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Abstract 

We consider a model for the risk-based design of a flood protection dike, and use probability 

distributions to represent aleatory uncertainty and possibility distributions to describe the epistemic 

uncertainty associated to the poorly known parameters of such probability distributions. 

A hybrid method is introduced to hierarchically propagate the two types of uncertainty, and the 

results are compared with those of a Monte Carlo-based Dempster-Shafer approach employing 

independent random sets and a purely probabilistic, two-level Monte Carlo approach: the risk 

estimates produced are similar to those of the Dempster-Shafer method and more conservative than 

those of the two-level Monte Carlo approach. 

 

Keywords: hierarchical uncertainty, possibility distributions, fuzzy interval analysis, two-level 

Monte Carlo method, dependences, flood protection dike. 
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1. Introduction 

In risk analysis, uncertainty is typically distinguished into two types: randomness due to inherent 

variability in the system behavior and imprecision due to lack of knowledge and information on the 

system. The former type of uncertainty is often referred to as objective, aleatory, stochastic whereas 

the latter is often referred to as subjective, epistemic, state of knowledge [1], [2]. 

We are interested in the framework of two hierarchical levels of uncertainty, referred to as “two-

level” setting [3]: the models of the aleatory events (e.g., the failure of a mechanical component or 

the variation of its geometrical dimensions and material properties) contain parameters (e.g., 

probabilities, failure rates,…) that are epistemically uncertain because known with poor precision 

by the analyst.  

Both the aleatory and epistemic uncertainties in the two-level framework can be represented by 

probability distributions, and propagated by two-level (or double loop) Monte Carlo (MC) 

simulation [4]: in the outer simulation loop, the values of the parameters affected by epistemic 

uncertainty are sampled and fed onto the probability distributions of the inner loop where the 

aleatory variables are sampled [5], [6].  

In some cases, the imprecise knowledge, incomplete information and scarce data impair the 

probabilistic representation of epistemic uncertainty. A number of alternative representation 

frameworks have been proposed to handle such cases [7], e.g., fuzzy set theory [8], Dempster-

Shafer theory of evidence [9]-[14], possibility theory [15]-[18] and interval analysis [19]-[21]. 

In this paper, we use probability distributions to describe the first level aleatory uncertainty and 

possibility distributions to describe the second level epistemic uncertainty in the parameters of such 

probability distributions [15]-[18]. 

For the propagation of the hybrid (probabilistic and possibilistic) uncertainty representation, the MC 

technique [22], [23] is combined with the extension principle of fuzzy set theory [24]-[33], within a 
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“two-level” hierarchical setting [16], [34]-[39]. This is done by i) fuzzy interval analysis to process 

the uncertainty described by possibility distributions, ii) repeated MC sampling of the random 

variables to process aleatory uncertainty [16], [24], [29]. 

The joint hierarchical propagation of probabilistic and possibilistic representations of uncertainty is 

applied to a model for the risk-based design of a flood protection dike developed as a realistic 

benchmark for uncertainty modeling [3]; the effectiveness of the propagation method is compared 

to that of: i) a Monte Carlo (MC)-based Dempster-Shafer (DS) approach employing Independent 

Random Sets (IRSs) (i.e., where the epistemically uncertain parameters are represented by discrete 

focal sets that are randomly and independently sampled by MC)1 [40]-[50], ii) a traditional two-

level MC approach [2], [4], [6]. To the best of the authors’ knowledge, this is the first time that the 

above mentioned methods are systematically compared with reference to risk assessment problems 

where hybrid uncertainty is separated into two hierarchical levels. 

The remainder of the paper is organized as follows. In Section 2, the hybrid method for uncertainty 

propagation is described; in Section 3, the flood model is presented; in Section 4, the results of the 

joint hierarchical propagation of aleatory and epistemic uncertainties through the model of Section 

3, and the comparison with the MC-based DS-IRS and two-level MC approaches are reported and 

commented; in Section 5, conclusions are provided. The details about the hybrid, MC-based DS-

IRS and two-level MC computational procedures are given in Appendices A, B and C, respectively. 

