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Abstract

This paper adresses the inverse reinforcement learning (IRL) problem, that is in-
ferring a reward for which a demonstrated expert behavior is optimal. We in-
troduce a new algorithm, SCIRL, whose principle is to use the so-called feature
expectation of the expert as the parameterization of the score function of a multi-
class classifier. This approach produces a reward function for which the expert
policy is provably near-optimal. Contrary to most of existing IRL algorithms,
SCIRL does not require solving the direct RL problem. Moreover, with an ap-
propriate heuristic, it can succeed with only trajectories sampled according to the
expert behavior. This is illustrated on a car driving simulator.

1 Introduction

Inverse reinforcement learning (IRL) [14] consists in finding a reward function such that a demon-
strated expert behavior is optimal. Many IRL algorithms (to be briefly reviewed in Sec. 5) search
for a reward function such that the associated optimal policy induces a distribution over trajectories
(or some measure of this distribution) which matches the one induced by the expert. Often, this
distribution is characterized by the so-called feature expectation (see Sec. 2.1): given a reward func-
tion linearly parameterized by some feature vector, it is the expected discounted cumulative feature
vector for starting in a given state, applying a given action and following the related policy.

In this paper, we take a different route. The expert behavior could be mimicked by a supervised
learning algorithm generalizing the mapping from states to actions. Here, we consider generally
multi-class classifiers which compute from a training set the parameters of a linearly parameterized
score function; the decision rule for a given state is the argument (the action) which maximizes the
score function for this state (see Sec. 2.2). The basic idea of our SCIRL (Structured Classification-
based IRL) algorithm is simply to take an estimate of the expert feature expectation as the param-
eterization of the score function (see Sec. 3.1). The computed parameter vector actually defines a
reward function for which we show the expert policy to be near-optimal (Sec. 3.2).

Contrary to most existing IRL algorithms, a clear advantage of SCIRL is that it does not require
solving repeatedly the direct reinforcement learning (RL) problem. It requires estimating the expert
feature expectation, but this is roughly a policy evaluation problem (for an observed policy, so is less
involved than repeated policy optimization problems), see Sec. 4. Moreover, up to the use of some
heuristic, SCIRL may be trained solely from transitions sampled from the expert policy (no need to
sample the whole dynamic). We illustrate this on a car driving simulator in Sec. 6.
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2 Background and Notations

2.1 (Inverse) Reinforcement Learning

A Markov Decision process (MDP) [12] is a tuple {S,A,P,R, γ} where S is the finite state space1,
A the finite actions space, P = {Pa = (p(s′|s, a))1≤s,s′≤|S|, a ∈ A} the set of Markovian transition

probabilities, R ∈ R
S the state-dependent reward function and γ the discount factor. A deterministic

policy π ∈ SA defines the behavior of an agent. The quality of this control is quantified by the
value function vπ

R ∈ R
S , associating to each state the cumulative discounted reward for starting in

this state and following the policy π afterwards: vπ
R(s) = E[

∑

t≥0 γ
tR(St)|S0 = s, π]. An optimal

policy π∗
R (according to the reward function R) is a policy of associated value function v∗R satisfying

v∗R ≥ vπ
R, for any policy π and componentwise.

Let Pπ be the stochastic matrix Pπ = (p(s′|s, π(s)))1≤s,s′≤|S|. With a slight abuse of notation,
we may write a the policy which associates the action a to each state s. The Bellman evaluation
(resp. optimality) operators Tπ

R (resp. T ∗
R) : R

S → R
S are defined as Tπ

Rv = R + γPπv and
T ∗
Rv = maxπ T

π
Rv. These operators are contractions and vπ

R and v∗R are their respective fixed-

points: vπ
R = Tπ

Rv
π
R and v∗R = T ∗

Rv
∗
R. The action-value function Qπ ∈ R

S×A adds a degree of
freedom on the choice of the first action, it is formally defined as Qπ

R(s, a) = [T a
Rv

π
R](s). We also

write ρπ the stationary distribution of the policy π (satisfying ρ⊤π Pπ = ρ⊤π ).

