in [45, Theorem o1 =1
3] is a strict upper bound on thergodic per-user rate gap lim ¢°; q.(p, D) = B (71)
Eu[ARy] for all SNR and allM = K under a unit norm pre0 b—1 if g>1.

constraint on the precoding vectors. In contrast, our aggro
yields a necessary scaling of that maintains a givein-
stantaneoudarget rate gagdog, b exactlyas M, K — oo
under a total power constraint. Therefore, our results atnee form

not upper bounds for small/, i.e., we cannot guarantees — 1—p+(5—1)p+|1—B|p (1 + o(1)) =% 2p(8—1)+1—b.
that AR, < log,b for small dimensions. But since for

asymptotically large)/, the rate gap is maintained exactly and herefore, forp — oo, (70) converges to — 1, which

we apply an upper bound on the CSIT distortion under Rvepmpletes the proof. . ]
(67), it follows that our results become indeed upper boundsRemark 7:Note thatlim, w = 0 and thus,

for large M. Simulations reveal that under the derived scalinge requireg > 1 to ensure that the Ilmyb — oo of the deter-

of 72, the per-user rate gap is very closelt@, b even for ministic equivalent is well defined, see Remark 6. However,
small dimension, e.gM = 10. Concerning the ergodic andfor finite SNR with the approximation in Proposition 5, we
instantaneous per-user rate gap, the reader is remindenutha have? > 0 and the scaling result holds true.

Proof: For =1 observe that scales ag,/p. Thus, for
p — 0o, (70) converges td? — 1. If 3 > 1, the term§ takes
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To compare Proposition 4 to [45, Theorem 3], we use tl@most surely, the distortion? has to scale according to
upper bound on the quantization distortion (67), i=,= , #%(p,b)

rzf —cda T = =/

27 m=1 ", whereB;, is the number of feedback bits per p

rzf—cda
user under RZF-CDA precoding. Thus, (69) can be rewritten (b— 1)1+ p(B —1)]
S l=b+(B-Dp+b]

as Gue(p;b) =
= (M—1)logy p—(M—1)10gy Pprs_cqalpsb). (72) Proof: From Corollary 6, seAR.; = log, b and solve
for 72. [
Proposition 8: For asymptotically high SNR¢2:(p, b) in
?75) converges to

(75)
fzf—cda

B. Channel Distortion Unaware Regularized Zero-forcin
Precoding

Although the RZF-CDU precoder is suboptimal under im- Jim bae(p,b) = b— 1. (76)
perfect CSIT, the results are useful to compare to the work in
[45].

Proposition 6: Let ®; =1I,; Vk. Then the CSIT distortion
72, such that the rate gaf\ Ry yur—cau With o = 1/(8p) of % = (M —1)logy p — (M — 1) log, ¢3¢ (p, b). (77)
userk between RZF-CDU precoding with perfect CSIT and
imperfect CSIT satisfies D. Discussion and Numerical Results

ARyt —cdu — logy b M=o At this point, we can draw the following conclusions. The

’ optimal scaling of the CSIT distortion? is lower for 3 =
almost surely, has to scale as 1 compared to3 > 1. For 3 = 1, the optimal scaling of

¢ (p,b) the feedback bitsB? ; ..., Bei_.qn @and B for ZF in [45,

7% = %, Theorem 3] are different, even at high SNR. In fact, for large

o e M, under RZF-CDU precoding and ZF precoding, the upper

(b= 1A +m*)(p+m?) , bound in [45, Theorem 3] appears to be too pessimistic in

(b= 1=m°)[L —m°] + bm°[1 + Lme] the scaling of the feedback bits. From (74) and (73), a more

wherem® is defined in (32) andn® 2 (1 + m°)2. accurate choice may be
Proof: Set ARy, ;,t—cau from Corollary 5 equal tdog, b = (M —1)logy p — (M —1)logy(2(b— 1)), (78)
and solve forr2. [ ]
An approximation of the terna? ;. _,.(p,b) at high SNR
is given in the following proposition.
Proposition 7: For asymptotically high SNR#2 . _..(p,b)
converges to the following limits,

Proof: From (75), the result is immediate. ]
Under RVQ with B, feedback bits per user, we have

¢?szcdu (pv b) =

o
rzf—cdu

i.e., M — 1 bits less than proposed in [45, Theorem 3].
However, recall that (78) becomes an upper bound for lafge
and a rate gap of at lealstg, b bits/s/Hz cannot be guaranteed
for small values ofM. Moreover, for high SNRjs = 1 and
large M, to maintain a rate offset dfog, b, the RZF-CDA
2(b—1) if =1 precoder require$)M — 1) log,(%52) bits lessthan the RZF-
bo1 g1 (73) CDU and ZF precoder and\/ — 1) log, (b+ 1) bits lessthan
‘ the scaling proposed in [45, Theorem 3].
Proof of Proposition 7: For 3 = 1 and p large, m® In contrast, for3 > 1 and high SNR, we hav&; ; ;. =
scales as/p. Thereforelim, oo ¢%,;_.qu(p,b) = 2(b — 1).  Bg; .4, = Bg. Intuitively, the reason is that, fof > 1,
If 3> 1, for large p, the termm° scales ap(3 — 1). With the channel matrix is well conditioned and the RZF and
this approximation we obtailim, o ¢S,; .4.(p,b) =b—1, ZF precoders perform similarly. Therefore, both schemes ar

lim d)lcr)zf—cdu(pv b) =

p—00

which completes the proof. m equally sensitive to imperfect CSIT and thus the scaling?f
Applying the upper bound on the CSIT distortion undds the same for high SNR.
RVQ (67) with BS ;_ ., bits per user, we obtain Note that our model comprises a generic distortion of the

. . CSIT. That is, the distortion can be a combination of diffgre
vsf—cdu = (M = 1)1ogy p— (M — 1) logy &7 _cau(P,0)-  additional factors, e.g., channel estimation at the recsiv
(74) " channel mismatch due to feedback delay or feedback errors
(see [47]) as long as they can be modeled as additive noise
C. Zero-forcing Precoding (6). Moreover, we consider i.i.d. block-fading channelbjah
The following results are only valid foB > 1 and thus, €an be seen as a worst case scenario in terms of feedback
they cannot be compared to [45, Theorem 3] which are derivederhead. It is possible to exploit channel correlatioririmet
under the assumption/ = K. However, for high SNR the frequency and space to refine the CSIT or to reduce the amount
results for the RZF-CDU precoder are a good approximati@h feedback.

for the ZF precoder as well, even for= 1. Figures 10 and 11 depict the ergodic sum rate of RZF
Corollary 10: Let 3 > 1 and®, =I,; Vk. To maintain a Precoding under RVQ and the corresponding number of feed-
rate offsetAR,. ,; such that back bits per userB, respectively. To avoid an infinitely

u high regularization parameter*, the minimum number of
ARy, 5 —logy b 570 feedback bits is set to one.
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—— RZF, 72 = 0 (total power)- - - RZF, 7% = 0 (unit norm) SNR approximation in (78) under RZF-CDA and RZF-CDU

—6— RZF-CDA, B¢ _ 4, (72) =B~ RZF-CDU, BY; _ 4. (72) precoding, respectively, (ii) given an equal number of fadk
—A— RZF-CDU, B = M1 5 —#— RZF-CDU, By ., (78) bits (72), the RZF-CDA precoder achieves a significantly
70 higher sum rate compared to RZF-CDU for medium and high

SNR, e.g., about 2.5 bits/s/Hz 2t dB and (iii) to maintain a
sum rate offset of< bits/s/Hz, the proposed feedback scaling
of B= %pdg for unit norm precoding vectors [45] is very
pessimistic, since the sum rate offset to RZF with total powe
constraint and unit norm constraint is abéubits/s/Hz andr
bits/s/Hz at20 dB, respectively.

