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Abstract
This paper describes some numerical experiments that were performed on wave propagation in a randomly

generated anisotropic heterogeneous elastic media. By comparison with more classical, homogeneous me-

dia, several numerical issues arise that are presented in detail. In particular, an appropriate parameterization

has to be chosen for the field of mechanical properties, and the Perfectly Matched Layers have to be mod-

ified for such media, lest the stability be lost. Some open questions will also be raised. Finally, we will

present ongoing research on the characterization of the physical phenomena taking place over long distances

depending on the type of random elasticity model used.

1 Introduction

The isotropic and homogeneous soil models commonly used for the propagation of waves in geophysical

media are not compatible with the surface recordings available [2, 21, 19]. In particular, the coda of the

seismic recordings cannot be reproduced with these simple models. It is therefore desirable to consider

heterogeneous anisotropic media, but this possibility is hindered by several numerical difficulties that we

address in this presentation.

The first issue concerns the parameterization of the properties of the medium. With a view at identification,

this parameterization should at the same time ensure a sufficient heterogeneity, while retaining only a few

parameters. Considering one realization (sample) of the random medium yields that goal and a random model

of the elasticity tensor will be described in section 2. In that model, the elasticity tensor varies continuously

in space, so that special integration schemes should be used within the context of Finite Elements. This

point has been considered here only in a crude manner, considering a certain number of integration points

per correlation length, after some numerical tests (not presented in this paper). Section 2 concentrates on

the construction of the random model of the elasticity tensor, and on the generation of samples of this

model. It is worth noticing that in this section only samples of random media will be considered and no real

statistical analyses will be performed. However, since the elastic waves are traveling through a statistically

homogeneous random media, the wave pattern obtained after several wavelengths and correlation lengths is

expected to show common statistical properties weakly dependent on the sample of the random media. In

particular, this property has been observed when considering the multiple scattering of seismic wave fields

on a random distribution of buildings [9].

The next issue is that of wave propagation. Since the goal is to characterize the wave propagation pattern

in a heterogeneous medium beyond the mean free path, a numerical method is required, that is able to

account for several wavelengths and correlation lengths in all spatial directions. Moreover, since the multiple

scattering pattern drastically changes between two and three dimensional cases, 3D simulations are targeted.

In order to meet both a high efficiency and a controlled numerical error, the Spectral Finite Element Method

has been chosen [1]. In particular, the SPEC software developed by the Seismology Group of Institut de



Physique du Globe de Paris [14] has been modified in order to account for anisotropic heterogeneous fields of

elastic tensors. Besides the numerical scheme, it is also necessary to choose the type of absorbing boundary

conditions of layers that should be used when the computational domain has to be limited. The Perfectly

Matched Layers (PMLs) have reached a position of choice in the last decade for this type of problem, but

suffer in some particular cases of anisotropic media from instability issues. Unfortunately, for the the type

of heterogeneous anisotropic media that we are considering here, the instability eventually always appear so

that some special treatment has to be applied. Section 3 will present the instability problem and the patch

that we applied.

Finally, we will present in section 4 some attempts at characterizing the type of physics at work in the

medium. In particular, we will try to identify the transition form a wave propagation phenomenon to a

diffusion behavior. Although this is on-going work, the aim is to be able at some point to use expensive wave

propagation models only where necessary and to use simpler diffusion models where possible. This would

also require the introduction of appropriate coupling schemes that will not be discussed here. We finish this

introduction by the description of the problem at hand and of some of the main notations of this paper.