Reinforcement learning and approximate dynamic programming aim at estimating the optimal con-
trol policy π∗

R when the model (transition probabilities and the reward function) is unknown (but
observed through interactions with the system to be controlled) and when the state space is too large
to allow exact representations of the objects of interest (as value functions or policies) [2, 15, 17].
We refer to this as the direct problem. On the contrary, (approximate) inverse reinforcement learn-
ing [11] aim at estimating a reward function for which an observed policy is (nearly) optimal. Let
us call this policy the expert policy, denoted πE . We may assume that it optimizes some unknown

reward function RE . The aim of IRL is to compute some reward R̂ such that the expert policy is
(close to be) optimal, that is such that v∗

R̂
≈ vπE

R̂
. We refer to this as the inverse problem.

Similarly to the direct problem, the state space may be too large for the reward function to admit a
practical exact representation. Therefore, we restrict our search of a good reward among linearly pa-
rameterized functions. Let φ(s) = (φ1(s) . . . φp(s))

⊤ be a feature vector composed of p basis func-

tion φi ∈ R
S , we define the parameterized reward functions as Rθ(s) = θ⊤φ(s) =

∑p
i=1 θiφi(s).

Searching a good reward thus reduces to searching a good parameter vector θ ∈ R
p. Notice that we

will use interchangeably Rθ and θ as subscripts (e.g., vπ
θ for vπ

Rθ
). Parameterizing the reward this

way implies a related parameterization for the action-value function:

Qπ
θ (s, a) = θ⊤µπ(s, a) with µπ(s, a) = E[

∑

t≥0

γtφ(St)|S0 = s,A0 = a, π]. (1)

Therefore, the action-value function shares the parameter vector of the reward function, with an as-
sociated feature vector µπ called the feature expectation. This notion will be of primary importance
for the contribution of this paper. Notice that each component µπ

i of this feature vector is actually the
action-value function of the policy π assuming the reward is φi: µ

π
i (s, a) = Qπ

φi
(s, a). Therefore,

any algorithm designed for estimating an action-value function may be used to estimate the feature
expectation, such as Monte-Carlo rollouts or temporal difference learning [7].

2.2 Classification with Linearly Parameterized Score Functions

Let X be a compact or a finite set (of inputs to be classified) and let Y be a finite set (of labels).
Assume that inputs x ∈ X are drawn according to some unknown distribution P(x) and that there
exists some oracle which associates to each of these inputs a label y ∈ Y drawn according to the
unknown conditional distribution P(y|x). Generally speaking, the goal of multi-class classification
is, given a training set {(xi, yi)1≤i≤N} drawn according to P(x, y), to produce a decision rule

g ∈ YX which aims at minimizing the classification error E[χ{g(x) 6=y}] = P(g(x) 6= y), where χ
denotes the indicator function.

1This work can be extended to compact state spaces, up to some technical aspects.
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Here, we consider a more restrictive set of classification algorithms. We assume that the decision
rule associates to an input the argument which maximizes a related score function, this score func-
tion being linearly parameterized and the associated parameters being learnt by the algorithm. More
formally, let ψ(s, a) = (ψ1(x, y) . . . ψd(x, y))

⊤ ∈ R
d be a feature vector whose components are d

basis functions ψi ∈ R
X×Y . The linearly parameterized score function sw ∈ R

X×Y of parameter
vector w ∈ R

d is defined as sw(x, y) = w⊤ψ(x, y). The associated decision rule gw ∈ YX is de-
fined as gw(x) ∈ argmaxy∈Y sw(x, y). Using a training set {(xi, yi)1≤i≤N}, a linearly parameter-

ized score function-based multi-class classification (MC2 for short) algorithm computes a parameter
vector θc. The quality of the solution is quantified by the classification error ǫc = P(gθc

(x) 6= y).

