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ABSTRACT: Large scale outages on real-world critinfastructures (ClIs), although infrequent, arereas-
ingly disastrous to society. In this paper, we mddis as complex networks and consider the prolbdém
facility allocation on nodes of the network for nraxzing the efficiency of supply to other nodes dhd re-
silience of the overall network in resisting to @ading failures. Of course, the investment costgHe allo-
cation must remain limited. The framework of fagilallocation optimization is originally applied the
400kV French power transmission network, for alto@apower generation to service the existing busas
problem is combinatorial and multi-objective in uv&t, and for its solution we use the non-dominatating
binary differential evolution (NSBDE) algorithm.

1 INTRODUCTION tributed access network with constrained total .cost

Our modern society has come to depend on Iarg@-Ut the intense computation of network reliability
scale critical infrastructures (Cls) to deliver re-pro?'b!tsd 'tzs app!lcatlgn tg Iargel_s%_e Networks.
sources to consumers and businesses in an efficieﬁfJt rain (2010) introduced a multi-objective optl-
manner. These Cls are complex networks of interMization method for constructing casca_de resilient
connected functional and structural elements. Larg@et""?{kS bashed on the strlécture Og.tf r:jorlst ndtw?r
scale outages on these real-world complex networké\l,e";’t & As l(zopﬁ) used a {no :c'.el Metro_ﬁ)_o IS
although infrequent, are increasingly disastrous tgVo'utionary algorithm to evolve failure resilient
society, with estimates of direct costs up to il networks with the objective of maximizing the aver-

of dollars and inestimable indirect costs. Typiesi ~ 29€ Network efficiency. _ ,
amples include blackouts in power transmission ! Practical case, the cost of knocking down exist-
networks (USCA 2004, UCTE 2007, Pidd 2012) fi.Ing network and reconstructing it from scratch is
nancial bankruptcy (Battiston et al. 2007), telecomProhibitive, especially for Cls like the power tgan

munication outages (Newman et al. 2002), and Cat‘,jtl’rjission network. A more practicable alternativeois
strophic failures in socio-economic systems (Zhageconfigure a small part of the network topologg, e
2011 & Kempe 2003). y reallocation the links between production facili

Research regarding modeling, prediction and mitl!éS and consumers. . . .
igation of cascading failure in complex networks ha In this paper, a new eff|C|ency ”Fdex IS .proposed
tried to address the problem with different aspectl© characterize the dynamic supplying efficiencyof

(Battiston et al. 2007, Newman et al. 2002 Zhadetwork where the consumer nodes receive re-
2011. Motter & Lai ’2002 Dobson ét al '2004 sources or services mostly from the nearest supply-
BaIdié:k et al. 2008). ’ ' "ing node in operation. Formulated as a large-scale,

Albert et al. (2004) demonstrated that the vulneranonline_ar and comb_inatorial mul_ti-objective problem
bility of modern infrastructure networks (e.g., pgw lthg facility Ireall_or?atlo_n problerg IS §olvectlj by aroe bi
transmission network) is inherent to their organiza utionary algorithm, 1.€., non-dominated sorting Dbi

tion. Thadakamalla et al. (2004) revealed thatane nary differential evolution (NSBDE) algorithm (Li

ology of a supply network has great impact on it&t @ 2013).
Pesilior e Terova Y e | The reminder of this paper is organized as follows.

resilience. In the renovation and re-design of @ls, ¢ | h lti-obiect P q
motivating objective should then be that of renualgri We ormu ate the multi-o JeCt'Ve.OPt'm'.Zatlon mod-
el taking cost, network supplying efficiency and

them failure resilient, while operationally effiaie . - ) ) )
(Boorstyn & Franck 1977). In literature, Shabal. failure resilience into account in Section 2. Satid

(2005) proposed the shrinking and searching algdmveiIS the gletailed p'rocedL.Jre of the proposed
fithm to maximize the network reliability of a dis- NSBDE algorithm. Section 4 illustrates the French



400kV power transmission network case study andate the dynamic supplying efficiency of a network

the results analysis. Conclusions and future woek a where the consumer nodes receive resources or ser-

drawn on the Section 5. vice mostly from the nearest supplying node in op-
eration, a new index is here proposed:

1
2 OPTIMIZATION MODEL e =maX{d(j i)} 3)

iOVg

2.1 Network model where e; is characterized by the most efficient sup-

We represent a complex supply network as &lying channel from all the facility nodes to con-

weighted undirected gragh(V, E) comprising a set sumer nodg. Similarly we have the following glob-

of nodesV = {v,,v,, ..., vy} together with a set of al network supplying efficiency by averaging across

edgesE = {ey, e, ...,ey}. The network nodes are all the consumer nodes:

generally classified into facility supplying nodés 1

and resources consuming nod&s (Vs UV, =V); e—N— Zej )

we useNs and N to indicate the cardinalities of

Vs and V., respectively. The structure of the net-

work is identified by anN x N interaction matrix

W, whose elementy;; is O if nodei andj are not 3 3 Cascading failure model and network

connected directly; otherwise it is assigned a nume vulnerability

ical weight by the physical distance betweiemandyj,

which we assume directly related to the transmitting’here is extensive literature on cascading failure

cost of the linke;;. models of complex networks (e.g., Newman et al.
We define the variables to be optimized as th&€002, Kempe 2003, Motter & Lai 2002, Dobson et

links of facility allocation to the different consing  al. 2004, Baldick et al. 2008, Motter 2004, Vaiman

C DV

It is noted thate(G) = E(G) always holds.

nodes: et al. 2012). Two basic types are considered: perco-
1, if i isconnecteavith j directly lation cascades and capacity cascades. The former

ij :{0 otherwise (1) originate in Physics but is often applied to Epidem

; ology, where it is termed “contagious” or “epidem-
forall i € Vs andj € Vc. ics” (see, e.g. Newman 2003). The capacity cascades

A cost is associated with each rewiring. We as¥sually applies to a capacitated network such as a
sume that the cost is linearly proportional to the?OWer transmission system and supply chain, in
physical length of the linkage with a coefficiept which edges carry flows from facility nodes to con-
Besides, two constraints have to be met when reall$umer nodes. Cascades occur when initial failures of
cating the facilities: (1) each consumer node is re2 Part cause flows redistribution, overloading &not
quired to connect with at least one facility node o €' Part and causing it to fail as well, promptingla
other consumer node, to make it accessible to tHiPnal parts to fail in a vicious cycle. The capyci

supplying facilities; (2) each facility node has to cascadin.g failure modgl is the focus in this study.

given supply network, suppose that at each time ste
) o one unit of the relevant quantity, which can be in-
2.2 Network supplying efficiency formation, energy, etc., is exchanged between every
Notions of network supplying efficiency attempt to pair of facility nodes and consumer nodes and
quantify the value of a network in operating its-se transmitted along the shortest path connecting them
vice. A well-known measure of network efficiency The load (or stress) at one node is then the number
is a version of distance-based efficiency (Latora &f shortest paths passing through it. More pregisel
Marchiori 2001). For its compotation all pairs of the loadL, of nodek is quantified by the node be-
nodesi € Vg, andj € V. are weighted by the inverse tweenness calculated as the fraction of the fgeilit

of the distance: consumer shortest paths passing through that node:
1 1 n.. (k)
E(G) = 2 _ 1 ij
(©) NgNc %‘;mzv‘;d(i,j) (2) Ly —NSNCZjDVS,jDVC,kDV,i;tj¢k n. (5)
J

where d(i,j) is the number of edges for un-

weighted network or the sum of edge weights fof/neré my; is the number of shortest paths between
weighted network in the shortest path froto . facility nodes and consumer nodes, ang(k) is
This definition is able to partially characterizest the number of facility-consumer shortest paths pass

topological property of a complex network. To eval-ind though nodé.