We conclude that the proposed RZF-CDA precoder sig-
nificantly increases the sum rate for a given feedback rate
or equivalently significantly reduces the amount of fee#tbac
given a target rate. Moreover, the scaling of the number of
feedback bits under RZF-CDU precoding proposed in [45,
Theorem 3] appears to be less accurate under a total power
constraint than our large system approximation in (72).
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20

ergodic sum rate [bits/s/Hz]

10

VII. OPTIMAL TRAINING IN LARGE TDD MULTI-USER
SYSTEMS

Fig. 10. RZF, ergodic sum rate vs. SNR under RZF precoding RWQ Consider atlme-leISIOH duplex (TDD) system Whe.re uplink
with B feedback bits per user, whet® is chosen to maintain a sum rate (UL) and downlink (DL) share theamechannel at different

offset of K log, b=10, ©), = Iy Vk and M = K = 10. times. Therefore, the transmitter estimates the chanoeh fr
known pilot signaling of the receivers. The channel cohegen
90 : : interval 7', i.e., the amount of channel uses for which the
s0 |1 - B2 quw (72) A channel is approximately constant, is divided ifffochannel
- B— M?)—lde, [45] % uses for UL training and” — T; channel uses for coherent
70 H—— B qu (78) e transmission in the DL. Note that in order to coherently
60 =% B (74) y | decode the information symbols, the users need to know their
7 effective (precoded) channels. This is usually accometidhy
50 |- : 7 a dedicated training phase (using precoded pilots) in the DL
_ prior to the data transmission. As shown in [48], a minimal
401 h amount of training (at most one pilot symbol) is sufficient
30| e 7 when data and pilots are processed jointly. Therefore, we
assume that the users haerfectknowledge of their effective
201 £ h channels and we neglect the overhead associated with the DL
10} - training.
N—_— ‘ ‘ ‘ ‘ In the considered TDD system, the imperfections in the
0 5 10 15 20 25 30 CSIT are caused by (i) channel estimation errors in the UL,
p [dB] (ii) imperfect channel reciprocity due to different hardwan

the transmitter and receiver and (iii) the channel cohexenc
Fig. 11. RZF,B feedback bits per user vs. SNR, wifhito maintain a sum interval 7. Inl what follows, we assum_e.tha.'t the Chan.nel IS
rate offset ofK logy b=10 and @, =1, Vk, M = K =10. perfectly reciprocal and we study the joint impact of (i) and
(iii) for uncorrelated channelsd;, = I,; Vk).

In Figure 10, we plot the ergodic sum rate for RZF precod. Uplink Training Phase
ing under perfect CSIT with total power constraint (red@oli In our setup, the distortion? of the CSIT is solely caused
lines) and unit norm constraint on the precoding vectord (réy an imperfect channel estimation at the transmitter and is
dashed line). We observe, that the sum rate under unit noitentical for all entries ofHl. To acquire CSIT, each user
constraint is slightly larger at high SNR, suggesting that otransmits the same amoufl, > K of orthogonal pilot
scaling results for RZF precoding derived under a total powsymbols over the UL channel to the transmitter. Subseqyentl
constraint become inaccurate under the unit norm constfinthe transmitter estimates all channels simultaneously. At
high SNR. Hence, one has to be cautious when comparing the transmitter, the signal, received from usek is given by
scaling in [45, Theorem 3] directly to the scaling derivedhwi
the large system approximations at high SNR. From Figure vy = VTiPuhyg + 0y,
10, we further observe that (i) the desired sum rate offsehere we assumed perfect reciprocity of UL and DL channels
of 10 bits/s/Hz is approximately maintained over the giveand P,; is the average available transmit power at the re-
SNR range wherB is chosen according to (72) and the higlteivers. That is, the UL and DL channel coefficients are equal



and the UL noisen, =[n1, no, ..

.,nu]T is assumed identical R'“
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are strictly concave irf; ,; and T; ., in the interval

sum

for all users and statistically equivalent to its DL analodX,T], respectively, whereX is the minimum amount of
Subsequently, the transmitter performs an MMSE estimatitraining required, due to the orthogonality constraint loé t

of each channel coefficienit;; ~ CN(0,1) (i =1,..., K,

pilot sequences. Therefore, we can apply standard convex

j=1,..., M). Due to the orthogonality property of the MMSEoptimization algorithms [50] to evaluate

estimation [49], the estimatéﬁj of h;; and the corresponding
estimation errorsh;; = h;; — h,;; are uncorrelated and i.i.d.

complex Gaussian distributed. Hence, we can write

hij = hij + hij,

where h;; and h;; are independent with zero mean an

variancel — 72 and 72, respectively. The variance® of the
estimation error;; is given by [47]
1
2
- 79
’ 1+ Ttpul ( )

where we defined the uplink SNR,; as pu; 2 P, /o2

B. Optimization of Channel Training

We focus on equal power allocation among the users, i.e.,

P/K Vk, because it is optimal for largé/ and

Pk

zf

*0 >
Ty = argmax R, (86)
K<Ty s <T
*0 przf
Tfre = argmax R . (87)
K<T} 10t <T

the following, we derive approximate explicit solutiotts
86) and (87) for high SNR. We distinguish two cases, (i) the
UL and DL SNR vary with finite ratioc £ pg;/p. and (ii)
par Varies, whilep,; remains finite. In contrast to case (i),
the system in case (ii) is interference-limited due to théefin
transmit power of the users.

1) Case 1: finite ratiqpa;/p.i: We derive approximate, but
explicit, solutions for the optimal training intervals S, 77,
in the high SNR regime and derive their limiting values for
asymptotically low SNR.
a) High SNR Regime:An approximate closed form
solution to (86) and (87) is summarized in the following

2 = 72 Vk, see Section V-B. Sinc#; channel uses have proposition.
already been consumed to train the transmitter about the useProposition 9: Let pg;, p.i be large withc = pg;/pwi con-

channels, there remains an interval of len@th- 7; for DL
data transmission and thus we have the pre-log fdctdF; /T .
The net sum rate approximation reads
A T;
Rsum =K <1 - ?t) 1Og (1 + 7]2) : (80)
To compute the training length; that maximizes the
net sum rate approximation (80), we substityte,; from

Corollary 4 into (80) and the approximated net sum n’%g@m
under ZF precoding takes the form

Tyt 1— 72
zK(l—tT’t>log (1+#(ﬁ—1)>, (81)

pat

R%
where pg £ P/o?. Similarly, for RZF-CDA precoding the
approximated net sum rai@'”t reads

sum

rg =K (1- T o400, @)
where~;, ; is given in Corollary 8.
Substituting (79) into (81) and (82), we obtain
~ Tt zf Tt zf Pul (5 - 1)
RA =K(1-—%)log|1 ’
(83)
- T} rat 1 1 (w)
rzf —Kkl(1- t,rzf 1 - - _1 X
Rsum T 0og 2 + 2Wpdl(ﬂ )+ 2 s
(84)
x(@) = /(8 = 12202 + 2wpa(1+ B) +1, (85)

W= Tt,rzfpul
1+ Ty potpul + par

For 8 > 1 under ZF precoding angg > 1 for RZF-CDA
precoding, it is easy to verify that the functiodg! and

stant. Then, an approximation of the sum rate maximizing
amount of channel training;’;; and7;?,; under ZF and RZF-
CDA precoding is given by

i c 2I'+c ¢

o = max li 142 T —§,K], (88)
, max [% 1+ ig{fc -5 K =1 (89)
t,rzf max |:§ 1+2iTR§;C_§’K:| |fﬂ>13

where R, =log(1 + pai(B8 — 1)) and RS, =log (5 + 3 pai(8 —
1) + 2,
Proof: The proof is presented in Appendix V. [ ]

Thus, for a fixed DL SNRyy;, the optimal training intervals
scale asly ., Ty r, ~ VT. Likewise, for a constant’, the
optimal training intervals scale &%, 17, ~1/+/log(pai)-
Under ZF precoding the same séalingj has been reported in
[51]-[53]. From this scaling it is clear that, ag, — oo, T}°
tends toK, the minimum amount of training.