2. Joint hierarchical propagation of aleatory and epistemic 

uncertainties in a “two-level” framework 

In all generality, we consider a model whose output is a function ( )nYYYfZ  ..., , , 21=  of n  uncertain 

variables niYi ,,1, �= , ordered in such a way that the first k , kj YYYY  ..., , ..., , , 21 , are 

                                                 
1 In the following, this method will be referred to as “MC-based DS-IRS approach” for brevity. 
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“probabilistic”, i.e., their uncertainty is described by probability distributions 

)|( ..., ),|( ..., ),|( ),|( 2211 21 kkYjjYYY ypypypyp
kj

���� , where { }
jmjjjj ,2,1,  ..., , , θθθ=� , kj  , ,2 ,1 �= , 

are the vectors of the corresponding internal parameters, and the last kn − , nlkk YYYY  ..., , ..., , , 21 ++ , 

are “purely possibilistic”, i.e., their uncertainty is epistemic and represented by the possibility 

distributions )( ..., ),( ..., ),( ),( 21
21

n
Y

l
Y

k
Y

k
Y yyyy nlkk ππππ ++

++ .  

In a “two-level” framework, the parameters j� , kj  , ,2 ,1 �= , are themselves affected by epistemic 

uncertainty. We describe these uncertainties by possibility distributions 

( ) ( ) ( ){ }  
j

jmjjjj

mjjjj ,2,1,
,2,1, ,...,,)( θπθπθπ

θθθ=��
� , kj  , ,2 ,1 �= . For clarification by way of example, 

we may consider Y ~ ( ) ( ) ( )21  , , θθσµ NNN == � , where the parameter 1θµ =  has a triangular 

possibility distribution with core {c} and support [a,b], and parameter 2θσ =  has a triangular 

possibility distribution with core {f} and support [e,d]. 

The propagation of the hybrid uncertainty can be performed by combining the Monte Carlo (MC) 

technique [22], [23] with the extension principle of fuzzy set theory [24]-[33] by means of the 

following two main steps [16], [34]-[39]: 

i. fuzzy interval analysis to process epistemic uncertainty; 

ii.  repeated MC sampling of the random variables to process aleatory uncertainty. 

Technical details about the operative steps of the procedure are given in Appendix A. 

 

The method produces m possibility distributions )(zf
iπ , i = 1, 2, …, m, for the output variable 

( )nYYYfZ  ..., , , 21=  (where m is the number of random samples of the aleatory variables drawn by 

MC). Then, for each set Acontained in the universe of discourse ZU  of Z , it is possible to obtain 

the possibility measure )(Af
iΠ  and the necessity measure )(Af

iΝ  from )(zf
iπ , i = 1, 2, …, m, by:  

{ })(max)( zA f
i

Az

f
i πΠ

∈
=          (1) 
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{ } ( )AzA f
i

f
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Az

f
i ΠπΝ −=−=

∉
1)(1inf)(   ZUA ⊆∀      (2) 

The m different realizations of possibility and necessity can then be combined to obtain the belief 

)(ABel  and the plausibility )(APl  for any setA , respectively [15]: 

�
=

=
m

i

f
ii ANpABel

1

)()(          (3) 

�
=

=
m

i

f
ii ApAPl

1

)()( Π           (4) 

where ip  is the probability of sampling the thi −  realization of the random variable vector 

( )kYYY , , 21 � : if m  realizations are generated by plain random sampling, then ip  is simply m/1 . 

For each set A , this technique thus computes the probability-weighted average of the possibility 

measures associated with each output fuzzy interval. 

The likelihood of the value ( )Yf  passing a given threshold z  can then be computed by considering 

the belief and the plausibility of the set ( ]zA ,∞−= ; in this respect, ( ]( )zYfBel ,)( ∞−∈  and 

( ]( )zYfPl ,)( ∞−∈  can be interpreted as bounding, average cumulative distributions 

( ]( )zYfBelzF ,)()( ∞−∈= , ( ]( )zYfPlzF ,)()( ∞−∈=  [15]. 