The capacity of nod& is assumed to be propor- 2.4 Multi-objective optimization problem

tional to its initial nodeL, with a network tolerance formulation
parametet, . N
C, =a+alL, 6 After quantifying the cost, network efficiency and

cascading failure vulnerability, the facility alkstoon
roblem is formulated as a multi-objective optimiza
fon as:

The concept of tolerance parametefa > 0) could
be regarded as an operating margin allowing sa
operation of the component under potential load in-
crement. The occurrence of a cascading failure is :
J o min X, 8a
initiated by removal of a node, which in general {.wszj“mﬁ ”} (8a)
changes the distribution of shortest paths. Then th

load at a particular node can change and if it in- ma>{e(G)} (8)
creases and exceeds its capacity, the corresponding minfvul (G)} (8c)
node fails. Any failure leads to a new redistribati
of loads and, as a result, subsequent failureocan

cur. DX, >00j 0V, (8e)
Using this cascading failure model, the vulnerabil- ¢ Jiv
ity of networkG can be characterized by the fraction z X; >00iOVg (8f)
of network efficiency loss in a cascading failure: Ve
E(G) - E(G) The objective function (8a) is the sum of the dixe
Wul(G) T Eo) (7)  rewiring costs; (8b) and (8c) express the operating

efficiency and resilience objectives, respectively.
The two constraints mentioned in Section 2.1 are en
Itforced by formula (8e) and (8f), respectively.
Observe that the least costly facility allocatien i

whereVul(G) € (0,1) and G represents the residu-
al network structure after a cascading failure.
should be noted that the effect of the type ofiahit
event could be significant to the cascading fa'l.uresimply that when there is no link between faciitie
result: the loss of a cascade triggered by thertil

. and consumers.
of a critical component could be much more severe
than that originated by the failure of a normal eom

ponent. Therefore, we consider the worst-case SC%— NON-DOMINATED SORTING BINARY

narios in this study, i.e. one of the top five most pPIEFERENTIAL EVOLUTION ALGORITHM
loaded (largest betweenness) nodes, is choseiri to fa

in each cascading simulation, and the result is-ave|n this section, we briefly introduce the operation

aged on a number of simulations. . procedures of the NSBDE algorithm. The standard
The detailed simulation of a cascading failure prodifferential evolution (DE) algorithm, initially pr
ceeds as follows: posed as a population-based global optimization

Step 1. Apply formula (5) to compute the initial load method for real-valued optimization problems, has
of each node for a proposed network by Floyd'd€en found to outperform alternative optimization
shortest paths algorithm (Floyd 1962), and caleulat@lgorithms in various fields (Li et al. 2013, Priee

the capacity of each node based on formula (6).  @l- 2005, Ponsich & Coello 2011). In order to solve
the combinatorial multi-objective problem of inter-

Step 2. The most loaded node is chosen as failed angk; the fast non-dominated sorting, ranking aitd el
thus is removed from the network. ism techniques used in non-dominated sorting genet-

Sep 3. Recur to formula (5) and Floyd’s shortestiC algorithm-Il (NSGA-Il) (Deb et al. 2002) is

paths algorithm to recalculate the load of eachkwor introduced into a modified binary differential ewvel
ing node in the network. tion (MBDE) which is a binary version of DE devel-

oped to tackle single-objective binary-coded optimi

Slt(ep 4. T(festheach nodke _f]?r failure: gor each ndde 4iion problems (Wang et al. 2010). The NSBDE
(k€ N) of the network, ifL, > Cy then nodek i 15ceads as follows (Li et al. 2013);

regarded as failed and thus is removed.
Sep 5. If any working node fails, return back to stepStep 1. Initialization of parameters

3. OtherWise, terminate the Cascading simulation. Set the values of the popu|ation SNE, the crosso-
ver rateCR, the scaling factoF, and the maximum
generationNmax.



11)

Sep 2. Generation of initial population and evalua- . {pufj, if randj < CR or j = randi
tion pv;; =

'pxl-tj, otherwise
Initialize each individual in the population which
represented as a bit-string and denotedpgs=

{px{; lpx{j € {01};i=12,..,NP,j =12,..,M} ,

whereNP is the population size arM is the dimen-
sionality of the solutions. Each individual is alsogep 4. Evaluation

called a chromosome and forms a candidate solution _

to the problem. Each bit of each initial chromosome-valuate faCh of theP chromosomes in the popu-
takes a value from the set {0, 1} with probability ation PV* by computing its rewiring cost (8a),
equals to 0.5: the bit takes ‘1’ if the correspomdi network supplying efficiency (8c) and its resilienc

facility node and consumer node are connected, ‘0° cascading failures (8b) by performing the cascade
otherwise. process simulation procedure presented in Section

Each of theNP chromosomes is evaluated by2'3'
computing the three objective functions, i.e. folanu
(8a), (8b) and (8c) on its corresponding netwokk to

whererand; € (0,1] is a uniform random value,
CR is the crossover rate, améndi is a uniform
discrete random number in the set {1, 2NR}.