We do not consider a specific MC2 algorithm, as long as it classifies inputs by maximizing the
argument of a linearly parameterized score function. For example, one may choose a multi-class
support vector machine [6] (taking the kernel induced by the feature vector) or a structured large
margin approach [18]. Other choices may be possible, one can choose its preferred algorithm.

3 Structured Classification for Inverse Reinforcement Learning

3.1 General Algorithm

Consider the classification framework of Sec. 2.2. The input x may be seen as a state and the label y
as an action. Then, the decision rule gw(x) can be interpreted as a policy which is greedy according
to the score function w⊤ψ(x, y), which may itself be seen as an action-value function. Making the
parallel with Eq. (1), if ψ(x, y) is the feature expectation of some policy π which produces labels
of the training set, and if the classification error is small, then w will be the parameter vector of a
reward function for which we may hope the policy π to be near optimal. Based on these remarks,
we’re ready to present the proposed Structured Classification-based IRL (SCIRL) algorithm.

Let πE be the expert policy from which we would like to recover a reward function. Assume that
we have a training set D = {(si, ai = πE(si))1≤i≤N} where states are sampled according to the

expert stationary distribution2 ρE = ρπE
. Assume also that we have an estimate µ̂πE of the expert

feature expectation µπE defined in Eq. (1). How to practically estimate this quantity is postponed to
Sec. 4.1; however, recall that estimating µπE is simply a policy evaluation problem (estimating the
action-value function of a given policy), as noted in Sec. 2.1. Assume also that an MC2 algorithm
has been chosen. The proposed algorithm simply consists in choosing θ⊤µ̂πE (s, a) as the linearly
parameterized score function, training the classifier on D which produces a parameter vector θc, and
outputting the reward function Rθc

(s) = θ⊤c φ(s).

Algorithm 1: SCIRL algorithm

Given a training set D = {(si, ai = πE(si))1≤i≤N}, an estimate µ̂πE of the expert feature
expectation µπE and an MC2 algorithm;

Compute the parameter vector θc using the MC2 algorithm fed with the training set D and
considering the parameterized score function θ⊤µ̂πE (s, a);

Output the reward function Rθc
(s) = θ⊤c φ(s) ;

The proposed approach is summarized in Alg. 1. We call this Structured Classification-based IRL
because using the (estimated) expert feature expectation as the feature vector for the classifier some-
how implies taking into account the MDP structure into the classification problem and allows out-
putting a reward vector. Notice that contrary to most of existing IRL algorithms, SCIRL does not
require solving the direct problem. If it possibly requires estimating the expert feature expectation,
it is just a policy evaluation problem, less difficult than the policy optimization issue involved by the
direct problem. This is further discussed in Sec. 5.

2For example, if the Markov chain induced by the expert policy is fast-mixing, sampling a trajectory will
quickly lead to sample states according to this distribution.
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3.2 Analysis

In this section, we show that the expert policy πE is close to be optimal according to the reward
function Rθc

, more precisely that Es∼ρE
[v∗θc

(s) − vπE

θc
(s)] is small. Before stating our main result,

we need to introduce some notations and to define some objects.

We will use the first order discounted future state distribution concentration coefficient Cf [9]:

Cf = (1 − γ)
∑

t≥0

γtc(t) with c(t) = max
π1,...,πt,s∈S

(ρ⊤EPπ1
. . . Pπt

)(s)

ρE(s)
.

We note πc the decision rule of the classifier: πc(s) ∈ argmaxa∈A θ
⊤
c µ̂

πE (s, a). The classifica-

tion error is therefore ǫc = Es∼ρE
[χ{πc(s) 6=πE(s)}] ∈ [0, 1]. We write Q̂πE

θc
= θ⊤c µ̂

πE the score
function computed from the training set D (which can be interpreted as an approximate action-value
function). Let also ǫµ = µ̂πE − µπE : S × A → R

p be the feature expectation error. Conse-

quently, we define the action-value function error as ǫQ = Q̂πE

θc
− QπE

θc
= θ⊤c (µ̂πE − µπE ) =

θ⊤c ǫµ : S × A → R. We finally define the mean delta-max action-value function error as
ǭQ = Es∼ρE

[maxa∈A ǫQ(s, a) − mina∈A ǫQ(s, a)] ≥ 0.