Let the core and the support of a possibilistic distribution )(zfπ  be the crisp sets of all points of 

ZU  such that )(zfπ is equal to 1 and nonzero, respectively. Considering a generic value zof ( )Yf , 

it is ( ]( ) 1,)( =∞−∈ zYfPl  if and only if ](( ) 1,)( =∞−∈ zYff
iΠ , mi ,,1�=∀ , that is, for 

( )( ){ }f
ii corezz πinfmax=> ∗ . Similarly, ( ]( ) 0,)( =∞−∈ zYfPl  if and only if  

](( ) 0,)( =∞−∈ zYff
iΠ  mi ,,1�=∀ , that is, for ( )( ){ }f

iizz πsupportinfmin* =≤ . 

Finally, one way to estimate the total uncertainty on ( )Yf  is to provide a confidence interval at a 

given level of confidence, taking the lower and upper bounds from ( ]( )zYfPl ,)( ∞−∈  and 

( ]( )zYfBel ,)( ∞−∈ , respectively [15]. On the other hand, ( ]( )zYfBel ,)( ∞−∈ and 
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( ]( )zYfPl ,)( ∞−∈  cannot convey any information on the prediction that ( )Yf  lies within a given 

interval [ ]21,zz , since neither [ ]( )21,)( zzYfBel ∈  nor [ ]( )21,)( zzYfPl ∈  can be expressed in terms 

of ( ]( )zYfBel ,)( ∞−∈  and ( ]( )zYfPl ,)( ∞−∈ , respectively. 

3. Case study: flood protection risk-based design 

The case study deals with the design of a protection dike in a residential area closely located to a 

river with potential risk of floods. Two issues of concern are: i) high construction and annual 

maintenance costs of the dike; ii) uncertainty in the natural phenomenon of flooding. Then, the 

different design options must be evaluated within a flooding risk analysis framework accounting for 

uncertainty.  

In Section 3.1, a short description of the model for flood protection dike design is given; in Section 

3.2, the uncertain variables of the model are described. 

3.1. The model 

The maximal water level of the river (i.e., the output variable of the model, cZ ) is given as a 

function of several (and some uncertain) parameters (i.e., the input variables of the model) [3]: 

( )

5/3

/ �
�

�

�

�
�

�

�

−∗∗
+=

LZZBK

Q
ZZ

vms

vc        (5) 

where: 

– Q  is the yearly maximal water discharge (m3/s); 

– mZ and vZ are the riverbed levels (m asl) at the upstream and downstream part of the river 

under investigation, respectively; 

– sK  is the Strickler friction coefficient; 
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– B  and L  are the width and length of the river part (m), respectively. 

The input variables are classified as follows: 

– Constants: 300=B m, 5000=L m.  

– Uncertain variables: Q , mZ , vZ , sK . 

3.2. The input variables: physical description and representation of the 

associated uncertainty 

The input variables are affected by aleatory and epistemic uncertainties. The aleatory part of the 

uncertainty is described by probability distributions of defined shape (e.g., normal, exponential, …). 

The parameters of the probability distributions describing the aleatory uncertainty are themselves 

affected by epistemic uncertainty represented in terms of possibility distributions.  

In this Section, a detailed description of the uncertain input variables is given together with the 

explanation of the reasons underlying the choices of their description by probability and possibility 

distributions. In particular, in Section 3.2.1, the yearly maximal water flow Q  is discussed; in 

Section 3.2.2, the upstream and downstream riverbed levels mZ  and vZ  are presented; finally, in 

Section 3.2.3, the Strickler friction coefficient sK  is described. 

3.2.1. The yearly maximal water flow, Q 

The Gumbel distribution ( )βα ,qGum  is a well-established probabilistic (aleatory) model for 

maximal flows [3]: 

( ) �
	

A
B
C

D −
�
	

A
B
C

D
��
�

�
��
�

� −−=
β

α
β

α
β

βα qq
qGum expexpexp

1
,       (6) 

The extreme physical bounds on variable Q  are [3]: 
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- 10min =Q m3/s; 

- 10000max =Q m3/s. 

The parameters α  and β  in (6) are affected by epistemic uncertainty; however, a large amount of 

data (i.e., 149 annual maximal flow values) is available for performing statistical inference on them. 