Moreover, for3>1, RS . > RS, with equality if pg — oc.
Therefore, RZF-CDA requires less training than ZF, but the
training interval of both schemes is equal for asymptotjcal
high SNR. In case of full system loading £ 1), RZF-CDA
requires less training compared to the scenario witerd.

b) Low SNR Regime:For asymptotically low SNR
pdi, pui — 0 with constant ratie = pg; / p.; the optimal amount
of training is given in the subsequent proposition.

Proposition 10:Let pg;, po; — 0 with constant ratioc =
pdi/pw @ndT > 2K. Then, the sum rate maximizing amount
of channel trainindly';; and 7;7,, under ZF and RZF-CDA
precoding converges to

lim T/; lim 77 r 90
i Toge = Hm T =5 (90)
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Proof: Applying log(14) = z+0(z?) andp. = pai/c, 50 —
equations (83) and (84) take the form a5 H Tt ot Loeat o
T\ Tone(B— 1) ol T (89, T2 (87) ;
REL =K (1 - t;f) S Pl 4+ Olpd). (91) o +T:;f (88), T/'5,¢ (89)
rz T ,rzf T rzfﬁ S
RUL =K (1 - tT> - c pa + Opg)- (92) é 30
= 25
Maximizing equations (91) and (92) with respectfip,; and =2
Tt .t respectively, yields (90). Since, by definition, we assumeg 20
orthogonal pilot sequences, hengg > K, the result (90) £ 15
implies thatT > 2K, which completes the proof. ] 0
For ZF precoding, the limit has also been reported in [54].
2) Case 2:pg; > py With finite p,,;: This scenario models 5@

a high capacity DL channel where the primary sum rate loss 0 ‘ ‘ ‘ ‘

stems from the inaccurate CSIT estimate due to limited-rate 0 200 400 600 800 1,000
UL signaling caused, e.g., by a finite transmit power of the T

users. Thus, the system becomes interference-limitedfand t

optimal amount of channel training under ZF precoding Fég 12. ZF and RZF-CDA, optimal amount of training witff: = 2,
glven in the fOllOWIhg proposmon =20 dB, p,; =10 dB, ®; = I,; Vk, RZF is indicated by circle marks.

Proposition 11: Let py; — oo andp,,; finite. Then the (ap-

proximated) sum rate maximizing amount of channel training 0.5
T;5¢ is given by
1 a 0.4
o = -1, (93)
Y pu(B 1) (W(ae) )
whereW(z) is the Lambert W-function. e, 03
Proof: For ZF precoding angg — oo, the sum rate (83) o~
can be approximated as [y 0.9
pzf Tt zf L
R ~K(1- T log (1 + Tt ptpu(B—1)).  (94) 100
0.1
Setting the derivative of (94) with respect I8 ,¢ to zero, P
yields 300
1 Ty ) = Ty ) — 1’ 95 0 | | | | | |
og(a/w(Trar)) = w(Ttar) (95) 730 —20 —10 0 10 20 30 40
wherea 2 p T (3—1)+1 andw(Ty ) 2 (Ta) /[T + Ty ue(a — par [0B]
1)]. Equation (95) can be written as
(T pe) Fig. 13. ZF and RZF-CDA, optimal relative amount of trainiigf® /7" vs.
w(Tyu)e M) = ae. par With M =32, K = 16, pyi/pui = 10, ©), = In; Vk, RZF is indicated
. . by circl ks.
Notice thatw(T; ,¢) =W(ae). Thus, solvingu(T; .¢) =W (ae) y clrele marks
for T} ,¢ yields (93). [ |

For asymptotically lowp,,, we obtainlim,,, o 7}, =T7/2,
implying thatT > 2K.

For RZF-CDA precoding, no accurate closed-form solutio
to (87) has yet been found.

Figure 13 depicts the optimal relative amount of training
*°/T for ZF and RZF-CDA precoding. We observe that
+°/T decreases with increasing SNR B5,/log(pa;). That
is, for increasing SNR, the estimation becomes more aczurat
and resources for channel training are reallocated to data
C. Numerical Results transmission. Furthermor&;° /T saturates ak /7" due to the

In Figure 12, we compare the approximated optimal trainirgjthogonality constraint on the pilot sequences. As exggect
intervals T;g;, Ty'o,¢ to 17 ¢, T},,; computed via exhaustive from (88) and (89), we observe that the optimal amount of
search and averaged ovef00 independent channel realiza-training is less for RZF-CDA than for ZF precoding. Moreqver
tions. The regularization parameteris computed using the the relative amount of trainin@;°/T" for both ZF and RZF-
large system approximatian*® in (55). Figure 12 shows that CDA converges at low SNR t(11/2 and at high SNR to the
the approximate solution®}g,, T;c, become very accurate minimum amount of traininds, as predicted by the theoretical
for K = 16. Moreover, it can be observed that the approxgnalysis.
mations in (88) and (89) match very well. Further note that Figure 14 shows the ergodic sum rate under ZF precoding
for 2£ = 2, ZF and RZF-CDA need approximately the samwith fixed UL SNR p,, =5 dB for various training intervals.

amount of training, as predicted by equations (88) and (89)Ve observe (i) no significant difference in the performance
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120

whereD is an auxiliary random variable involving the terms
mey,e,(z). Appendix I-B shows that the sequenpév)

: deﬁned by (12) converges toy; (11) ask — oo, if properly
initialized. Finally, in Appendix I-C we demonstrate tha ;

. g N—oco
satisfiesimg,y,@;, —en,i| — 0, almost surely.

—— perfect CSIT
100 © Le=T/y
--- T, =T/, (86)

OH T,= Tt*;t' (93)

60 A. Convergence to an Auxiliary Variable

The objective is to approximate the random variable

40 mB,,qy (2) by an appropriate functiona}trD~! such that

ergodic sum rate [bits/s/Hz]

1 N fe%e)
90 QN (By —2Ix) " 1—NtrD 1289, (96)

almost surely. Take € C*. From (96) we proceed by applying

O | | H
0 5 10 15 20 25 30 35 Lemma 2 and obtain
par [dB] Qn (By —zIy) ' =D =
D! [D— (XNXy+ Sy — 2In)QN By — 2Iy) "
Fig. 14. ZF, ergodic sum rate vs. downlink SNR witi = 32, K = 16, [ ( NAN N N)QN } QN( N N)(97)

Pul =25 dB, O, =1 Vk and 7' =1 000.
We chooseD as

of the schemes employing either optimal trainifig,;, com- D=(R+Sy - zIn) Qy, (98)
puted via exhaustive search, 07, obtained from a convex
optimization of the large system approximation (83), (ii) a
small performance loss at low and medium SNR of the (highQxy (By — zIy) " — D™}

SNR) approximation oiT*Of in (93) and (iii) a significant  _ p-1R (By — 2Iy) ' — D 'XN Xy (By — 2Iy) .
performance loss if the minimum training intervBl . = K

is used for all SNR. We conclude that our approximation igonsider the termD~ 1XH XN (By — ZIN) . Taking the
(93) achieves very good performance and can therefore thece, together witiK¥ Xy =>"" | ¥,y;y' ¥, we have
utilized to computel; ,¢ very efficiently.