Sep 5. Union and Sorting

pology. Combine the parent and trial populations to obéain
_ . _ union populationPUt = PXt u PVt. Rank the in-
Sep 3. Generation of trial population dividuals in the union population by the fast non-

Apply the binary tournament selection operator (Delflominated sorting algorithm (Deb et al. 2002) with
et al. 2002) to the populatioAX® to generate a trial respect to the objective values, and identify the

population PV, which undergoes the evolution op- 'anked non-dominated frons, F, ..., F whereF,
erations of mutation and crossover. is the best frontF, is the second best front afd

the least good front.
Sep 3.1 Mutation

' N o Sep 6. Selection
The following probability estimation operator _ o .
P(pX) is utilized to generate the mutated individu_SeIect the firstNP individuals from PU" to create a

als according to the information of the parent’€W parent po'pula.tiOIPX”l. The crowding dis-
- tance is used in this step to choose the indivglual
population: : g
with the same front, where crowing refers to the
P(prj) = (9) density of solution present in a neighborhood of an
individual of specified radius (Deb et al. 2002)eW
: L refer the individual which is located in a region
whereb is a positive real constant, usually set af’\l?vith least number of individuals. The algorithm

. H H t t
6; tF Is the ?Cal'n_g factorpay ;. pxr,; and stops when it reaches the predefined maximum gen-
pxy3; are thej-th bits of three randomly chosen grationsN, .

individuals at generation According to the prob-
ability estimation vectoP (px{) = [px{ 1, px{5, ..
pxfy] created by Eq. (9), the corresponding off-4 CASE STUDY AND RESULTS ANALYSES
spring pu! of the current target individuax!
is generated as Eq. (10).

1
t t t
2b[pxrl‘j+F(pr2‘j—pxr3’j)—0.5]
1+e 1+2F

In this paper, the 400kV French power transmission
network (Figure 1) is taken for exemplification of

t _|Lif rand< P(pxit.) the proposed approach. The network is built from
P = _ : (10) " the data on the 400 kV transmission lines of th&€RT
0,otherwise website (RTE 2011). It has 171 nodes (substations)
where rand is a uniformly distributed random and 220 edges (transmission lines). We distinguish
number within the interval [0,1]. the generators, which are the source of power, from
the other distribution substations, that receivevgro
Sep 3.2 Crossover and transmit it to other substations or distribtiie

The crossover operator is used to mix the targdecal distribution grids. By obtaining the power
individual and its mutated individual. The triakin plants list from the EDF website (EDF 2013) and re-
dividual pvf; = (pvfy,pvf, .. pviy) can be lating them with the ID of the buses in the trarsmi

. : ' sion network, we have 26 generators and 145 dis-

obtained by the crossover operator as follows, ) .
tributors. Only the nuclear power plants, hydraulic



plants and thermal power plants whose installed cdigure 2 reports the convergence plots of one exper

pacities are larger than 1000 MW, are considered. iment run of the NSBDE algorithm. The three panels
For reallocation of the power generating nodeshow the three optimal solutions with regard to the

(facilities) to the other nodes (consumers), thehree objectives, respectively. It is observed that

NSBDE algorithm is applied. The parameters usedigorithm is able to converge after about 250 gener
to run the NSBDE algorithm are reported in Table 1jgns.

The network tolerance parameteris set as 0.3;

The Pareto dominance front obtained by the

linkage cost parametes is set as 1 in the experi- NSBDE algorithm at convergence is illustrated in

ment.