In particular, the point estimates αµ̂  and βµ̂  and the corresponding standard deviations ασ̂  and βσ̂  

have been obtained for the parameters α  and β  of the Gumbel distribution (6) by performing 

maximum likelihood estimations with the 149 data available: the method has provided 

1013ˆ =αµ m3/s, 558ˆ =βµ m3/s, 48ˆ =ασ m3/s and 36ˆ =βσ m3/s [3]. Since a large amount of data 

(i.e., 149) has been used for performing statistical inference on α  and β , then the epistemic 

uncertainty associated to them is mainly of “statistical nature”. As a consequence, a probabilistic 

treatment of this epistemic uncertainty has been proposed in the original paper [3]: in particular, α  

and β  have been chosen to be normally distributed, i.e., α ~ ) )(( 48,1013ˆ,ˆ)( NNp == αα
α σµα  and 

β ~ )( == ββ
β σµβ ˆ,ˆ)( Np  )( 36,558N  [3]. 

In the present paper, the Gumbel shape of the aleatory probability distributions (6) is retained but 

the epistemic uncertainty on the parameters is represented in possibilistic terms: this allows defining 

a family of probability distributions (properly bounded by plausibility and belief functions) that 

quantifies the expert’s lack of knowledge about the parameters themselves and, thus, his/her 

inability to select a single probability distribution for them. To do so, the normal probability 

distributions )(ααp  and )(ββp  used in [3] are transformed into the possibility distributions ( )απα  

and ( )βπβ  by normalization, i.e., ( )
)(sup

)(

α
ααπ α

α
α

p

p= , ( )
)(sup

)(

β
ββπ β

β
β

p

p=  [16]. The supports of 

the possibility distributions ( )απα  and ( )βπβ  are set to [ ] ][ 1061 ,965ˆˆ ,ˆˆ =+− αααα σµσµ  and 
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[ ] ][ 594 ,523ˆˆ ,ˆˆ =+− ββββ σµσµ , respectively, according to the suggestions by [3]. The possibility 

distributions ( )απα  and ( )βπβ  are shown in Figure 1, left and right, respectively.  

 

Figure 1 

 

Notice that in the present paper, the choice of transforming probability density functions into 

possibility distribution by normalization has been made arbitrarily, for the sake of simplicity, 

accepting that the resulting possibility distributions do not in general adhere to the probability-

possibility consistency principle [51]; other techniques of transformation of probability density 

functions into possibility distributions exist, e.g., the principle of maximum specificity [52] and the 

principle of minimal commitment [53]. 

3.2.2. The upstream and downstream riverbed levels, Zm and Zv  

The minimum and maximum physical bounds on variables mZ  and vZ  are 5.53min, =mZ m, 

48min, =vZ m, 57max, =mZ m and 51max, =vZ m, respectively [3]. 

Normal distributions truncated at the minimum and maximum physical bounds have been selected 

in [3] to represent the aleatory part of the uncertainty, i.e., mZ ~ )( ZmZmN σµ ,  and vZ ~ )( ZvZvN σµ , . 

An amount of 29 data has been used in the reference paper [3] to provide the point estimates 

03.55ˆ =Zmµ m, 19.50ˆ =Zvµ m, 45.0ˆ =Zmσ m, 38.0ˆ =Zvσ m for parameters Zmµ , Zvµ , Zmσ  and Zvσ , 

respectively, by means of the maximum likelihood estimation method. However, according to [3] 

there is large uncertainty about the shape of the probability distributions of mZ  and vZ : as a 

consequence the authors embrace a conservative “two-level” framework, using the maximum 

likelihood estimation method to provide also standard deviations as a measure of the uncertainty on 
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the point estimates Zmµ̂ , Zvµ̂ , Zmσ̂  and Zvσ̂ : in particular, 08.0ˆ ˆ =
Zmµσ , 07.0ˆ ˆ =

Zvµσ , 06.0ˆ ˆ =
Zmσσ  

and 05.0ˆ ˆ =
Zvσσ . Using this information, the authors in [3] model the epistemic uncertainty 

associated to the parameters Zmµ , Zvµ , Zmσ  and Zvσ  by normal distributions, i.e., 

Zmµ ~ ( )
ZmZmN µσµ ˆˆ,ˆ , Zvµ ~ ( )

ZvZvN µσµ ˆˆ,ˆ , Zmσ ~ ( )
ZmZmN µσσ ˆˆ,ˆ  and Zvσ ~ ( )

ZvZvN σσσ ˆˆ,ˆ .  