whereR is to be determined later, and obtain

1 _
NtrD—lxy'VXN (By — 2Iy) "
VIIl. CONCLUSION

1 _ -1
In this paper, we presented a consistent framework for the = NUD ! E T,y ;' (By — 21x)
study of ZF and RZF precoding schemes based on the theory i=1
of large dimensional random matrices. The tools from RMT _ 1 Z H(By - 2Iy) ' D~ '@y,

allowed us to consider a very realistic channel model ac-
counting for per-user channel correlation as well as irtligi
channel gains for each link. The system performance unde#notingBy) = By — ®,y;y;' ¥} and applying Lemma 1,
this general type of channel is extremely difficult to study¥e obtain

for finite dimensions but becomes feasible by assuming large —1~H -1

. . . . o —trD XXy (By —zI
system dimensions. Simulation results indicated thatethes N N N( N N)
approximations are very accurate even for small systemmime n B — zIN)A D',y
sions and reveal the deterministic dependence of the system N Z

T .
performance on several important system parameters, such a 1+ yH\IIH (B[Z] B ZIN) Wiy
the transmit correlation, signal powers, SNR, and CSITigual Therefore, the left-hand side of (96) takes the form
Applied to practical optimization problems, the deterrsiiti 1 41 .
approximations lead to important insights into the system NUQN (By —zIy) " — NtrD
behavior, which are consistent with previous results, but g 1 1 1
further and extend them to more realistic channel models and - NUD R (By - 2Iy)
other Imgar precoding techniques. Furthermor_e, the mego 1 s yHoH (BH _ ZIN)_I D ¥,y,
channel-independent performance approximations candz us -~ - — . (99)
to simulate the system behavior without having to carry out - 1+y; ¥ (Bm - ZIN) Wiyi
extensive Monte Carlo simulations. The choice of an appropriate value f&, such that (96) is
satisfied, requires solme intuition. From Lemma 4 wle know that
PROOAI;P(;:E-ll'\II-I?I;EIREM 1 v (B[i] - ZIN) Piyi — %trei (B[i] - ZIN) =¥
0, almost surely. Then, from Lemma 8, we surely have
The proof is structured as follows: In Appendix I-A, we 1 1 Noeo
prove thatmg,,qy (2) — 4trD~" =% 0 almost surely, 7 tr©: (Byy —2In) - i (By —zIn) —0.




From the previous argumentR, will be chosen as

1< 0,
R=— .
N ; 1+ %tr@i (BN — ZIN)il

Note thatR is random since it depends @1 . The remainder
of this subsection proves (96) for the specific choicéRoin

(100). Substituting (100) into (99) we obtain

1 1
wy 2 wg, £ QN (By — 21y) ' NtrD’l (101)

1 s 2tr©; (By —2Iy) 'D!

N i—1 1+ %tr@i (BN — ZIN)_l

" yH e (B — 2Iy) T Dy,
v

7

1 i
_ = - .
N 14y el (B — 2In) Ty,

N—o00

In order to prove thatvy "— 0, almost surely, we divide

the left-hand side of (102) intdn terms, i.e.,

R Y CO R C R B
wN_N;[di +d® +d® +d").

Itis then easier to show that eaa}jl\), (l=1,2,3,4), converges
to zero, sufficiently fast, asvV. — oo, which will imply

wWN N=go 0, almost surely. Thelz(.l) are chosen as

yi el (B — ZIN)_l D ',y

PO ]
1+y' e (B — ZIN)_l viyi
B yHet (B — ZIN)_l D '¥,y;
1+ ylol (B - ZIN)_1 v,y;
1
o ntr®; (B —zIy) Dy

14 yHe! (B — Z’Iz\/)i1 .y;
—1
1+yf'el (By — ZIN)il W,y
4B _ %t (By —2ly) "D
' 1+yHe! (By - ZIN)_l .y;
—1 _
N tr0; (B — zIy) Dy
1+ y!"\Ili" (BM — ZIN)il \I/iyi
d(4) _ %tr@i (BN — ZIN)il D!
1+ %tr@i (BN — ZIN)_l
| {®;(By —2Iy)” D!
1+ yf'\Ilf' (B[i] — ZIN)_1 \I’iyi7

i

where we defined

—1
1 & o,
D! = -y IN+S
[0 QN(N;HmBW@i(z) #v+ N) ’

WheremB[i%@i (Z) = %tr@i (B[z] — ZIN) _1.
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as Elluwy|P] < E[(ng1 d;)?]. The application of Holder's
inequality yields

p—1 n 4
Bl < (3) 3L B[dV].
i=1 [=1

Furthermore, for som&, @ < oo, we can uniformly bound®;
andQy as

limsup sup ||©;|| <T (104)
N—oo 1<i<n

limsup || QN < Q. (105)
N—o0

Proposition 12:Let the following upper bounds be well
defined and let the entries gf; have eighth order moment

of order O (5=). Then thepth order moments [|d§l)|P},
(1=1,2,3,4) can be bounded as

BT3QIZI3>p 1 (cé”

[ ()] p—1 .
Elld 1) <2 < (S32)7 Ne \ N»/2

_ _ 4 (2)
@) 1p lz|* Cp

E[ld®p] < < [2ITQ )p {1+ BTQW]p

+ 1) (106)

N(S2)3 (S2)4
_ ) 2\ P (4) P
(4) p p—1 TQ|Z| Cp T
Elld7F) <2 ( (32)4 ozt Ne(Sz)p |’

where theCI(f), ie€{1,2,4} are constants depending only on

D.
Proof: The proof is based on various common inequali-
ties. Applying Lemma 9]d§1)| can be upper-bounded as

|2]

Sz

)
ld; | < [4]

I By - 21y) ' [D - D Wiy

We further bounqd§1)| by applying Lemmas 10 and 12 with
the fact thatf| (Bj; — 2Ix)~'| < 5. Together with (104) we

have
|2|T

(S2)?
Similarly, with Lemma 2, it can be shown th|a)[;]1—D*1|| <

2 2
%(@‘)ﬂ, and thus

atV| <

Iy 31D ~ D

Wﬂyi

The pth order moment ofd§1)| thus satisfies

5[0 < [ ZZ2) B il

Applying the inequalityjz + y|P < 2P~1(|z|? + |y|P) yields

E[ldVp] <2 (%)p (& [[yHy: = 1]7] + 1)

In the course of the development of the proof, we requité the momentsE[|d§1)|4] and E[|d§1)|2p] exist and are

the existence of moments of ordgrof wy in (103), i.e.,

bounded, we can apply Lemma 3 and obtain (106). For the

E[lwn|P] # 0, for some integerp. First we bound (103) sake of brevity, we omit the derivations of the remaining
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momentsE[|d§l)|P], I = {2,3,4}, since the techniques are Proposition 14: Any sequence[eg\]f,)i(z)}, (k > 0) defined

similar to the previous procedure. ]
From Proposition 12, we conclude that dﬂ[|d§l)|i’] are
summable ifp = 2 + ¢, ¢ > 0. Therefore, E [Jwy]|?P] is

summable fop=2 + 5 and hence the Borel-Cantelli Lemma.. tr@,; Ak
[40] implies thatwy 290 0, almost surely. Note that with
the same approach, the convergence region can be extended

to zeC\ R™.

We now prove the existence and uniqueness of a solution

to (11).

B. Proof of Convergence of the Fixed Point Equation

In this section we consider the fixed point equation (11). Wapplying Lemma 2, the dlfferenCB:(k) (2)

first prove that, properly initialized, the sequer
1,2,..
we show that this limity ; satisfiesmg, e,
almost surely.

Proposition 13:Let z € C* and {eg\’,“?i(z)} (k> 0) be the
sequence defined by (12).{&58
then all {eg\’f?i(z)} (k>0) are Stieltjes transforms as well.