We consider an unbounded elastic domain Ω, described by an elasticity tensor C, linking the stress tensor

σ and the strain tensor ǫ, and the bulk density ρv. The elasticity tensor is a priori fully anisotropic. The

strong formulation of the elastic wave propagation in this medium consists in solving the Navier equation

for u ∀t ∈ [0;T ]:

Div
(
C(x)ǫ(u(x; t))

)
+ f(x, t) = ρv

∂2

∂t2
u(x; t) (1)

together with proper boundary and initial conditions. As far as the Spectral Finite Element Method is con-

cerned, the related weak formulation is considered: find u ∈ V (Ω), ∀t ∈ [0;T ], such that, ∀w ∈ V (Ω):
∫

Ω

(
ρv

∂2u

∂t2
(t) ·w +C∗(x)ǫ(u(t)) : ǫ(w)− f(x, t) ·w

)
dΩ = 0. (2)

In this weak formulation, Ω is separated into the computational domain of interest, in which the elasticity

tensor C∗ = C, and a PML domain in which the elasticity tensor is modified (see section 3), and V (Ω) is

some appropriate functional space.

2 Random model of mechanical parameters

We first discuss the modeling issue. Indeed, experimental soil samples show a high level of heterogeneity,

but on a given location, the data is usually far too scarce to identify a reasonable heterogeneous model of

the mechanical parameters. The same issue is raised with respect to anisotropy, which is apparent in the

available data but requires a large dataset to be identified appropriately. We propose here a stochastic model

of the elasticity tensor of the soil that is both continuously heterogeneous and anisotropic [29, 30]. As it is

random, its identification is based only on statistical quantities that are usually available over larger regions.

Further the mean, the correlation lengths, and the level of anisotropy can be parameterized separately.

In subsection 2.1, we present a random model for a homogeneous elasticity tensor, with no variation in space.

The main points are the introduction of two parameters, δ and δg, that control the anisotropy and variability

levels in the medium. In subsection 2.2, we generalize it to the case of a random field of elasticity tensor,

adding the variability in space through a model of correlation controlled by three correlation lengths. In the

last subsection 2.3, we discuss the question of generating a sample of this random medium on a parallel

computer.

2.1 Random elastic tensor

Using Voigt’s notation, the 4-rank tensor of elasticity C can be represented by a 2-rank symmetric positive-

definite matrix with 21 independent coefficients for general anisotropic materials. When the material shows



local symmetries the number of independent coefficients decreases and reduces to 2 independent coefficients

in the isotropic case. Among other choices of that pair of coefficients, the tensor Ciso of an isotropic material

can be written using the bulk modulus κ and shear modulus µ:

Ciso = 3κS + 2µD (3)

where S and D are respectively the so-called spherical tensor and deviatoric tensor defined as: S = 1
3

(
I2⊗

I2

)
and D = Id6 − S with I2 = [1 1 1 0 0 0]T and Id6 the identity matrix of M6(R). Since {S,D} are

orthogonal projectors in the space of real symmetric matrices M
s
6(R) (S2 = S, D2 = D and SD = 0)

and an orthogonal pair for the scalar product associated to the Frobenius norm (‖S‖F = 1; ‖D‖F =
√
5),

equation (3) also reads:

Ciso =
(√

3κS +
√
2µD

)2
(4)

Based on equation (4), we propose to write a random anisotropic elasticity tensor as:

C(δ, δg) =
(√

3κ(δ)S +
√

2µ(δ)D
)
G(δg)

(√
3κ(δ)S +

√
2µ(δ)D

)
(5)

in which G(δg), κ(δ) and µ(δ) are random variables and (δ, δg) a pair of dispersion parameters. This model

is detailed in sections (2.1.1-2.1.2).

2.1.1 The anisotropy kernel G

Following [29], the so-called anisotropy kernel G belongs to the set SG+ of all normalized, symmetric,

definite-positive real random matrices. This random variable is defined on the probability measure space

(A,F , P ), with values in M
+
6 (R), parameterized by a unique real positive dispersion parameter δg. Accord-

ing to [28], the construction by the maximization of the entropy [26, 17] leads to the following form of the

kernel:

G(δg) = LT(δg)L(δg) (6)

where L is an upper triangular matrix with entries defined as:

Lij(δg) =





δg√
7
Gk, for upper extra-diagonal entries j > i

δg√
7

√
2h(Gk, αi), for diagonal entries j = i

(7)

where:

• k is a reindexing : k = (14−i)(i−1)
2 + j− i + 1

• Gk for k = 1..21 are 21 independent copies of a normalized centered Gaussian random variable G,

• h(•, αi) is a non-linear iso-probabilistic transformation that maps a Gaussian scalar variable (•) into a

Gamma distributed one.