0 50 100

200 300 /
T ——) vicH

Km

Figure 1. The 400kV French power transmission netwo

Table 1. The parameters of the NSBDE algorithm.
Parameters Values
Population sizé&lP 25
Dimensionality of solutioM 3770
Crossover rat€R 0.9
Scaling factot~ 0.2
Maximum generatiomN . 500

20000
810000 1
O L L L L L L L L L
. 0 50 100 150 200 250 300 350 400 450 500
£ 0.021
E 0.02f ]
% 0.019//_ 1
0.018 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
0.15
2 O-HH )
> 0,05} ]
L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Generations

Figure 2. The convergence plots of objective firess
during the evolution of NSBDE

the 3-D space of Figure 3(a). The three 2-D projec-
tions of the solutions are shown in Figure 3(b}) 3(
and 3(d), respectively. The square point in Figlire
represents the true network with the links at prgse
which is also the least costly network; the stanpo
is the most resilient network, whose cascading vul-
nerability is 0.074, and the diamond point represent
the network of most supplying efficient, 0.204idt
not unexpected that the original network is thestiea
costly one, since the electrical transmission liaed
substations are placed with geographical constraint
and connections between two distant substations are
avoided in.

Figure 3(c) shows that the cascading resilience of
the 400kV French power transmission network is
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cascading vulnerability

supplying efficiency

1 ; ; ; ; ; ; ; ; substations, a careful trade-off between cost and
N T aaaa cascading resilient improvement should be taken in-
bl e g : the most resfent network | | to account by the decision makers.

' L' ;3: : : : : ; ; ; It is noted from Figure 3(d) that the supplying ef
b I A S e ficiency of the network can also be increased, alt-
i e e hough in a limited range. According to its defiaiti
S R S S S T R S SR in Eg. (4), one cannot improve the §upp|y|ng effi-

: : q : | o) : : : ciency any more as long as a distributor has con-
R i T e A Ml St ittt iy nected with its nearest generator, which is noynall
e e et T L the case for most of the distributors in the reat ne
I ; L ; L Lo work. Therefore, we remove the supplying efficien-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -0 o T . . . -y
1 1 1 1 1 1 T T cy objective, i.e. keep only the network resilience
e e e S and cost objectives for the optimization. .
0 6 20‘00 4600 60‘00 80‘00 10600 12600 14600 16500 18000 1|! I T T T T T T T T
cost O N H A R AU AR R
(C) 1 : : —@— original network
t | | —#—the most resilient network
0.8'—% ————————— .
e 1 1 1 1 ! ! ! ! Zz o7p--
Q‘@ g os
TR N S A B
| | | . | | ) I o | | %
T S B A N HG IO SR N IO S o4
: : ° :Oo : : : I‘ original‘network ‘ 8
h g‘o ! ! ! ! Y the most resilient network 03
| : : : : : @ the most efficient network
R T I e 0.2
1 1 1 1 o 1 1 1 01
oot7b Lo L ___ \7777:7777\ o \7777:7777: 77777
e "
1 R S A - Figure 4. Comparison of the cascading vulnerabiili#ggween
1 1 1 1 1 1 1 1 1 the original and the most resilient networks urdifferent net-
| | | | | | | | | work tolerance
0015 6 20‘00 40‘00 60‘00 80‘00 10(‘)00 12(‘)00 14(‘)00 16(‘)00 18000
cost 10
() 09 +omommeoo {I>. _______ 2 ”,l}’a_rgt_o_frqn_tyv_it.il_?:_o_bie_qi\_/e;s__
Figure 3. Pareto front in 3-D space and its 2-[jgmiions L 08 Toopr----- ? - Q- - - -|-A Raretofront with-2 objectives- |
reached by a population of 25 chromosomes evolfiagn§00 07 TR-oc--- LR — . P
generations @06 Loy _<?<? Vo L ]
20 &% H 7
j _— y 205 fA--ae-Sponnooe Qoo jommmeeeed
improved significantly by properly rewiring the gen- Poa LA Nt <_>:_<> ______ [
erator-distributor connections, though at a cdsg; t ?30'3 HES ¢ - :
network vulnerability is decreased from 0.728 tc § ' A o
0.074 (wheno=1.3) with an increased average cos ~“ [~~~ P E""ii'\"*:z}%? ------
of 1.5 x 10*. Figure 4 reports the cascading vulner- 01 T-7-====-" P P T
ability comparison between the original network anc 0.0 - - -
the most resilient one with different tolerance pa 0 5000 10000 15000 20000
cost