Proof: Suppose (12) is initialized by, (z) = —1/z,

e}, (k=

N —oc0
_eN,il — 0,

.), converges to a limiey ; ask — co. Subsequently,

?i(z)} is a Stieltjes transform,

by (12) converges to a Stieltjes transform, denatgd(z) as
k— oo if e§8> (z) is a Stieltjes transform.
Proof Let eff)(2) = £tr@, A%~ and el TV (2) =
, Wwhere
—1
1 ¢ 0,
NJ ) 1—|—e(k 1)(,2)

FY

Jj=1

A(kil) = + Sy — zIy ,

-1

AR = + Sy —2In

1—|—e

— e (2)] i
() _ o))
N.i Ng | =
tA(k+1)@ Ak - eg\lfc)ﬂ 6%6]1)
N ; {1+e§§?j} [1+e§§;1)}
(110)

With Lemmas 9, 11 and 12, (110) can be bounded as
V=St <o sup fely), - (111)

1
|€N,z eN 7 |
1<i<n

which is the Stieltjes transform of a function with a single

mass in zero. We demonstrate that at all subsequent itesatigvhere C' =
k>0 the correspondrngN,l(z) are Stieltjes transforms for to a limit ey ; for

all N. For ease of notation we omit the dependence otine
(k+1)

ey, ~aregiven by
-1
1 n
eg\]fjl):N Z )9 + Sy —z2In
Nt
= NU"@iAk, (107)
wherec! Jfl/(l—r—e(k)) In (107), multiplyingA ;. from the

right by (AH) LAH we obtain

(k+1) _

G Nt AlO,A, ZCN e, |+, (108)
Where oF) = 1 +trAl©;A, [Sy — z*Iy]. Denoting rh) 2
S\,trAHG AkG)l,...,%trA,'jG)iAk@n]T and ¢ 2

Cz\l?p ..., IT, (108) takes the form
et = P W™ ™), (109)

S(m)ce the ®; are uniformly bounded w.r.tN, we have

7

the sequencee } converges
restricted to the sefz e Ct:C< 1}.
Proposition 13 shows that a{le( )} are uniformly bounded
Streltjes transforms and therefore their limit is analyfince
{e _i( z)} for {zeC* : C' <1} is at least countable and has
a cI'uster point, Vitali's convergence theorem [15, Theorem
3.11] ensures that the sequer{eé\’,“?i} must converge for all
z€C\R™T and their limit isex ;(2).

It is straightforward to verify, that the previous holdsals
true forzeC~. ]

Remark 8:For z < 0, the existence of a unique solution
to (11) as well as the convergence of (12) from any real
initial point can be proved within the framework sfandard
interference functiong55]. The strategy is as follows. Let
en 4 éN(Z) = [éNJ(Z),éN,Q(Z),...7éN,n(Z)]T € R" and
fen)=[f1(en), f2(en),..., fn(en)]T €R", where

1 & 0,

N Z 1 +en;(2)
Theorems 1 and 2 in [55] prove that, fifey) is a feasible
standard interference function, then (12) converges taguen

solution ey with all nonnegative entries for any initial point

e§3>z,...,e§3_?n. The proof thatf(ey) is feasible as well as

—1

1
filen) = Ntr@i + Sy — zIN

r® o™ > 0. To show thate(k“) are Stielties transforms a standard interference function is straightforward artdite

of a nonnegatrve finite measure, the following three comre omitted in this correspondence.

ditions must be verified [28, Proposition 2.2]: Far €
ct (i) eV (2) e CF, (i) zelyiV(2) € C* and (iii)

(k+

limy s oo —iyey ;

We are now in a position to show that any seque{’ng\é_?i(z)}
(k>0) converges to a limiey ;(z) ask — oo.

)(1y) < oo. From (109) it is easy to verify
that all three conditions are met, which completes the pro

The uniqueness afy, whose entries are Stieltjes transforms
of nonnegative finite measures, ensures the functionabeniq
ness ofey i(z),...,enn(z) as a Stieltjes transform solution

fo (12) forze(C\R+ This completes the proof of uniqueness.

Denotemp e, (2) 2 +tr@; (By — zIy) . In the fol-
lowing section, we prove thaty ;(z) = limg_ 0o eg\]f,)i(z)

satisfies|mp , o, (2) — en.i(z)] =57 0, almost surely.
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C. Proof of Convergence of the Deterministic Equivalent On {z € C" : 0 < C < 1}, the en;(z) are summable
In  Section I-A we showed that wy _ and have a cluster point. Furthermore, Proposition 13 assur
FQy (By — )| Qy (R4 Sy = oTy) "o, 1 heca () are Sities wanslorms and hence uniformy
almost surely. Furthermore, in Section I-B we proved that tP°U very \R™ ore, vitall
sequence defined by (11) converges to a limit. It remains convergence theorem [15, Theorem 3.11] applies, and extend
’ the convergence region of (112) t&=C \ R*.

to prove that : )
Since (112) holds true, the following convergence holds

1 _
MBy.©; — €N = Ntr@i (By — 2In) " almost surely
- trD
1 1O 0, Neroo NI T
— —t @i ~ — S - I 01
Nr N21+GN(Z)+ N ZIN - n -1
= ’ Q[ = Sy ey TR0
(112)  NTNA\NLTqey, N TN ‘
almost surely. Denot&;Nﬂiéw@i with we, defined in (101). (116)
Applying Lemma 2, (112) can be written as The convergence in (116) implies the convergence in (9),
MBr 6. — €N which completes the proof.
N,9; )T
1 -1
—wN,i‘i'Ntr@i (A—‘,—SN—ZIN) —eNyl-(z) APPENDIX I

1 - _
— Wi — N‘m@iA_l [A-B|B, PROOF OFTHEOREM 2

. R The strategy is as follows: The SINRR, . in (16) consists
whereA £ A+Sy—zIn, AL LY, 1+%tr®lgl]\,_zlmfl of three terms, (i) the scaled signal powdi}! Why|*: (ii)
andB 2 B + Sy —zIy, B2 LY | 9 Applying the scaled interference powhf! WHY P Hy, Why, (both

Iten, S
Lemmas 9 and 11mp, e, — ex.i| can be gggjnded as scaled by —2) and (jii) the term¥ of the power normalization.
a1 For each of these three terms we will subsequently derive
ImBy.0, —enil < [wn,i| + (16| A7 B~ a deterministic equivalent which together constitute thelfi

expression fory; .

L+mpy.e;)(1+en;)
(113) A. Deterministic equivalent fow

— T(HHE —2fH i
Similar to (111), with Lemma 12, (113) can be further boundea(IjSThe term¥ = trPH{H"H + Mol )~*H" can be written

1 « |mBy,0, —enl
X || = O; — ’
N 27

as
K
NP =
ImBy.@; —enil < |wn| + 0125 ImBy,0; —enil, U = Zpkh,': (HHH + MozIM) h; (117)
- k=1
whereC = B(T;Z‘ff. Taking the supremum over al=1, ..., n, @ 1 & i,';'@,lg/QC[;]QG,lg/Qik
we obtain = > ok " o (118)
s (1 +a#le/2cple)/ ik)
sup |mpy.@, —enil[1 —Cl < sup |wni|.  (114)
1<i<n 1<i<n

) ) WhereC[k] éI‘[k] + ol with F[k] = ﬁﬂi[-}c]ﬂ[k] and in (a)
From (114), on the setzcC* : 0<C <1} # 0), it suffices to  we applied Lemma 1 twice together with (6). Faff large and

show thatsup, ., ,, [wn,i| goes to zero sufficiently fast. Forunder Assumptions 1, we apply Lemma 4 and obtain
anye>0 we have

K 1 —2
n 1 2 rORCy M—co
v =Y p s o)
P su wn.i| >e ) < P(lwns| > ¢ M _1\?
AT B I WE R ———
n K /
1 m -« [—00
—Y P(un >, s By Ly, a0 oy
i=1 M - (1+mre.(-a))

Applying Markov's inequality, (115) can be further boundedmqost surely, where ifh) we applied Lemma 6, the definition
as L& (8) and denotethy. , (—«) the derivative ofnr e, (2) along
P ( sup |wn| > g) < > ZE [lwn.i|P] - z at z=—a. Applying Theorem 1 tonr e, (z), we obtain
i=1

1<i<n

o 1 M—00
For alln andp=4-+¢ with ¢ >0, the term>_"" | E [Jwn 4|?] is mr,e, (—a) — MterT — 0,
summable and we can apply the Borel-Cantelli Lemma which

. . N—o00
implies sup; <;<,, wn,; — 0, almost surely.