• αi are the parameters of h(•, αi) satisfying: αi =
7

2δ2g
− i−1

2

The dispersion of the random matrix G(δg) explicitly depends on δg (see [28]):

E
{
‖G(δg)− Id6‖2

}

6
= δ2g (8)



2.1.2 Random isotropic elasticity moduli

As far as random isotropic elasticity moduli are concerned, the bulk and shear moduli have been chosen since

they are the eigenvalues of the elasticity tensor (see for instance [16, 5]) and thus lead to a diagonal repre-

sentation. These moduli are then modeled as independent random variables of strictly positive real value.

Applying the maximum entropy principle with given mean values (κ, µ) and mean logarithm, leads to two

Gamma distributed random variables. In addition, they can be modeled using transforms of 2 independent

copies of the Gaussian scalar variable G. It should be noted that, the Gaussian G is the same as the one

constituting the entries of G. Hence, by extending the k−subscription used in equation (7) beyond k = 21,

we can write the 2 elasticity moduli as follows:

κ(δ) = δκh(G22, δ) and µ(δ) = δµh(G23, δ) (9)

It is worth noticing that other probability laws such as lognormal could have been chosen, together with

correlations between these two gaussian germs.

2.1.3 Properties of matrix-valued random variable C

Thanks to the knowledge of κ(δ), µ(δ) and G(δg), the random elastic tensor C(δ; δg) defined in equation (5)

has the following properties (see [30] for more details):

(i) C(δ; δg) has an isotropic mean given by:

C = 3κS + 2µD, (10)

(ii) C(δ, δg) is a second order random variable:

E
{
‖C(δ, δg)‖2F

}
≤ +∞ (11)

(iii) C−1(δ, δg) is a second order random variable when δ2 < 1
2 and δ2g < 7

11

(iv) The anisotropy level is linearly controlled by δg:

Ia =

√
19

21
δg. (12)

(v) The global fluctuation of the norm of C(δ, δg) depends explicitly on δg and δ as:

δ2|C| =
E
{
‖C − C‖2F

}

‖C‖2F
= δ2 +

δ2g
7

(
1 +

tr
2(C)

‖C‖2F

)
(13)

Finally, property (v) is obtained using the expression of the 4th-order tensor of covariance of G(δg) given in

[28].

REMARK 1 The anisotropy level that is used at (iv) is based on decomposition (5), and is defined as the

mean square distance between G(δg) and its projection C(δg) =
(
S ⊗ S + D ⊗ D/5

)
G(δg) on the

isotropic subspace of M+
6 (R): normalized by the square of the norm of the mean value of G:

Ia =

√
E
{
‖G−C‖2F

}

6
(14)



This anisotropy index is somewhat different from other, more usual definitions [4, 8], based on the distance

in the Frobenius norm between the elasticity tensor C and the closest isotropic one Ciso
eqv, defined as Ciso

eqv =
(S ⊗ S +D ⊗D/5)C:

Ia =

√
‖C −Ciso

eqv‖2F
‖C‖2F

. (15)

The analytical relation (12) is a direct consequence of that choice of a definition.

REMARK 2 When Ia = 0 the material is almost surely isotropic. When δ = 0, the results on the general

random anisotropic tensor given in [28] are retrieved.