In this paper, the shapes of the aleatory probability distributions for mZ  and vZ , i.e., )( ZmZmN σµ ,  

and )( ZvZvN σµ , , are kept unaltered with respect to those of [3]; on the contrary, the information 

produced by the maximum likelihood estimation method on parameters Zmµ , Zvµ , Zmσ  and Zvσ  , 

i.e., the point estimates Zmµ̂ , Zvµ̂ , Zmσ̂ , Zvσ̂  and the corresponding standard deviations 
Zmµσ ˆˆ , 

Zvµσ ˆˆ , 

Zmσσ ˆˆ , 
Zvσσ ˆˆ , is used to build possibility distributions for Zmµ , Zvµ , Zmσ  and Zvσ  by means of the 

Chebyshev inequality [54], [55]. The classical Chebyshev inequality [54], [55] defines a bracketing 

approximation on the confidence intervals around the known mean µ  of a random variable Y, 

knowing its standard deviation σ . The Chebyshev inequality can be written as follows: 

( )
2

1
1

k
kYP −≥≤− σµ  for 1≥k  .        (7) 

Formula (7) can be thus used to define a possibility distribution π  that dominates any probability 

density function with given mean µ  and standard deviation σ  by considering intervals 

[ ]σµσµ kk +− ,  as �-cuts of π  and letting ( ) ( ) ασµπσµπ ==+=−
2

1

k
kk . This possibility 

distribution defines a probability family �µ,�(π ) which has been proven to contain all probability 

distributions with mean µ  and standard deviation σ , whether the unknown probability distribution 

function is symmetric or not, unimodal or not [54]. 

In this case, the point estimates Zmµ̂ , Zvµ̂ , Zmσ̂  and Zvσ̂  produced by the maximum likelihood 

estimation method, are used in (7) as the means of the parameters Zmµ , Zvµ , Zmσ  and Zvσ , whereas 

the errors 
Zmµσ ˆˆ , 

Zvµσ ˆˆ , 
Zmσσ ˆˆ  and 

Zvσσ ˆˆ  associated to the estimates Zmµ̂ , Zvµ̂ , Zmσ̂  and Zvσ̂  are used in 
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(7) as the standard deviations of the parameters Zmµ , Zvµ , Zmσ  and Zvσ  in order to build the 

corresponding possibility distributions Zmµπ , Zvµπ , Zmσπ and Zvσπ ; the supports of the possibility 

distributions are obtained by extending two times the standard deviation 
Zmµσ ˆˆ , 

Zvµσ ˆˆ , 
Zmσσ ˆˆ  and 

Zvσσ ˆˆ  

in both directions with respect to the estimates Zmµ̂ , Zvµ̂ , Zmσ̂  and Zvσ̂  (Figures 2 and 3). 

 

Figure 2 

 

Figure 3 

3.2.3. The Strickler friction coefficient, Ks 

The Strickler friction coefficient sK  is the most critical source of uncertainty because it is usually a 

simplification of a complex hydraulic model. The absolute physical limits of sK  are ][ ][ 60,5, =ba  

[3]. 