Theorem 1. Let Rθc
be the reward function outputted by Alg. 1. Let also the quantities Cf , ǫc and

ǭQ be defined as above. We have

0 ≤ Es∼ρE
[v∗Rθc

− vπE

Rθc

] ≤
Cf

1 − γ

(

ǭQ + ǫc
2γ‖Rθc

‖∞
1 − γ

)

.

Proof. As the proof only relies on the reward Rθc
, we omit the related subscripts to keep the nota-

tions simple (e.g., vπ for vπ
θc

= vπ
Rθc

or R for Rθc
). First, we link the error Es∼ρE

[v∗(s)− vπE (s)]

to the Bellman residual Es∼ρE
[[T ∗vπE ](s) − vπE (s)]. Componentwise, we have that:

v∗ − vπE = T ∗v∗ − Tπ∗

vπE + Tπ∗

vπE − T ∗vπE + T ∗vπE − vπE

(a)

≤ γPπ∗(v∗ − vπE ) + T ∗vπE − vπE

(b)

≤ (I − γPπ∗)−1(T ∗vπE − vπE ).

Inequality (a) holds because Tπ∗

vπE ≤ T ∗vπE and inequality (b) holds thanks to [9, Lemma 4.2].
Moreover, v∗ being optimal we have that v∗ − vπE ≥ 0 and T ∗ being the Bellman optimality oper-
ator, we have T ∗vπE ≥ TπEvπE = vπE . Additionally, remark that (I − γPπ∗)−1 =

∑

t≥0 γ
tP t

π∗ .

Therefore, using the definition of the concentration coefficient Cf , we have that:

0 ≤ Es∼ρE
[v∗(s) − vπE (s)] ≤

Cf

1 − γ
Es∼ρE

[[T ∗vπE ](s) − vπE (s)] . (2)

This results actually follows closely the one of [9, Theorem 4.2]. There remains to bound the
Bellman residual Es∼ρE

[[T ∗vπE ](s) − vπE (s)]. Considering the following decomposition,

T ∗vπE − vπE = T ∗vπE − TπcvπE + TπcvπE − vπE ,

we will bound Es∼ρE
[[T ∗vπE ](s) − [TπcvπE ](s)] and Es∼ρE

[[TπcvπE ](s) − vπE (s)].

The policy πc (the decision rule of the classifier) is greedy with respect to Q̂πE = θ⊤c µ̂
πE . Therefore,

for any state-action couple (s, a) ∈ S ×A we have:

Q̂πE (s, πc(s)) ≥ Q̂πE (s, a) ⇔ QπE (s, a) ≤ QπE (s, πc(s)) + ǫQ(s, πc(s)) − ǫQ(s, a).

By definition, QπE (s, a) = [T avπE ](s) and QπE (s, πc(s)) = [TπcvπE ](s). Therefore, for s ∈ S:

∀a ∈ A, [T avπE ](s) ≤ [TπcvπE ](s) + ǫQ(s, πc(s)) − ǫQ(s, a)

⇒ [T ∗vπE ](s) ≤ [TπcvπE ](s) + max
a∈A

ǫQ(s, a) − min
a∈A

ǫQ(s, a).

Taking the expectation according to ρE and noticing that T ∗vπE ≥ vπE , we bound the first term:

0 ≤ Es∼ρE
[[T ∗vπE ](s) − [TπcvπE ](s)] ≤ ǭQ. (3)

There finally remains to bound the term Es∼ρE
[[TπcvπE ](s) − vπE (s)].
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Let us write M ∈ R
|S|×|S| the diagonal matrix defined as M = diag(χ{πc(s) 6=πE(s)}). Using this,

the Bellman operator Tπc may be written as, for any v ∈ R
S :

Tπcv = R + γMPπc
v + γ(I −M)PπE

v = R + γPπE
v + γM(Pπc

− PπE
)v.