2.2 Stochastic field of elasticity tensor

Up to now, only the variability of the elasticity tensor at a given point has been accounted for. In order to

introduce the spatial variability of this mechanical property, the present section discusses the construction

of a model of the stochastic field of elasticity tensor based on the probabilistic model developed in the

previous section. Let Ω = {x|x ∈ R
3} be the physical domain, equipped with a Cartesian reference frame

{i1, i2, i3}, and occupied by an inhomogeneous elastic material. The associated stochastic field model of

elasticity tensor {C(δ; δg; ℓ)|x ∈ Ω}, defined on the probability measure space (A,F , P ), indexed on Ω,

with values in M
+
6 (R), can then be formulated as follows:

{
C(x;δ, δg; ℓ) =

(√
3κ(x; δ; ℓ)S +

√
2µ(x; δ; ℓ)D

)
G(x; δg; ℓ)

(√
3κ(x; δ; ℓ)S +

√
2µ(x; δ; ℓ)D

)}
a.s. (16)

where ℓ = (ℓ1, ℓ2, ℓ3) is a vector of correlation lengths in the three spatial directions. The evolution from

equation (5) to equation (16) is done by replacing, in the formulation of the kernel G and of the isotropic

elastic modulus κ, µ, the 23 independent copies
{
Gk|k ∈ {1, 2, ..., 23}

}
of a Gaussian normalized random

variable by 23 independent copies
{
Gk(x; ℓ)|x ∈ Ω; k ∈ {1, 2, ..., 23}

}
of a stochastic Gaussian field

{G(x; ℓ)|x ∈ Ω} indexed on Ω with values in R. This germ Gaussian field is of second-order, homogeneous

with a correlation structure defined by the following correlation function (see, [29, 3, 24], for more details):

RG(η; ℓ) = E {G(x; ℓ)G(x+ η; ℓ)} = ρ(η1, ℓ1)ρ(η2, ℓ2)ρ(η3, ℓ3) (17)

where ρ(η; ℓ) is chosen as a squared cardinal sine:

ρ(η; ℓ) =
4ℓ2

π2η2
sin2

(πη
2ℓ

)
(18)

This stochastic field {C(x; δ, δg; ℓ)} is mean-square continuous with almost surely continuous samples. Fol-

lowing [29], it can be shown that taking the restriction of this field on a bounded domain leads to a second

order solution of the related stochastic boundary value problem.

EXAMPLE 1 As an example, a soil cube filling the physical domain {x ∈ Ω0 ⊂ Ω| − 200m ≤ x1, x2 ≤
200m;−400m ≤ x3 ≤ 0m} is considered now. The material has a constant bulk density ρv = 2000kg/m3.

The mean model consists in a homogeneous isotropic elastic material with compression wave velocity

vp = 1730 m/s and shear wave velocity vs = 1000 m/s. A simulation by the spectral representation ap-

proach (see below) is then performed. The mapping of term C11 of a sample of the field C(x; δ, δg; ℓ) with

δ = 0.6 ; δg = 0.15 ; ℓ1 = ℓ2 = 50m and ℓ3 = 20m is shown in (Figure 1-a). The shorter correlation

length along the vertical axis is clearly visible on this chart. In Figure1-b, a good match between the theo-

retical unidimensional correlation function given by equation (18) and the ones obtained by spatial mean is



observed. Another remark is that despite the isotropic mean behavior, the elastic tensor is anisotropic almost

everywhere. For instance, the elasticity tensor at the point {x1 = x2 = x3 = 0} of the given field sample is:

C(0, ...) =




6.369 0.461 0.880 0.671 −0.303 −0.178
− 3.949 1.403 0.039 −0.405 −0.513
− − 4.394 −0.142 −0.152 −0.662
− − − 3.091 −1.072 −0.081
− (sym.) − − 2.036 0.224
− − − − − 2.047




[×109Pa] (19)

(a)

0 50 100 150

0

0.25

0.5

0.75

1
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(b)

Figure 1: A sample of stochastic elasticity tensor field: (a) Mapping of C11. (b) Theoretical (solid lines) and

observed (circles) correlation structures in i1− (black) and i3− (gray) directions.

We now consider two samples of a random media having the same: mean homogeneous isotropic elastic

properties, fluctuation level δ|C| and correlation length vector ℓ, but different values for the dispersion pa-

rameters δ and δg in order to observe the influence of these parameters on the wave propagation pattern.