The friction coefficient sK  is affected by random events modifying the river status (e.g., erosion): 

the corresponding variability is typically described by a normal distribution, i.e., sK ~ )( KsKsN σµ ,  

[3]. However, the mean value Ksµ  of this normal distribution is difficult to measure because data 

can only be obtained through “indirect calibration characterized by significant uncertainty”: in [3] 

this is reflected in a “very small set of five data available with ± 15% noise”. The sample mean Ksµ̂  

and standard deviation Ksσ̂  of these five pieces of data equal 27.8 and 3, respectively. In order to 

reflect the imprecision generated by the indirect measurement process, the “minimal sample mean” 

63.23ˆmin =µ  and the “maximal sample mean” 97.31ˆmax =µ  are also calculated under the 

conservative hypothesis that all measurements are biased in the same direction [3]. Moreover, since 

the small sample size adds a non-negligible “statistical epistemic uncertainty” to the values minµ̂  
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and maxµ̂ , as described in [3] the 70% confidence bounds on minµ̂  and maxµ̂  are also computed as 

3.22
5

ˆ
ˆmin =− Ksσµ  and 3.33

5

ˆ
ˆmin =− Ksσµ , respectively. In [3], these considerations result in the 

following uncertainty quantification for sK : 

sK ~ )( KsKsN σµ , , 

with 3ˆ == KsKs σσ  and ][ 3.33,3.22
5

ˆ
ˆ,

5

ˆ
ˆ maxmin =�

	

A+B
C

D −∈ KsKs
Ks

σµσµµ .   (8) 

In this paper, the shape of the aleatory probability distribution of sK , i.e., )( KsKsN σµ ,  in (8) is 

retained; however, differently from the original paper, a possibility distribution is associated to Ksµ . 

In particular, a trapezoidal possibility distribution is here proposed: the support is chosen to be 

][ ][ 3.33,3.22
5

ˆ
ˆ,

5

ˆ
ˆ, maxmin =�

	

A+B
C

D −= KsKsba
σµσµ  as in (8); however, in this paper additional 

information is provided concerning the most likely values of Ksµ  exploiting the available data set: 

in particular, since the core of the trapezoidal distribution contains the most likely values of the 

parameter Ksµ , in this case it is set to [ ] ][ 1.29,5.26
5

ˆ
ˆ,

5

ˆ
ˆ, maxmin =�

	

A+B
C

D −= KsKsdc
σµσµ , i.e., the interval 

obtained by adding/subtracting to the sample mean 8.27ˆ =Ksµ  (which is assumed to be the most 

likely value for Ksµ ) the “statistical” epistemic uncertainty due to the low sample size (i.e., the 

quantity 
5

ˆKsσ
) (Figure 4). 

 

Figure 4 

 

A final remark is in order with respect to the approaches considered in this work for constructing 

possibility distributions. The construction of the possibility distribution obviously depends on the 



13 

 

information available on the uncertain parameter: when a probability distribution is originally 

available a corresponding possibility distribution can be generated by resorting to the probability-

possibility transformations available in the open literature, e.g., the normalization method (like in 

the present case), the principle of maximum specificity or that of minimal commitment [29], [52], 

[53]; when the mean and the standard deviation of the parameter distribution can be estimated, e.g., 

by means of empirical data, the Chebyshev inequality can be used; finally, when the absolute 

physical limits and the most likely value(s) of the parameter are available, a triangular or 

trapezoidal possibility distribution can be constructed.  

4. Application 

In this Section, the hybrid method described in Section 2 is applied with the procedure in Appendix 

A to hierarchically propagate probabilistic and possibilistic uncertainties through the model of 

Section 3.1, in a “two-level” framework. The results obtained by the hybrid approach are compared 

to those produced by i) a traditional one-level pure probabilistic approach, where the parameters of 

the aleatory probability distributions are fixed, known values (only for illustration purposes, Section 

4.1), ii) a MC-based DS-IRS approach, where the possibility distributions are encoded into discrete 

sets that are randomly and independently sampled by MC and iii) a two-level (or double loop) 

Monte Carlo (MC) approach, where the parameters of the aleatory probability distributions are 

uncertain and themselves described by probability distributions (Section 4.2). 