Applying this operator to vπE and recalling that R + γPπE
vπE = TπEvπE = vπE , we get:

TπcvπE − vπE = γM(Pπc
− PπE

)vπE ⇒ |ρ⊤E(TπcvπE − vπE )| = γ|ρ⊤EM(Pπc
− PπE

)vπE |.

One can easily see that ‖(Pπc
− PπE

)vπE‖∞ ≤ 2
1−γ

‖R‖∞, which allows bounding the last term:

|Es∼ρE
[[TπcvπE ](s) − vπE (s)]| ≤ ǫc

2γ

1 − γ
‖R‖∞. (4)

Injecting bounds of Eqs. (3) and (4) into Eq. (2) gives the stated result.

This result shows that if the expert feature expectation is well estimated (in the sense that the estima-
tion error ǫµ is small for states sampled according to the expert stationary policy and for all actions)
and if the classification error ǫc is small, then the proposed generic algorithm outputs a reward func-
tion Rθc

for which the expert policy will be near optimal. A direct corollary of Th. 1 is that given
the true expert feature expectation µπE and a perfect classifier (ǫc = 0), πE is the unique optimal
policy for Rθc

.

One may argue that this bounds trivially holds for the null reward function (a reward often exhibited
to show that IRL is an ill-posed problem), obtained if θc = 0. However, recall that the parameter
vector θc is computed by the classifier. With θc = 0, the decision rule would be a random policy

and we would have ǫc = |A|−1
|A| , the worst possible classification error. This case is really unlikely.

Therefore, we advocate that the proposed approach somehow allows disambiguating the IRL prob-
lem (at least, it does not output trivial reward functions such as the null vector). Also, this bound is
scale-invariant: one could impose ‖θc‖ = 1 or normalize (action-) value functions by ‖Rθc

‖−1
∞ .

One should notice that there is a hidden dependency of the classification error ǫc to the estimated
expert feature expectation µ̂πE . Indeed, the minimum classification error depends on the hypothesis
space spanned by the chosen score function basis functions for the MC2 algorithm (here µ̂πE ).
Nevertheless, provided a good representation for the reward function (that is a good choice of basis
functions φi) and a small estimation error, this should not be a practical problem.

Finally, if our bound relies on the generalization errors ǫc and ǭQ, the classifier will only use
(µ̂πE (si, a))1≤i≤N,a∈A in the training phase, where si are the states from the set D. It out-
puts θc, seen as a reward function, thus the estimated feature expectation µ̂πE is no longer re-
quired. Therefore, practically it should be sufficient to estimate well µ̂πE on state-action couples
(si, a)1≤i≤N,a∈A, which allows envisioning Monte-Carlo rollouts for example.

4 A Practical Approach

4.1 Estimating the Expert Feature Expectation

SCIRL relies on an estimate µ̂πE of the expert feature expectation. Basically, this is a policy evalu-
ation problem. An already made key observation is that each component of µπE is the action-value
function of πE for a reward function φi: µ

πE

i (s, a) = QπE

φi
(s, a) = [T a

φi
vπE

φi
](s). We briefly review

its exact computation and possible estimation approaches, and consider possible heuristics.

If the model is known, the feature expectation can be computed explicitly. Let Φ ∈ R
|S|×p be the

feature matrix whose rows contain the feature vectors φ(s)⊤ for all s ∈ S. For a fixed a ∈ A,

let µ
πE

a ∈ R
|S|×p be the feature expectation matrix whose rows are the expert feature vectors, that

is (µπE (s, a))⊤ for any s ∈ S. With these notations, we have µ
πE

a = Φ + γPa(I − γPπE
)−1Φ.

Moreover, the related computational cost is the same order of magnitude as evaluating a single policy
(as the costly part, computing (I − γPπE

)−1, is shared by all components).