1 0o
m}‘,@k (—OL) - MterT/ M:) 07
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almost surely, wherd is defined in (21) and” is given by almost surely, where, = ﬁtr@)kc_k]l. Moreover, under
Assumptions 1, 3 anf]P|| < co uniformly on M, we have

— i Z 5 +1Ia | T. (119) u'(1+c1u) Moo

ZEBka — 1tu — O,
I
Definee’ = ¢}, ..., ¢)]" with ¢} = ﬁtr@iT’. The system q\' Bz, — — 248 Moo
of K equations formed by the; takes the forme’ = Je' + Tu
v and the explicit solutiore’ is given in (24). Substituting almost surely, where)’ = ﬁtrp[k]ﬂ[k]c—k]l@kczlﬂﬂ
mr.e,(—a) andmp g (—a) by their respective deterministic Substituting the random terms in (122) by their respective
equivalentse, and e, we obtain¥° in (22) such thatl — deterministic equivalents yields
M~>oo
pe 0, almost surely.
o A 1 W1+ cu
o hj WE, P Fjy Why, — [M7(1 +u1 )
B. Deterministic equivalent foh,';'th
Similar to the derivations in (117) and (118), we have 1 el +eau)®—cadu® - QCguuu/ Moo (123)
Hey1/2 1/2. M (1 +u)?
it ANCH C[k] O, "z
h; Why, = I+ AH®1/QC 16172, almost surely The second term in brackets of (123) reduces
k] Sk 2k =8

to )2uu and we obtain

(1+u

VI-74le’c e/ s nale/*C e

[x]
1 + ZH®1/2C hk WH[k]P[k]H[k]th_

11-72[1-(1+v? |, Mo
Sinceqy, andz; are independent, we apply Lemma 5 together M (14 u)? w o —0, (124)
with Lemma 4 and 6 and obtain

S0 1+ale/*cle) y

. almost surely. From Lemma 6 we have
my M —00

h,:'Wflk — 1-— 7'2 0, M — 00

F1+mg u—mr,e,(—a) — 0,
almost surely. RIS T, 1250,
M
C. Deterministic equivalent di} W}, P Hj, Why, almost surely, wherenr,e, (—) = 7;tr®,C~" and T, =

. S 1 1P H,C~1@,C~1HH, . Therefore, (124) becomes
With (5) andC2T + oIy, T'2-LH"H, we have a7 P TR A) F (] (124)

hi' WH P 1 H iy Why,—

hi'WH, P i HyWhy, , ,
Ti [1 — T (1 — (1 + mr e, (—Oé)) )] M—o00

L wgl/2e—1¢H a -11/2 0
:Mz 19, C H[k]P[k]H[k]C O, "z (120) 1+ mr.e, (—q))? — 0,
61/2C[k] H'[*,C]P[k]ﬂ[k]C*@,l/ZZkJr almost surely. We rewrité(';, as
K
1/2 [~ —1] ¢ B _1l1/2 1 N _ _ .
Mz,‘j@k/ {c 1—C[kﬂ H{}, Py Hp, C 10/%z;,. (121) Tk:M Z ij?G);/QC '9,C 1@;/2%-.
j=1j#k

SubstitutingC~" — Cp; = —C~}(C — Cy))Cy with C —
Cp = 0% (cozezl! + craudl + c2ziqlf + @%Zk)g V2 X . » .

whergcolé 172, ?lf-é 72 and ez £ 74/1 — 77 into (121) T, 1 Z ; 7t10,C70,C Moo o
we obtain a sum of five terms Pl {1 4 L4@, (T +aly)"!

Applying Lemmas 1, 4 and 6, we obtain almost surely

N . a 1
H H _ 1 n
by WHy Py HigWhy, = -2, Bz A deterministic equivalent e; of mre,(—a) =
M—o0

_ CMOZI';'Akzkz};‘]_),kz,C - CMIZZAkaqEBka Htr0; (I‘—l—aIM)_l. Such thatmp,@i(—a.) —e — 0,
p P almost surely is given in (20). To derive a deterministic
— 2 Az Brzi — 2zl ApquziB 122 i 1 -19,C-!
77 2k ArzhdrBrze — o2 Ardnzi Brzi, (122) equivalent for L tr®;C~'©,C~!, we can assume th@,
N /2 a1 a2 N invertible because the result is also a deterministic edeint
where we denotedA, = ©,/°C7'©,’" and Bx = for non-invertible matrices®,, which is proved in [39,

91/20[ ]H[k]P[k]H[k]C_l@}c/Q- Noting thatcy +c1=1 and Theorem 4]. DefineCéG),:l/QI‘@,;l/2 +a®; !, we have
coc1 —c3=0, we apply Lemma 7 to each of the four quadratic 1 s .
forms in (122). Under Assumption 1, we obtain MtrG‘)jCil@kCil = 77O 0,0, '*C
[0 d 1 _
z,';'Akz;C — M Mze 0, —tr®; (T + aly — 20y) 1

14+u T dzM

_02u2 M—co 0 Denotemr,z@h@j (—a) = MtI‘@j(I‘ + alpy — Z@k)_l
1+u ’ Applying Theorem 1, we obtainmr .e, e,(—®) —

zi Aqy, —



+t10;Tk(2) M=29° 0, almost surely, wher&';(z) is given
by
K —1
1 0,
Tk(Z) = M : m + CYI]W — Z@k N (125)
Jj=1 g
wheree; (z) = ﬁtr@iTk(z). By differentiating along:, we
have
/ 1 / M— o0
mr_.e,.e,(—a) — M“QjT/@(z) — 0, (126)
almost surely, wher@,(z) = £ T),(2) is given by
Z
T Th( RLNON O | Ti(2).
k(z) = T MZ Tten))2 O k(2)

Setting = = 0, we havee; = ¢;x(0) = +tr®;T with
T = T,(0) defined in (21) and the ,,...,e%, are
the unique positive solutions of,, = ;©,T}(0). Define

e, = el - € ,]T andJ andv, as
1 ) .
9], = %, (127)
1 1 i
Vi = MtI‘@lT@kT, ceey MtI‘@KT@kT (128)
Thereforee), is given explicitly as
e, =(Ix—J)"" (129)

Note that Ix — J is always invertible sincee) is a
unique positive solution. Finally, substitutingir e, (—«)

and Ltr®,C~'©,C~! by their respective deterministic
equivalentse; and e’ ,, we obtain Y} in (23) such that

I\[%oo

Tp— TS 0, almost surely.

If all avallable transmit power is allocated to a single use

(i.e., pr = P), both ¥° and Y%, are of orderO(1/M) and
hencev; ¢

true, which completes the proof.

APPENDIXIII
PROOF OFTHEOREM 3

We bound|yk_rzf—'ygyzf| by adding and subtracting; ,,s(«)

and~; ¢(«) and applying the triangle inequality. We obtaininitial point e(*),

Vg,rzf( )|
(130)

Ykt — 712,zf| <|Vkeyat = Voot ()] + Vit (@) —
+ |712,rzf(a)

To show that~yy .
take ¢ > 0 arbitrarily small.
we will demonstrate thatye s — Vrrt(a)] < 5
surely and |y ¢(a) — 7 4| < 5 independently of M

- Wg,zfl'

—Yrel — 0 almost surely a3/, K — oo,

and K. Furthermore, we show that fav/, K large enough,
almost surely, from which we

|7k,rzf(a) - VZ,rzf(a” < %
conclude that (130) can be made as small as desired.