EXAMPLE 2 The domain of interest is such that −1500m ≤ x1, x2 ≤ 1500m and −400m ≤ x3 ≤ 0m.

The mean wave velocities are vp = 1730m/s and vs = 1000m/s. Free surface boundary conditions are

applied on top x3 = 0 and PML conditions on the other sides of the box. A point source is located at

point xo = (−1400, 0, 0) on the free surface. The time history of the force is a Ricker with a characteristic

frequency equal to 10Hz. The three correlation lengths are equal to 100m. As a consequence, the dominant

wavelength is of the order of the correlation length and the domain characteristic size is about ten times the

wavelength. As far as the amplitude of the fluctuation is concerned, the global fluctuation level on the elastic

tensor is set to δ|C| = 0.49. The dispersion parameters are set to δ = 0; δg = 0.6 for the first model, which

corresponds to the original model proposed in [29]. These parameters are set to δ = 0.47; δg = 0.17 for

the second model which corresponds to the upper limit of the anisotropic index observed in geophysics [32].

The amplitudes of the particle velocity on the free surface are shown in (Figure 2) for three different time

steps and for the two models. Although δ|C| is the same in the two cases, the wave propagation patterns are

very different. In the case of a high anisotropic level (δg = 0.6) the diffusion pattern corresponds to a strong

diffusion of the wave field whereas in the weakly anisotropic case (δg = 0.17) the wave field seems much

more localized in space and in time. Scattering at given locations can be observed. These results indicate

that these two models lead to different propagation regimes which have to be charaterized in more details.



Figure 2: Time evolution (from left to right) of wavefronts on the free surface for δ|C| = 0.49:

(upper figures) δ = 0; δg = 0.6, (lower figures) δ = 0.47; δg = 0.17.

2.3 Generation of a realization of the stochastic field of elasticity tensor

We address here the issue of generating a sample of the random field of elasticity tensor. As we wish to

propagate the waves over large distances, we are required to use a cluster of computers with distributed

memory. Further, in the case that interests us, the correlation length is of the order of magnitude of the

wavelength, which controls the size of the finite elements, for accuracy reasons. Hence, the elasticity tensor

evolves significantly over the size of an element, and it has to be sampled at all Gauss-Lobatto-Legendre

points. As an example, the number of space points at which the elasticity tensor is sampled is of the order of

magnitude of several tens of millions (for run presented in Figure 2). This means an order of magnitude of

109 values to be computed and stored (21 coefficients per space points).

The main goal of such an operation over a cluster with distributed memory consists in performing as much

work as possible over each thread independently, while retaining the global continuity of the elasticity tensor

(see Figure 3). We chose here to use the spectral representation method (see, [27], for instance). For this

method, and when using a homogeneous grid (all machines are the same), only the seed of the pseudo-

random generator has to exchanged between the threads (for example, through the main parameter file).

When using a heterogeneous grid, the values of the random germs (the size of which is usually much smaller

than 109) have to be exchanged.

More specifically, each thread executes, only over its own space domain, and for each of the 23 germs

{Gk(x;λc) | 1 ≤ k ≤ 23}, the following formula:

Gk(x;λ
c
1, λ

c
2, λ

c
3) =

√
2
π

λ1

π

λ2

π

λ3

∑

κ∈supportHG

√
HG

1 H
G
2 H

G
3 Y(κ|a) cos(2πZ(κ|a) + κ · x), (20)

where the HG
i are related to the Fourier spectrum of the correlation structure ρ(η; ℓ) chosen for the random



Figure 3: Example of fields generated by sub-domains (one sub-domain per thread): geometry of the sub-

domains (left figure) and one realization of the component C44 of the elasticity tensor (right figure).

field of elasticity tensor, and the a emphasize the quantity that has to be exchanged, depending on the het-

erogeneity of the cluster over which the computation is run. Note that these sums can be very efficiently

implemented and computed using the Fast Fourier Transform, for which parallel implementations exist on

large clusters.