rameters. It shows that when the network toleranc

is very low, i.e. 0€<0.1, the optimized network los-
es most of its efficiency, i.e., it is quite vulabte to
targeted attacks. However, wher>0.3 (which is
generally the normal operating condition Baldick
2008), the optimized network loses less than 10% of Figure 5 compares the Pareto fronts obtained by
its efficiency during a cascading failure initiated  two-objectives (reallocation cost and cascading-res
intentional attack. ience) and three-objective (reallocation cost, supp

The inner figure of Figure 4 shows that the conding efficiency and cascading resilience) NDBDE op-
nection of the most resilient network is much densetimization in the cascading vulnerability-cost spac
than the original network. Given that it is notye&s The parameter settings of the two-objective optimi-
realize a physical connection between two distant

Figure 5. Comparison of the Pareto dominance froats
tween three and two objectives optimization



zation are of the same as for the three-objectpre 0izing the network cascading failure resilience and
timization. One can find that the solutions fronotw supplying efficiency, while maintaining the invest-
objective optimization are obviously better thanment costs limited. Exemplification has been done
those of three-objective optimization. by taking the 400kV French power transmission

Figure 6 reports the comparison of the topology ohetwork as an illustration. In realistic cases ef-n
the original network and a network corresponding tavorks connecting a large number of nodes, the prob-
a two-objective optimization solution (310.6, 0.59)lem is a combinatorial multi-objective optimization
when a=1.3. The links difference between the twoproblem. We effectively tackled this by the prombse
networks is 10, i.e. only 10 links are requiredo®® NSBDE multi-objective algorithm, within a Pareto
rewired for the original network to gain a 19.2%optimality scheme of search for non-dominated solu-
cascading resilience improvement (the cascadingons. The results of the case study show thalitiaci
vulnerability is decreased from 0.73 to 0.59). Be-allocation can be optimized to improve the cascad-
sides, the optimized network gains a slight supglyi ing resilience of a supplying network system at an
efficiency improvement, i.e. from 0.0184 to 0.0186. acceptable cost.

The analysis performed focuses only on the topo-
logical and geographical distance features of the
network, thus neglecting important physical charac-
teristics like: (i) the “electrical” length of a fadif-
fers from the topological, depending on the difficu
ty (impedance for high voltage transmission lings)
transmission; (ii) the electrical power flow is not
necessarily routed through the shortest path; rathe
the transmission of power is completely determined
by physical rules, e.g., Kirchoff's laws, nodaltagH
) es etc. (iii) the capacity of electrical generatand

the amount of local consumption are heterogonous
Figure 6t- Colinparison Ofdt_he tt0p0|09yf0tLthg Ofif_bi“?twt?rk for different components in the power transmission
ana a network corresponding to one o e Z-ohjestoptmi- ; ; ; H H
zation solutions (310.%, O.59g); square nodes anbérgmfs an network. E.Stab“Shmg eff.ec_tlve. ways of b””g'r.‘g
circle nodes are distributors. these physical characteristics into the topological
analysis forms the possible future work in thista

As mentioned before, a tradeoff between the cogif investigation.
and resilience improvement should be taken into ac-
count in decision-making. Along the Pareto frontier
of the potential solutions, there are some points & REFERENCES
which a small sacrifice of cost gives a large gain
cascading resilience. More generally, by taking

&Ibert, Réka, Istvan Albert, and Gary L. Nakara@®2. Struc-
tural vulnerability of the North American power dyri

network solution and its nelgh_bor on the frontide( Physical Review E 69(2): 025103
less costly one), one can define a rate of chafige gaidick, R., et al. 2008. Initial review of methoids cascading
cascading resilience with respect to coétVul/ failure analysis in electric power transmission teyss

Acost|. This rate can be utilized as a reference to !EEE PES CAMS task force on understanding, preaficti
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