In order to prove thatyg s — Vi ()| < 5 for a small
enough, it suffices to study the matncé&’ (HHH

grows unbounded WittM Therefore, we require
Assumpuon 2 to ensure that the convergence in (18) ho'Befme

Fora > 0 small enough,
almost and we obtain
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precoding (16) and ZF precoding (33). Applying the matrix
inversion lemmaW takes the form

W = HY(HH" + Malg) 2H + Ma(H'H + Mal,) ™2

Under Assumption 4,Amin(ﬂﬂH) > ¢ > 0 and, since
Amax(HH") is almost surely bounded for all largk/, K,
for any continuous functionalf(W) we have |f(W) —
f(ﬂ)| 220 0 with probability one. Therefore|vy .; —
Vio,rat (0 )| & 20 uniformly on M, K almost surely.

From Theorem 2, we have immediately that for any 0,
Yk vt () = VR 1 (@) M2 ) almost surely.
In order to proveyy;, ¢ (a) =i | < 5 for o small enough,

uniformly on M, rewrite~y ,,¢(a) as

pi(1 = 72) (aer)”
(o + ae)?]) + L (o + aey)?
(131)
To show thatyy ,; = lima—0 7y ¢ (), We need to verify that
the limit o — 0 of both numerator and denominator in (131)
exists and that the denominator is uniformly bounded away
from zero. Definee; = lim,_,0 ae; (). Under Assumption
5, all ¢; exist and are strictly positive. Sincee;(a) is
holomorphic fora. > 0, and is bounded away from zero in
a neighborhood of zero, by continuity extensiomin= 0, we
obtain the limita — 0 as

Vk,rzf(a) = TZ(CYQ

— 722 —

-1
K

, 1 1 0,

G=m O o ijl atae(a) T
_Lluer (132)
M

whereT is given in (37). It is easy to verify that £ sup, e;
|s uniformly bounded on\/. We have

le| < sup [|[©;]]. (133)
2y, ex]’s fir e 3tr®;T(e) andf(e) =

[fi(e), ..., fx(e)]T. Under Assumption 5, there exists a fixed
point f(e*) = e*, wheree* £ [e},...,ek]T with ef > 0 Vi.

In this case, we can extend the results in f5&hd show that
the iterative fixed point algorithm defined by*+") = f(e(™),
(n > 0), converges to the unique positive solutigh for any
e ' 0 Vi

Furthermore, we need to show that baffi = lim,_,o T},
and¥° = lim,_.o ¥° exist and are uniformly bounded GM
Observe that

lim o?e} = ¢, (134)

a—0

/

a2
o ilg%) M Zp; a + ozej (135)

Fa

1—]

2Sincef(e) can be extended by continuity in zero, where it satisffi@ =
0, the positivity property of (e), defined in [55], does not hold. We precisely
need to show thae("*t1) = f(e(™)) can not converge to the fixed point 0,

Maly)~t and W = HH(HHH) 2H in the SINR of RZF which unfolds from Assumption 5 with similar arguments ag5].
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Therefore,0 < ¥° < oo for all ¢, > 0. Similarly, define whereZ = (%622 + ax)(poe22 + x). Denoting
L= limg 2¢! . given in (38) and thus
€k Mg —0 & 63 k9 (38) Qs 2¢p2[3m°(1 _ 7,2)(1 +m®)m’®e1ge9ol

i a? ej K 1 K g}_’k Z
’“_ali%_ Z Pila vt ae))2 ~ M Z bitgz L & (L+m°)?[erpess — erpedy] (139)
j=1,j7#k J=1,j#k 2(1+m°)merzear
satisfying0 < Y7 < oo for all ¢; > 0. To fulfill the constraints we obtain
e, > 0, we have to evoke Assumpuon 4. The limif . = - o o
lithaoso 7% (@) is given by (34), which completes the proof Mewt _ <a _ L) (1+v)— T o (140)
da Bp Perz
APPENDIX IV Rewriting the term in brackets in (140), we have
PROOF OFPROPOSITION2 .
The proof is inspired by [26] with adaptations to account 975 _ ¢ |, [1+v+72pg2] 5 o
for imperfect CSIT. From Corollary 1 with, = P/K Vk and da 1-72)14v)+ 1201+ m°)? '

T, = T Vk, for large M, K, the SINR~; ; takes the form ) . o
SinceQ) # 0 for p > 0 and7? < 1, the optimal regularization

Yeur = pBm°(1 = 72T, parameten*° is given by (53). Substituting (137) into (139),

where the termv takes the form

— £22 / /
Lexs + a1 +m°)2er y=—— B G2 | E2f (141)
= 5 5 2(1 +m°)612 €92

peaa(l —72) + 72p(1 + m°)2eq9 + (1 + m°)2e12

€y €12
with m® ande;; defined in (27) and (29), respectively. TakingVith (30) and (137), we obtairy, = =_745 and ez, =
the derivative alongy, we obtain 1*582;6 Substituting these terms into (141) yields (54), which
completes the proof.

o lde] FI
% = pﬂmo(l — 7'2)1—‘ |:mo + F:| , (136)
@ m APPENDIXV
where o2 PROOF OFPROPOSITION9
0 (1 4+m®)%e1n . _ .
M= e (137) The sum rateR., can be written as a function of the per-
B user rate under perfect CSIR° and the per-user rate gap
and thus, together with (30), we have AR° as
m/° _ (1 + m°)2812 ' Rsum - K (1 _ E) [Ro . ARO] :
me %622 + a(1+ m°)2e1 T
Therefore, (136) becomes where for ZF and RZF-CDA we have’; =log(1+pa(5—1))
B0 and R, =log(3 + Lpa(B—1) + %), respectively, and
=zt — 58me(1 — )T
dax / AR =1 (B —=1)(par +1)
2a(1 4 m®)m"e1z + a(l +m°)el, + ey A\ T LA ol +pu(B- 1))
1 o
Eegg—i—a(l—i-m )2e19 AR 1—|—pdl([3— 1)+ x(1)
=7+ T2+ m°)?pehy + 272p(1 + mO)m/ ez et PO\ T+ wpar (B — 1) + x(W)
_ 2 2 0)2 0)2
[1 =72+ 72(1 +m°)?]peas + (1 +m°)%ers wherey(w) is defined in (85). Denoting £ 1+ -1 +T; [+ +
B 2(1 4+ m°)m'e1z + (1 +m°)%e, pu(B —1)], the derivatives take the form
I R K e _apeys (1 T
( ) aTt,zf - T zf zf T
Denotingx £ (1-+m) e, 1 £ 21+ mym iz + (1 + (8= 1)(par+ D[E + pur(f — 1)
m°)2el, andg £ 1 — 72+ 72(14+m°)?, (138) takes the form x P2+ (B—Dpa+ 1)y (142)
Vet 2 oR K
rzf o 1— T Ylt%sum __
ox pﬂm ( T ) aTt ot - ?( rzf A]%rzf)
X %6122 + O‘w _ p(beIQQ + w + 2T2p(1 + mo)m/0622 K 1 Tt,er w/pdl(ﬂ - 1) + X/ 143
%8224'00( poeas + x + T ) 14wpa(B-1)+x (143)

Z X' =X /0T, et =1(8 — 1)’we'p% + w'par(1+ B) + 1] /x. In

9 O\ t0 o (€22 (142) and (143) the per-user rate-gag’; andAR_ ; can be
277(1 4 m?)m"exn[F + ax] neglected, since at high SNRR, < fi;; and AR} L <R,
¢ respectively. Treating??;, R, as constant fopdl, Pul = OO