4.1. Comparison of the “two-level” hybrid Monte Carlo and possibilistic 

approach with a one-level pure probabilistic approach 

Only for illustration purposes, the following one-level pure probabilistic model has been considered 

for comparison: 
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Q~ )( 558 ,1013)ˆ ,ˆ( GumGum =βα µµ ,       (9) 

mZ ~ )( ZmZmN σµ ˆ ,ˆ = )( 45.0 ,03.55N ,        (10) 

vZ ~ )( ZvZvN σµ ˆ ,ˆ = )( 38.0 ,19.50N ,        (11) 

sK ~ )( 3 ,8.27)ˆ ,ˆ( NN KsKs =σµ ,        (12) 

where the parameters of the probability distributions are defined in Sections 3.2.1 – 3.2.3: in 

particular, the parameters for Q , mZ  and vZ  correspond to their maximum likelihood estimates and 

the parameter Ksµ̂  of sK  is the sample mean of the five available pieces of data obtained by 

neglecting measurement uncertainty. 

Figure 5 shows the comparison of the cumulative distribution functions of the maximal water level 

of the river (i.e., the output variable of the model, cZ ) obtained by the one-level pure probabilistic 

approach (solid line) with the belief (lower dashed curve) and plausibility (upper dashed curve) 

functions obtained by the hybrid Monte Carlo and possibilistic approach in a “two-level” setting 

(Section 2 and Appendix A).  

It can be seen that: 

� the hybrid approach propagates the uncertainty by separating the aleatory and epistemic 

components; this separation is visible in the output distributions of the maximal water level 

of the river where the separation between the belief and plausibility functions reflects the 

imprecision in the knowledge of the possibilistic parameters of the probability distributions; 

� the uncertainty in the output distribution of the pure probabilistic approach is given only by 

the slope of the cumulative distribution; 

� as expected, the cumulative distribution of the maximal water level of the river obtained by 

the pure probabilistic method is within the belief and plausibility functions obtained by the 

hybrid approach. 

Figure 5 
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4.2. Comparison of the “two-level” hybrid Monte Carlo and possibilistic 

approach with the MC-based DS-IRS and two-level (double loop) MC 

approaches 

In this Section, the following approaches are considered and compared in the task of hierarchically 

propagating aleatory and epistemic uncertainties in a “two-level” framework: 

i. the hybrid Monte Carlo (MC) and possibilistic approach of Section 2 and Appendix A; 

ii.  the Monte Carlo (MC)-based Dempster-Shafer approach employing Independent Random 

Sets (IRSs) (Appendix B);  

iii.  a two-level (double loop) MC approach (Appendix C): 

a. assuming independence between the epistemically uncertain parameters of the 

aleatory probability distributions. This choice has been made to perform a fair 

comparison with the MC-based DS-IRS approach, which assumes independence 

between the epistemically uncertain parameters (see Appendix B); 

b. assuming total dependence between the epistemically uncertain parameters of the 

aleatory probability distributions. This choice has been made to perform a fair 

comparison with the hybrid MC and possibilistic approach, which implicitly assumes 

by construction total dependence between the epistemically uncertain parameters 

(see Section 2 and Appendix A)2. 

It is worth noting that the representation of epistemic uncertainty here used in the MC-based DS-

IRS approach entirely relies on the possibilistic representation described in Section 3.2 and 
                                                 
2 It is important to note that the condition of total epistemic (or state-of-knowledge) dependence between parameters of 

risk models is far from unlikely. For example, consider the case of a system containing a number of physically distinct, 

but similar/ nominally identical components whose failure rates are estimated by means of the same data set: in such 

situation, the distributions describing the uncertainty associated to the failure rates have to be considered totally 

dependent [56], [57]. 
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employed by the hybrid MC and possibilistic approach: however, in order to tailor this possibilistic 

representation to the DS framework, the possibility distributions of Section 3.2 are discretized into 

focal sets (or intervals), each of which is assigned a probability mass: the reader is referred to 

Appendix B for some details. 

In addition, notice that the probability distributions here used in the two-level MC approach for Q , 

mZ  and vZ  and for the corresponding epistemically uncertain parameters are the same as those 

proposed in the original paper by [3] (and recalled in Section 3.2.1 and 3.2.2); the only exception is 

represented by the probability distribution for Ksµ , which for consistency and coherence of the 

comparison is here obtained by normalization of the trapezoidal possibility distribution described in 

Section 3.2.3 and shown in Figure 4, i.e., 

Ks

b

a

Ks

Ks
Ks

d

p
Ks

Ks

Ks

µµπ

µπµ
µ

µ
µ
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 )(

)(
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Table 1 summarizes the characteristics of the approaches i. – iii. used in the following to propagate 

aleatory and epistemic uncertainties in a “two-level” framework. 

