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Inapproximability proof of DSTLB and USTLB

in planar graphs

Dimitri Watel Marc-Antoine Weisser Cédric Bentz

February 20, 2013

This document proves the problem of finding a minimum cost Steiner Tree
covering k terminals with at most p branching nodes (with outdegree greater
than 1), in a directed or an undirected planar graph with n nodes, is hard to
approximate within a better ratio than n, even when the parameter p is fixed.

1 Theorem

Definition 1. In a undirected (resp. directed) tree, a branching node is a node
whose degree (resp. outdegree) is strictly greater than 2 (resp. 1).

Problem 1. min-(∗, p)-USTLB: Given an undirected graph G = (V,E) with
n nodes and a non negative cost function ω on its edges, an integer k and a set
X ⊂ V of k terminals, determine, if it exists, a minimum cost tree T ∗ spanning
all the nodes of X and containing at most p branching nodes.

Problem 2. min-(∗, p)-DSTLB: Given a directed graph G = (V,E) with n
nodes and a non negative cost function ω on its arcs, a node r, an integer k and
a set X ⊂ V of k terminals, determine, if it exists, a minimum cost directed tree
T ∗ rooted at r, spanning all the nodes of X and containing at most p branching
nodes.

Theorem 1. Let ε < 1 be a real number. If P 6= NP, the min-(∗, p)-DSTLB and
the min-(∗, p)-USTLB problems with unit costs cannot be approximated within
a factor of N ε where N is the number of nodes in the instance, even if there is
a trivial feasible solution.

2 Proof of the theorem

2.1 Reduction

We prove the theorem in the directed case. The proof is similar in the undirected
case.

Finding a hamiltonian path starting at a specified node v in a directed planar
graph is a NP-complete problem [1].
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Let I = (G = (V,A), v) be an instance of the hamiltonian path problem in
a directed planar graph G. We construct a min-(∗, p)-DSTLB instance I ′v =
(G′v, r,X, ω) where G′v is a directed planar graph.

The main idea is that G′v is divided in three parts. An example is shown in
Figure 1. Firstly, a graph G′ = (V ′ = V ∪W,A′) built from G where each arc
of A is divided in two or more arcs. Secondly, a binary tree B rooted at r with
p branching nodes and p + 1 leaves. We link one of the leaves of B to v with
an arc av. We define X as the leaves of B and V . Finally, a graph H and an
integer h which ensures the three following properties:

Property 1. Let n, nG′ and nH be the number of nodes in G, G′ and H.
nG′ + nH − n is no more than 4 · n3 · h.

Property 2. There exists an elementary path P in G′ ∪H going through each
node of G starting at v.

Property 3. Any elementary path in G′ ∪ H going through each node of G
starting at v using a node of H not as endpoint contains at least h nodes of H.

Property 2 ensures the existence of a feasible solution. Properties 1, and 3
ensure an inapproximability gap, described in section 2.2. If h is long enough,
Property 3 ensures that any node of H will not be allowed in any approximated
solution. We will fix G′, H and the value of the parameter h later.

r v

B G′ ∪H

P

Figure 1: Example of reduction from a graph G with 4 nodes, and p = 3. Nodes
of W (= V ′\V ) and H, and arcs of G′ and H do not appear on that figure.

The number of nodes N in G′v is nG′ + nH + p+ (p+ 1).

2.2 Inapproximability gap

In this part, we fix the parameter h and show the approximability hardness of
(∗, p)-DSTLB.

Let T ∗ be an optimal solution of I ′v. It exists because B ∪ P ∪ av is a
feasible solution by Property 2. Let ε < 1, and suppose it exists a polynomial
N ε-approximation algorithm for min-(∗, p)-DSTLB in a planar graph. We will
show that in that case, we could use this algorithm to decide whether G has a
hamiltonian path starting at v.
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If there exists a hamiltonian path in I starting at v, T ∗ contains at most
n+ 2p+ 1 nodes (the n nodes of G, the 2p+ 1 nodes of B), thus it contains at
most n+ 2p arcs. So the approximate solution has a cost cYES ≤ (n+ 2p) · N ε.