_ ¢p*Bm°(1 — )T [ (a _ ﬁ) (e3ath — eh) wherew' =0w/ 0T} vut = (1/ pur + €) /(T xat +1/ pur + ¢)* and
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and ¢ = pa/pw finite, solving (142) and (143) fof; .+ and the Markov inequality the Borel-Cantelli Lemma [40] and the

T, r.s, respectively, yields (88) and (89), respectively, whicfionelli Theorem [40, Theorem 18.3]. ]
completes the proof. Lemma 6: [15, Lemma 14.3] LetA;, Ao, ..., with Ay €
CN*N_ pe deterministic with uniformly bounded spectral
APPENDIX VI norm andBi, B,, ..., with By € CN*¥ be random Her-
IMPORTANT LEMMAS mitian, with eigenvalues\P~ < ... < ARY such that, with

Lemma 1 (Matrix Inversion Lemma): [35, Lemma 2.2] Probability one, there exist > 0 for which APN > ¢ for all
Let U be anN x N invertible matrix andx € CV, c € C largeN. Then forveC¥
for which U + cxx" is invertible. Then 1 1 N
B <xHU-1 NtI‘ANB;Vl — NtrAN(BN + VVH)_1 — 0

14+ exHU-1x"

Lemma 2 (Resolvent Identity):et U andV be two invert-
ible complex matrices of siz& x N. Then

H (U + CXXH) !
almost surely, wheréB,' and (By + vv)~! exist with
probability one.
. . ) ) Proof: The proof unfolds similarly as above, with some
U -V =-U (U-V)V . particular care to be taken. Fore B, the smallest eigenvalue
Lemma 3: [56, Lemma B.26] LetA ¢ CN*N pe a of By (w) is uniformly greater thare(w). Therefore, with
H inverti o

deterministic matrix anck € C¥ have i.i.d. complex entries B~ (w) andBy (w)+vv™invertible and, taking = —¢(w)/2,
of zero mean, variancé/N and boundedth order moment W€ ¢an write
E|z;)' < 1. Then for anyp > 1

1 —1
) ¢ o2 NU"ANBN (w)
< (—t AAH) [ p/2 +u2,,} ,

1
E|x"Ax — —trA 1 e(w) W), \
N = —trA ([B w——I]—t——I)
(144) N N N( ) 2 N 2 N

- NP/2

whereC,, is a constant solely depending pn
Lemma 4: [15, Lemma 14.2] LetA;, A,, ..., with Ay e 2Nd
CN*N_ be a series of random matrices generated by tha
probability spaceg(Q?, F, P) such that, foro € A C Q, with
P(A) =1, |AnvWw)|| < K(w) < oo, uniformly on N. Let yoe(w) e(w) -1
X1,Xa, ..., With x5y € CY, be random vectors of i.i.d. entries = NtrAN <[BN(W) +vv' — TIN] + TIN> .
with zero mean, variancé/N and eighth order moment of
orderO(1/N*%), independent ofA 5. Then

trAy (By(w) + va)i1

Under these notation®  (w) 5(2“)IN andBy (w) +vvH —
xj'i,ANxN itrAN N—oo Y=, E(Q—W)IN are still n_onnegative definite for alV. Therefore, the.
rank-1 perturbation lemma, [57, Lemma 2.1], can be applied
almost surely. for this w. But then, from the Tonelli theorem again, in the
Proof: The proof unfolds from a direct application of thespace that generates the cougles, xo, . ..), (B1,Bs,...)),
Tonelli theorem, [40, Theorem 18.3]. Denoti&’, X', Px) the subspace where the rank-1 perturbation lemma applges ha
the probability space that generates the sesigsxs,..., probability one, which completes the proof. ]
we have that for everw € A (i.e., for every realization Lemma 7:LetU,V,® € CV*¥ be of uniformly bounded
A4 (w), Az(w),...), the trace lemma, [15, Theorem 3.4], holdspectral norm with respect tov and let' V be invertible.
true. From [40 Theorem 18.3], the spad® of couples Further, definex £ ®'/2z andy £ ©'/2q wherez,qc CY
(z,w) € Y £ X xQ for which the trace lemma holds, satisfieshave i.i.d. complex entries of zero mean, vanaﬂqféJ and
finite 8th order moment and be mutually independent as well
/YlB(Iaw)dPY T,w =// 1p(z,w)dPx (v)dPo(w).  as independent ofJ, V. Define ¢y, c1,co € R* such that

coc1 —c3 > 0and letu £ +trOV ! andu’ £ trOUV 1,
If we A, thenlp(z,w) =1 on a subset o' of probability Then we have

one. Therefore, the inner integral equals one whenewerA.

As for the outer integral, sinc(A4) = 1, it also equals one, <HU (V+ coxxM + cryy™ + coxy™ + cgny)‘l x
and the result is proved. ] W' (14 cru) N
Lemma 5:Let Ay be as in Lemma 4 angy,yy € CV - 5 — 0,

_ 2
be random, mutually independent with standard i.i.d. estri (cocr — eg)u? + (co +er)u+1

of zero mean, variance/N and eighth order moment of orderaimost surely. Furthermore,
O(1/N*%), independent ofA .

H H H H Hy —
v A nxn N=go g x"U (V + coxx" + c/lyy + coxy" + eyx") Ty
_ —C2Uul Ni;o O
almost surely. IR TR e e ’

Proof: Remark that [|yy Anxn|*] < ¢/N? for some
constant> 0 independent ofV. The result then unfolds from almost surely.



Proof: Denote V. = (A + coxxM + ciyy™ + coxy™ +

coyxt)~1. Now xHUVx can be resolved using Lemma 2 "

x"UVx —x"UA 'x=x"UV (V' —A) A 'x
= —x"UV(coxx + c1yy™ + coxy! + coyx) A7 x.
(145)

(2]

. (3]
Rewrite (145) as

xMUA 'x—x"UVy(cy" A7 1x + cox" A1)

H
UVx=
X x 1+ coxHA-1x + coyHA-1x

(4]

Similarly to (145), we apply Lemma 2 ta"UVy. Thus,
we obtain an expression involving the ternm$'UA~'x,
yTA-ly, xX"UA~'y andy"A~'x. To complete the proof,
we apply Lemma 4 and Lemma 5, with= %tr@A—1 and
u'=%tr®UA~! and obtain

(5]

(7]

!
1 S
xHUVx — - (1+ eru) 2900, (146)
(cocr —e5)u + (o +c1)u+1 8]
almost surely. Similarly we have
[0
_ !
xHUVy — 2t N=%e 0 (147)

(cocr — A)u2 + (co +c1)u+1
[10]
almost surely. Note that ag,c1,c2 € RT and coer > 3,

the convergence in (146) and (147) still holds sirfiegr; —
c3)u? + (co + c1)u + 1 is bounded away from zero, which™!
completes the proof. ]
Lemma 8: [57, Lemma 2.1] Let > 0, B, A € CV*V with
B Hermitian nonnegative definite,c R andqeC". Then

_lal

IS
Lemma 9: [15, Corollary 2.2] Letzc C*, t >0, qe CV

andB e CV*~ Hermitian nonnegative definite. Then

[12]

|trA [(B+(In) ™" — (B +7qq” + (In) ]| -

[14]

1 |Z| [15]

1+tqg"H (B+z2In) q

- Q2

[16]
Lemma 10:Let g € CY and A € CV*¥ Hermitian |7
nonnegative definite, then

Lemma 11:Let A € CNY*N pe Hermitian nonnegative-

definite, then
[19]

1
NtrA < |lA]l.

Lemma 12:Let A,B € CV*¥ Hermitian nonnegative-

definite, then [20]

IAB] < [[A[[|[B]].
[21]
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