If the model is unknown, any temporal difference learning algorithm can be used to estimate the
expert feature expectation [7], as LSTD (Least-Squares Temporal Differences) [4]. Let ψ : S×A →
R

d be a feature vector composed of d basis functions ψi ∈ R
S×A. Each component µπE

i of the
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expert feature expectation is parameterized by a vector ξi ∈ R
d: µπE

i (s, a) ≈ ξ⊤i ψ(s, a). Assume
that we have a training set {(si, ai, s

′
i, a

′
i = πE(s′i))1≤i≤M} with actions ai not necessarily sampled

according to policy πE (e.g., this may be obtained by sampling trajectories according to an expert-
based ǫ-greedy policy), the aim being to have a better variability of tuples (non-expert actions should

be tried). Let Ψ̃ ∈ R
M×d (resp. Ψ̃′) be the feature matrix whose rows are the feature vectors

ψ(si, ai)
⊤ (resp. ψ(s′i, a

′
i)

⊤). Let also Φ̃ ∈ R
M×p be the feature matrix whose rows are the

reward’s feature vectors φ(si)
⊤. Finally, let Ξ = [ξ1 . . . ξp] ∈ R

d×p be the matrix of all
parameter vectors. Applying LSTD to each component of the feature expectation gives the LSTD-µ

algorithm [7]: Ξ = (Ψ̃⊤(Ψ̃ − γΨ̃′))−1Ψ̃⊤Φ̃ and µ̂πE (s, a) = Ξ⊤ψ(s, a). As for the exact case,
the costly part (computing the inverse matrix) is shared by all feature expectation components, the
computational cost is reasonable (same order as LSTD).

Provided a simulator and the ability to sample according to the expert policy, the expert feature
expectation may also be estimated using Monte-Carlo rollouts for a given state-action pair (as noted
in Sec. 3.2, µ̂πE need only be known on (si, a)1≤i≤N,a∈A). Assuming that K trajectories are
sampled for each required state-action pair, this method would require KN |A| rollouts.

In order to have a small error ǭQ, one may learn using transitions whose starting state is sampled
according to ρE and whose actions are uniformly distributed. However, it may happen that only
transitions of the expert are available: T = {(si, ai = πE(si), s

′
i)1≤i≤N}. If the state-action cou-

ples (si, ai) may be used to feed the classifier, the transitions (si, ai, s
′
i) are not enough to provide

an accurate estimate of the feature expectation. In this case, we can still expect an accurate estimate
of µπE (s, πE(s)), but there is little hope for µπE (s, a 6= πE(s)). However, one can still rely on
some heuristic; this does not fit the analysis of Sec. 3.2, but it can still provide good experimental
results, as illustrated in Sec. 6.

We propose such a heuristic. Assume that only data T is available and that we use it to provide an
(accurate) estimate µ̂πE (s, πE(s)) (this basically means estimating a value function instead of an
action-value function as described above). We may adopt an optimistic point of view by assuming
that applying a non-expert action just delays the effect of the expert action. More formally, we
associate to each state s a virtual state sv for which p(.|sv, a) = p(.|s, πE(s)) for any action a
and for which the reward feature expectation is the null vector, φ(sv) = 0. In this case, we have
µπE (s, a 6= πE(s)) = γµπE (s, πE(s)). Applying this idea to the available estimate (recalling that
the classifiers only requires evaluating µ̂πE on (si, a)1≤i≤N,a∈A) provides the proposed heuristic:
for 1 ≤ i ≤ N , µ̂πE (si, a 6= ai) = γµ̂πE (si, ai).