3 Boundary conditions: PMLs

We consider in this section the truncation of the space domain over which the computation is run. Indeed, in

homogeneous media, it has become quite common to use either absorbing boundaries or layers to reduce the

size of the domain over which the computation is run. Both these general approaches (that incorporate many

different methods) aim at absorbing the outgoing waves through the imposition of a particular boundary

condition (absorbing boundaries) or by the addition of some absorbing material around the computational

domain (absorbing layers). When schemes have shown to behave very well. In particular, the Perfectly

Matched Layer method [7] has taken a place of choice for applications in electromagnetism [31, 10], acous-

tics [20] and elastodynamics [15, 11, 18, 13].

However, in a heterogeneous domain, some energy might be reflected inside the computational domain by a

heterogeneity located outside of it. Hence the absorption of the outgoing waves actually decreases the energy

inside the computational domain. The development of equivalent boundary conditions in such media is still

a pending question to the authors’ knowledge, and will not considered here. In this section we describe,

respectively, the implementation of the PMLs for elastodynamics, the instability arising in heterogeneous

anisotropic media, and a possible patch for that problem.

3.1 PMLs in elastodynamics

The absorbing property of the PML is represented mathematically by the modification of the divergence

operator in the strong formulation of the elastodynamics equation:

D̃ivσ + fv = ρvü. (21)
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Figure 4: Instability issue with PMLs in anisotropic medium.

This modified divergence operator D̃iv is written

D̃iv =
1

Sx
ex∂x+

1

Sy
ey∂y +

1

Sz
ez∂z, (22)

with Si the stretching function along the direction ei. As in [14] for the simplest case of a boundary of

normal nj, this function can be chosen in the frequency domain as:

Si = 1− i
βi(xi)

ω
δij, (23)

with δij the Kronecker symbol and βi(xi) a real function of the distance to the interface between the physical

and absorbing domains. This function is chosen strictly positive and starting at zero to ensure the continuity

of the material at the interface.

The modified divergence operator D̃iv can also be seen as a change of coordinates

x̃i = xi −
i

ω

∫ xi

0
βi(s)ds. (24)

Physically the modified divergence operator implies that there is an exponential attenuation within the PMLs.

Indeed a PML region perpendicular to ex transforms (see [11], for instance) a plane wave

Φ(x, y, z, t) = Φ0e
i(ωt−kxx−kyy−kzz) (25)

into the wave

Φ̃(x, y, z, t) = Φ0e
i(ωt−kxx−kyy−kzz)e−

kx
ω

∫ x

0
βx(s)ds (26)

which has been attenuated by a factor of e−
kx
ω

∫ x

0
βx(s)ds.

3.2 Instability of PMLs in heterogeneous anisotropic media

Although PMLs behave very well, it has been shown that they become unstable, in the case of anisotropic

media, for certain relations of the group velocity and the orientation of the layer [6] (see Figure 4). Unfor-

tunately, this situation always occurs when considering heterogeneous and anisotropic media. This section

describes this instability.

For elastic waves, there are two equivalent ways to implement the PMLs: by decomposing waves into po-

tential energies of compression and shear, as in [15], or through a stress-velocity formulation, as in most



application in elastodynamics [14]. This approach is followed here, and the system of equations to be solved

is: 



ρv(v̇
m
i + βmvmi ) =

∂σij
∂xj

δjm

σ̇m
ij + βmσm

ij = Cijkl
∂vk
∂xl

δlm

(27)

To simplify the notations, and understand the concepts, we choose a PML perpendicular to i1 (i.e. the

damping in the PML is activated only along the direction i1: β1 6= 0):





ρv(v̇
m
i + δ1mβmvmi ) =

∂σij
∂xj

δjm

σ̇m
ij + δ1mβmσm

ij = Cijkl
∂vk
∂xl

δlm

(28)

The system (28) can be assembled in the form of the first-order differential equation:

Ψ̇ = A1
∂Ψ

∂x1
+A2

∂Ψ

∂x2
+A3

∂Ψ

∂x3
−BΨ (29)

where Ψ is a 27-components-vector

Ψ =
[
σ
(1)
11 σ

(1)
22 σ

(1)
33 σ

(1)
12 σ

(1)
13 σ

(1)
23 v

(1)
1 v

(1)
2 v

(1)
3 ...