We now discuss the case where there is no hamiltonian path starting at v in
I. Then, without H, we cannot build an elementary path going through each
node of G.

Lemma 1. Any feasible solution of I ′v contains an elementary path going
through each node of G starting at v.

Proof. Let T be a feasible solution. T covers every leaf of B, as a consequence
it covers B entirely. Because B contains p branching nodes, all other terminals
are covered with elementary paths connected to B. T covers every nodes of G
and av is the only arc linking B to a node G. So T contains an elementary path
going through each node of G starting at v.

By Lemma 1, without H, we cannot build a feasible solution of I ′v. So the
approximate solution uses at least one node of H. On of those node is not an
endpoint. Indeed, in this case, we can remove them to get a hamiltonian path
in G. By Property 3, it uses at least h nodes of H. So it has a cost cNO > h.

If cNO > h > cYES, then the approximation algorithm can decide whether
there is a hamiltonian path starting at v.

Lemma 2. Let h satisfies h = 5
ε

1−ε (n3+2·p+1)
1+ε
1−ε +1. Then cNO > h > cYES.

Proof. Notice that h > 1 for all ε < 1 and n ≥ 1. Line 11 is proven by Line 10
and Property 1.

h > 5
ε

1−ε (n3 + 2p+ 1)
1+ε
1−ε (1)

h1−ε > 5ε(n3 + 2p+ 1)1+ε (2)

h > 5ε(n3 + 2p+ 1)1+εhε (3)

h > (n3 + 2p+ 1)1+ε(5h)ε (4)

h > (n3 + 2p+ 1)1+ε(1 + 4h)ε (5)

h > (n3 + 2p+ 1) · (1 + 4h)ε(n3 + 2p+ 1)ε (6)

h > (n+ 2p) · (1 + 4h)ε(n3 + 2p+ 1)ε (7)

h > (n+ 2p) · ((n3 + 2p+ 1) + 4 · (n3 + 2p+ 1) · h)ε (8)

h > (n+ 2p) · ((n+ 2p+ 1) + 4 · (n3 + 2p+ 1) · h)ε (9)

h > (n+ 2p) · ((n+ 2p+ 1) + 4 · n3 · h)ε (10)

h > (n+ 2p) · ((n+ 2p+ 1) + nG′ + nH − n)ε (11)

cNO > h > cYES (12)

As a consequence, if P 6= NP, such an algorithm does not exist.

3



2.3 Existence of G′ and H

In this section, we explain how to build the graphs G′ and H.

2.3.1 Construction of G′ = (V ∪W,A′)

G′ is built from G where each arc of a is divided into several arcs of A′ and
nodes of W .

We first embed G in R2 such that v is on the outer face of G. For a node
w ∈ V , we define its coordinates as xw and yw.

Lemma 3. It exists an angle α such that the rotation rα(G), of angle α and
center v, rotates G so that each node w ∈ V has a unique x-coordinate xw with
xv ≤ xw (v is ’on the left’).

Proof. Let αm and αM be two angles in [0; 2π] such that for each α ∈ [αm;αM ],
rα(G) places v on the left.

If there is no angle where, after G rotates, each node w ∈ V has a unique x-
coordinate xw, for each α ∈ [αm;αM ], there are two nodes (u,w) with xu = xw
and yu < yw. There are at most n2 such couples. Let αi, i ∈ [1..(n2 + 1)],
be distinct angles in [αm;αM ], there are two distinct angles for which the same
couple of nodes (u,w) verified, after G rotates, xu = xw and yu < yw, which
implies a contradiction.

We then sort the list of nodes vi by its x coordinate : xv = xv1 < xv2 <
xv3 < ... < xvn .

We define Di for i ∈ [2..n] as the vertical strait lines of abscissa xi =
xvi−1

+xvi
2 . For each arc a = (t, u) of G crossing a line Di, we add a node

w to W at the intersection of a and Di and replace a in A′ by the two arcs
(t, w) and (w, u). An example is shown in Figure 2.