We may even push this idea further, to get the simpler estimate of the expert feature expectation (but
with the weakest guarantees). Assume that the set T consists of one long trajectory, that is s′i = si+1

(thus T = {s1, a1, s2, . . . , sN−1, aN−1, sN , aN}). We may estimate µπE (si, ai) using the single
rollout available in the training set and use the proposed heuristic for other actions:

∀1 ≤ i ≤ N, µ̂πE (si, ai) =
N

∑

j=i

γj−iφ(sj) and µ̂πE (si, a 6= ai) = γµ̂πE (si, ai). (5)

To sum up, the expert feature expectation may be seen as a vector of action-value functions (for
the same policy πE and different reward functions φi). Consequently, any action-value function
evaluation algorithm may be used to estimate µπ(s, a). Depending on the available data, one may
have to rely on some heuristic to assess the feature expectation for a unexperienced (non-expert)
action. Also, this expert feature expectation estimate is only required for training the classifier, so
it is sufficient to estimate on state-action couples (si, a)1≤i≤N,a∈A. In any case, estimating µπE is
not harder than estimating the action-value function of a given policy in the on-policy case, which is
much easier than computing an optimal policy for an arbitrary reward function (as required by most
of existing IRL algorithms, see Sec. 5).

4.2 An Instantiation

As stated before, any MC2 algorithm may be used. Here, we choose the structured large margin
approach [18]. Let L : S × A → R+ be a user-defined margin function satisfying L(s, πE(s)) ≤
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L(s, a) (here, L(si, ai) = 0 and L(si, a 6= ai) = 1). The MC2 algorithm solves:

min
θ,ζ

1

2
‖θ‖2 +

η

N

N
∑

i=1

ζi s.t. ∀i, θ⊤µ̂πE (si, ai) + ζi ≥ max
a

θ⊤µ̂πE (si, a) + L(si, a).

Following [13], we express the equivalent hinge-loss form (noting that the slack variables ζi are
tight, which allows moving the constraints in the objective function):

J(θ) =
1

N

N
∑

i=1

max
a

θ⊤µ̂πE (si, a) + L(si, a) − θ⊤µ̂πE (si, ai) +
λ

2
‖θ‖2.

This objective function is minimized using a subgradient descent. The expert feature expectation is
estimated using the scheme described in Eq. (5).

5 Related Works

The notion of IRL has first been introduced in [14] and first been formalized in [11]. A classic ap-
proach to IRL, initiated in [1], consists in finding a policy (through some reward function) such that
its feature expectation (or more generally some measure of the underlying trajectories’ distribution)
matches the one of the expert policy. See [10] for a review. Notice that related algorithms are not
always able to output a reward function, even if they may make use of IRL as an intermediate step.
In such case, they are usually refereed to as apprenticeship learning algorithms.

Closer to our contribution, some approaches also somehow introduce a structure in a classification
procedure [8][13]. In [8], a metric induced by the MDP is used to build a kernel which is used in
a classification algorithm, showing improvements compared to a non-structured kernel. However,
this approach is not an IRL algorithm, and more important assessing the metric of an MDP is a
quite involved problem. In [13], a classification algorithm is also used to produce a reward function.
However, instead of associating actions to states, as we do, it associates optimal policies (labels) to
MDPs (inputs), which is how the structure is incorporated. This involves solving many MDPs.

As far as we know, all IRL algorithms require solving the direct RL problem repeatedly, except [5, 3].
[5] applies to linearly-solvable MDPs (where the control is done by imposing any dynamic to the
system). In [3], based on a relative entropy argument, some utility function is maximized using a
subgradient ascent. Estimating the subgradient requires sampling trajectories according to the policy
being optimal for the current estimated reward. This is avoided thanks to the use of importance
sampling. Still, this requires sampling trajectories according to a non-expert policy and the direct
problem remains at the core of the approach (even if solving it is avoided).

SCIRL does not require solving the direct problem, just estimating the feature expectation of the
expert policy. In other words, instead of solving multiple policy optimization problems, we only
solve one policy evaluation problem. This comes with theoretical guarantees (which is not the case
of all IRL algorithms, e.g. [3]). Moreover, using heuristics which go beyond our analysis, SCIRL
may rely solely on data provided by expert trajectories. We demonstrate this empirically in the next
section. To the best of our knowledge, no other IRL algorithm can work in such a restrictive case.