σ
(2)
11 σ

(2)
22 σ

(2)
33 σ

(2)
12 σ

(2)
13 σ

(2)
23 v

(2)
1 v

(1)
2 v

(2)
3 ...

σ
(3)
11 σ

(3)
22 σ

(3)
33 σ

(3)
12 σ

(3)
13 σ

(3)
23 v

(3)
1 v

(3)
2 v

(3)
3

]T
(30)

A1,A2,A3 are matrices depending on the mechanical properties Cijkl and ρv, and B is a diagonal matrix

characterizing the absorbing property of the PML:

B =

[
β1Id9 018

018 018
.

]
(31)

The equation (29) is associated to a hyperbolic equation that describes the physical domain:

Ψ̇ = A1
∂Ψ

∂x1
+A2

∂Ψ

∂x2
+A3

∂Ψ

∂x3
(32)

and accepts plane wave solutions Ψ0e
i(ωt−κ·x) when (κ, ω) satisfy the dispersion relation:

F (ω,κ) = F (ω, κ1, κ2, κ3) = det (ωId− κ1A1 − κ2A2 − κ3A3) = 0. (33)

Coming back to system (29), it accepts plane wave solutions when the following dispersion relation is met:

F pml(ω,κ) = F (ω, κpml
1 , κ2, κ3) = F

(
ω, κ1

ω

ω − iβ1
, κ2, κ3

)
= 0 (34)

F
(
ω(ω − iβ1), κ1(ω), κ2(ω − iβ1), κ3(ω − iβ1)

)
= 0 (35)

Following [6], the solutions Ψ are stable when the imaginary part of ω is positive. This implies that:

s · vg > 0. (36)

Geometrically, the condition (36) implies that the instability of the PML occurs almost surely for long times

if the slowness surfaces of the material shows at least one concave part towards the PML. A schematic view

of that interpretation is presented in Figure 4.
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Figure 5: Schematic presentation of the introduction of the isotropic equivalent material in the PML.

3.3 Modified (stable) PMLs for heterogeneous anisotropic media

We present here a modified version of the PMLs that remains stable and reflects very little energy in the

case of heterogenous and anisotropic media. Another option consists in using a multiaxial damping [12],

which stabilizes the PMLs, but this creates some undesired reflection at the interface between the physical

and absorbing domains.

From the geometrical interpretation of the instability issue in the previous section, one remark can be drawn

right away: an isotropic material is naturally stable with respect to the PML because the slowness surfaces

are spheres. Therefore we will adapt the PML by considering an isotropic equivalent material instead of the

original anisotropic material. This isotropic equivalent material is defined as the projection of the elasticity

tensor over the space generated by the spherical and deviatoric tensors (see section 2). However, to limit

the influence of the loss of ”perfect match” between the physical domain and the PML, we only introduce

this isotropic equivalent material at some distance from the interface (see Figure 5). The effect of this

modification is hence a reduction of the instability issue (in practice, the energy explodes at later times)

while keeping the undesired reflections at low levels.

EXAMPLE 3 We then present a study of the influence of the relative size of the modified PML on the evolution

of the total energy inside the physical domain (Figure 6). Let us consider a cube of inhomogeneous soil

modeled by a 3D-stochastic anisotropic elasticity tensor field of isotropic mean model (represented by the

P-speed and S-speed respectively equal to 1730 m/s and 1000 m/s). δ and δg are chosen such that the

whole fluctuation δ|C| is equal to 50% of the mean. The three correlation lengths are all taken equal to 50m.