As no new arc cross, G′ is planar.

v v

v2

v3

v4

G D2 D3 D4

Figure 2: Example of graph G′ = (V ∪ W,A′) built from a graph G with 4
nodes. W is the set of dashed nodes.

2.3.2 Construction of H

We first prove three intermediate lemmas :
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Lemma 4. Any arc of G′ starting at a vertical strait line Di goes to the left,
or goes above, below, from or to vi.

Proof. Let a be an arc of G′ crossing a vertical strait line Di at a node u. If a
goes to the left, the lemma is verified. Else, if a do not go above, below, from
and to vi, there is a node t ∈ V ′ with a = (u, t) or a = (t, u) and xt ∈ [xi, xvi [. If
t ∈ V , by definition of Di, xi > xt which implies a contradiction. If t ∈W , there
is a strait line Dj with xt = xj ∈ [xi, xvi [ which also implies a contradiction.

We can similarly prove the following lemma :

Lemma 5. Any arc of G′ going above, below, from or to vi goes to the right of
vi or cross Di.

Lemma 6. For each node vi ∈ V , i ∈ [2..n], we can add to H a node vi,l on
Di and an arc (vi,l, vi) such that the graph G′ ∪H remains planar.

Proof. Let am and aM be respectively the lowest arc of G′ going above vi and
the highest arc going below or to vi, going from or to the left of vi. An example
is shown in figure 3.

If am and aM do not exist, by Lemma 4, there is no arc crossing Di going
to or from the right (the graph is then disconnected). We can add vi,l on Di

anywhere there is no node of W .
If only am exists, the arc cross Di at a node tm by Lemma 5. We can add

vi,l on Di anywhere below tm where there is no node of W .
If only aM exists, the arc cross Di at a node tM by Lemma 5. We can add

vi,l on Di anywhere above tM where there is no node of W .
If am and aM exists, they cannot cross at a point of abscissa x ∈ [xi;xvi ].

If they do, either G′ is not planar which is not true, or G′ contains a node
t ∈ [xi;xvi ]. Like in the proof of lemma 1, this would imply a contradiction. So
we can add vi,l on Di anywhere above tM and below tm where there is no node
of W .

Similarly, for each node vi ∈ V , i ∈ [2..n]we can add to H a node vi,r on
Di+1 and an arc (vi, vi,r) such that the graph G′ ∪H remains planar.

Finally, for i ∈ [2..n], we sort the nodes of abscissa xi by increasing y-
coordinate (those nodes are nodes of G′ or nodes of H). For each couple (u, t)
of consecutive nodes we add to H a path of h nodes going from u to t if vi−1,r
is before u in the list, from t to u otherwise. An example is shown in Figure 4.

Lemma 7. G′, H and h verify Properties 1, 2 and 3.

Proof. n′G + nH − n is the number of arcs in H and W , in other words, the
nodes of all the lines Di. For each vertical line Di, we create at most m nodes
of G′, and 2 + h · (1 +m) nodes of H. So n′G + nH − n ≤ n · (1 +m) · (h+ 1).
Thus n′G + nH − n < n · (2m) · (2h) < 4n3h. Property 1 is verified.

The path P starting at v, going to v1,r, from vi−1,r to vi,l through Di and
to vi for i ∈ [2..n] goes through each node of G. Property 2 is verified.
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Figure 3: Example of insertion of vil

v

v2

v3

v4

h

h

h h

h

h
h

h

h

D2 D3 D4

Figure 4: Example of graph G′ ∪H built from a graph G with 4 nodes. Thick
nodes are vir and vil. Dashed nodes are W . Each vertical arc is actually a path
with h nodes.
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Let P be an elementary path going through every nodes of G and one node
of H not as endpoint. As only the nodes vi−1,r and vi,l, i ∈ [2..n] are linked to
a node of G. If P contains a node of H, it exists a node t and i ∈ [2..n] such
that t = vi−1,r or t = vi,l is in P . As t is linked to only one node not in Di, P
goes out of Di (or enters Di) through an other node of Di and P contains at
least h nodes of Di. Property 3 is verified.
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