6 Experiments

We illustrate the proposed approach on a car driving simulator, similar to [1, 16]. The goal si to drive
a car on a busy three-lane highway with randomly generated traffic (driving off-road is allowed on
both sides). The car can move left and right, accelerate, decelerate and keep a constant speed. The
expert optimizes a handcrafted reward RE which favours speed, punish off-road, punish collisions
even more and is neutral otherwise.

We compare SCIRL as instantiated in Sec. 4.2 to the unstructured classifier (using the same classifi-
cation algorithm) and to the algorithm of [1] (called here PIRL for Projection IRL). We also consider
the optimal behavior according to a randomly sampled reward function as a baseline (using the same
reward feature vector as SCIRL and PIRL, the associated parameter vector is randomly sampled).

For SCIRL and PIRL we use a discretization of the state space as the reward feature vector, φ ∈
R

729: 9 horizontal positions for the user’s car, 3 horizontal and 9 vertical positions for the closest

7



50 100 150 200 250 300 350 400
Number of samples from the expert

−4

−2

0

2

4

6

8

10

E
s
∼
U
[V

π R
E
(s

)]

50 100 150 200 250 300 350 400
Number of samples from the expert

−4

−2

0

2

4

6

8

10

E
s
∼
U
[V

π R
E
(s

)]

Figure 1: Highway problem. The highest line is the expert value. For each curves, we show the
mean (plain line), the standard deviation (dark color) and the min-max values (light color). The
policy corresponding to the random reward is in blue, the policy outputted by the classifier is in
yellow and the optimal policy according the SCIRL’s reward is in red. PIRL is the dark blue line.

traffic’s car and 3 speeds. Notice that these features are much less informative than the ones used
in [1, 16]. Actually, in [16] features are so informative that sampling a random positive parameter
vector θ already gives an acceptable behavior. The discount factor is γ = 0.9. The classifier uses
the same feature vector reproduced for each action.

SCIRL is fed with n trajectories of length n (started in a random state) with n varying from 3 to
20 (so fed with 9 to 400 transitions). Each experiment is repeated 50 times. The classifier uses the
same data. PIRL is an iterative algorithm, each iteration requiring to solve the MDP for some reward
function. It is run for 70 iterations, all required objects (a feature expectations for a non-expert policy
and an optimal policy according to some reward function at each iteration) are computed exactly
using the model. We measure the performance of each approach with Es∼U [vπ

RE
(s)], where U is

the uniform distribution (this allows measuring the generalization capability of each approach for
states infrequently encountered), RE is the expert reward and π is one of the following polices: the
optimal policy for RE (upper baseline), the optimal policy for a random reward (lower baseline),
the optimal policy for Rθc

(SCIRL), the policy produced by PIRL and the classifier decision rule.

Fig. 1 shows the performance of each approach as a number of used expert transitions (except PIRL
which uses the model). We can see that the classifier does not work well on this example. Increasing
the number of samples would improve its performance, but after 400 transitions it does not work as
well as SCIRL with only a ten of transitions. SCIRL works pretty well here: after only a hundred
of transitions it reaches the performance of PIRL, both being close to the expert value. We do not
report exact computational times, but running SCIRL one time with 400 transitions is approximately
hundred time faster than running PIRL for 70 iteration.

7 Conclusion

We have introduced a new way to perform IRL by structuring a linearly parameterized score
function-based multi-class classification algorithm with an estimate of the expert feature expecta-
tion. This outputs a reward function for which we have shown the expert to be near optimal, provided
a small classification error and a good expert feature expectation estimate. How to practically es-
timate this quantity has been discussed and we have introduced a heuristic for the case where only
transitions from the expert are available, along with a specific instantiation of the SCIRL algorithm.
We have shown on a car driving simulator benchmark that the proposed approach works well (even
combined with the introduced heuristic), much better than the unstructured classifier and as well as
a state-of-the-art algorithm making use of the model (and with a much lower computational time).
In the future, we plan to deepen the theoretical properties of SCIRL (notably regarding possible
heuristics) and to apply it to real-world robotic problems.
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