This physical domain of size 500m × 500m × 450m is almost surrounded by 50m-layer-PMLs except for

the top side where a free surface boundary condition is applied. Both of these domains (i.e. physical and

absorbing) are discretized in hexahedral spectral finite elements of size 50m × 50m × 50m. A GLL-grid

of order 8 is used for local collocation points. The relative size of the modified PML layer is evaluated in

number of GLL points at which the anisotropy behavior is replaced by a isotropic equivalent one. A Ricker

point-like source is located at the center of the free surface. 7 random simulations corresponding to these

PML configurations are then performed in which the physical domain sample is unchanged from one to

another. We observe that in average, the larger the isotropic domain, the further in time the explosion time

is sent. Note, however, that this property is not necessarily true for each sample independently because the

media that we are considering are realizations of a random medium.
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Figure 6: Influence of the relative size of the modified PML on the evolution of the total energy inside the

physical domain. The right figure is a (strong) zoom on the left figure.

4 Wave propagation vs. diffusion

In this section, we discuss very briefly a first step in a new direction of research for the observation of wave

propagation in random media over long distances. The general motto is that, in some cases, the observation

of the velocity field at long distances is not meaningful, and that the observation of energy levels is more

important. This is obvious in Figure 2 where a diffusion behavior is observed on the upper graphs. An

interesting approach would therefore consist in solving, for long distances, an equation of diffusion for the

energy (the coefficients of which can be derived theoretically [25]), rather than the wave equation for the

velocity field. The former would require much less computational power because its features are much

smoother. Besides the construction of the appropriate coefficients for the diffusion equation, this research

direction would require the construction of appropriate excitation given the real excitations of the wave

equation. In the longer run, two interesting options would be to couple wave propagation with diffusion

some distance away from the excitation, and/or to construct new types of PMLs, that would allow to launch

back at the computational domain the appropriate energy, based on the diffusion equation. This last point

would address the unsolved problem of PML for heterogeneous media, hinted at in section 3.

The first point of that research program, which is the only one that we will consider here, consists in identi-

fying the emergence of diffusion of energy within the framework of the wave equation. In particular, several

authors [23, 22, 19] have shown that diffusion of energy is necessarily accompanied by an equipartition of

the compressional wave energy

EP = ρvv
2
P × E

{
(Divu)2

}
(37)

and the shear wave energy

ES = ρvv
2
S × E

{(−→
Rotu

)2 }
(38)

of the form
EP

ES

=
v3P
2v3S

. (39)

Indeed, this equipartition can be observed in the simulations that we have performed. However, this equipar-

tition appears after long distances of propagation, and at long times, so that some work still has to be per-

formed in lowering the computational cost of the solution of the full wave propagation equation over long

distances. The main issue with this characterization of diffusion in that manner is that the definition of the

compressional wave and shear wave energies is not well defined for anisotropic media. In the example be-

low, we show that the convergence does take place towards the expected value for both isotropic and mildly



Figure 7: Observation of the equipartition of energy at the theoretical level over long distances of propagation

and time for an isotropic model (blue stars) and a mildly anisotropic one (red line).

anisotropic media. However, for more strongly anisotropic media, the convergence does take place but leads

to a different value of the ratio of energies. Further investigations are required on that topic.

EXAMPLE 4 We consider here two different cubes of dimensions 3000m × 3000m × 450m with hetero-

geneous materials with global variability δ|C| = 0.1 and correlation lengths in all directions 100 m. The

material of the first is isotropic, with δ = 0.1 and δg = 0 and that of the second one is anisotropic with

δ = 0 and δg = 0.1374. In both cases, the domains are discretized in hexahedral spectral finite elements of

size 50m× 50m× 50m. A GLL-grid of order 8 is used for local collocation points. In both cases, no PMLs

are implemented and Neumann boundary conditions are used all over. This is done so as to contaminate the

energy inside the domain through undesired reflections and/or undesired loss. On Figure 7, the convergence

of the ratio of the energies towards the expected value can be observed.
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