 

Table 1 

 

The following comparisons are considered: approaches that represent in the same way the epistemic 

uncertainty (i.e., in terms of probability or possibility distributions) but assume different 

relationships (i.e., dependence or independence) between the epistemically uncertain parameters are 

compared in Section 4.2.1 (in particular, comparisons are performed between approaches iii.a and 

iii.b above and between approaches i. and ii. above): such comparisons are made to study the effect 

of the state of dependence between the epistemically uncertain parameters of the aleatory 

probability distributions when a probabilistic/non-probabilistic representation of epistemic 

uncertainty is given; approaches assuming the same dependence relationship between the 
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epistemically uncertain parameters but employing different representations of the epistemic 

uncertainty are compared in Section 4.2.2 (in particular, comparisons are performed between 

approaches ii. and iii.a above and between approaches i. and iii.b above): such comparison are made 

to study the effect of the probabilistic/non-probabilistic representations of the epistemically 

uncertain parameters of the aleatory probability distributions when the state of dependence between 

the epistemically uncertain parameters is given. Table 2 summarizes the comparisons carried out in 

the present paper together with the corresponding objectives. 

 

Table 2 

 

A final consideration is in order with respect to the analyses performed in the present paper. Only 

two extreme states of dependence between the epistemically uncertain parameters of the aleatory 

Probability Distribution Functions (PDFs) are here considered: in particular, independence 

(methods ii. and iii.a) and total dependence (methods i. and iii.b) are assumed between all the 

uncertain parameters of the PDFs of all the aleatory variables. On one side, the choice of these 

extreme conditions serves the purpose of strongly highlighting the effects of epistemic dependence 

between the uncertain parameters, which allows deriving clear indications and guidelines for the 

application of the different approaches in risk assessment problems. On the other side, such (strong) 

assumptions of independence or total dependence between all the epistemically uncertain 

parameters may not be realistic in cases of practical interest, like the one analyzed in the present 

paper. Referring to the previous Section 3.2, it can be seen that the possibility distributions 

describing the uncertainty in the parameters of the PDFs of the four aleatory variables Q, Zm, Zv and 

Ks are estimated based on four distinct data sets (i.e., one data set for each aleatory variable). This 

has two implications: (1) when the PDF of a given aleatory variable contains more than one 

uncertain parameter (which is the case of Q, Zm and Zv), such parameters are totally dependent 
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between each other (for example, the location parameter � and the scale parameter � of the PDF of 

variable Q are totally dependent between each other because their uncertainty is estimated based on 

the same data set); (2) the uncertain parameters of the PDF of a given aleatory variable are 

epistemically independent with respect to the parameters of the PDFs of the other aleatory variables 

(for example, the location parameter � and the scale parameter � of the PDF of variable Q are 

independent from the mean �Zm and the standard deviation �Zm of the PDF of variable Zm because 

their uncertainty is estimated based on two different data sets). 

4.2.1. Studying the effect of the state of dependence between the epistemically uncertain 

parameters of the aleatory probability distributions 

We start by comparing approaches iii.a and iii.b. above, i.e., two-level MC assuming independence 

and total dependence between the uncertain parameters, respectively: the upper and lower 

cumulative distribution functions of the model output cZ  obtained by approaches iii.a and iii.b are 

shown in Figure 6. 

 

Figure 6 

 

In this case, assuming total dependence between the uncertain parameters is shown to lead to a 

smaller gap between the upper and lower cumulative distribution functions of the model output cZ  

than assuming independence. This can be easily explained by analyzing the input-output functional 

relationship of the model (5): it can be seen that one of the input variables (i.e., Q ) appears at the 

numerator, whereas others (i.e., sK  and mZ ) appear at the denominator, and another one appears 

both at the numerator and at the denominator (i.e., vZ ). In such a case, the highest possible values 

for the model output cZ  are obtained with a combination of high values of both Q  and vZ  (i.e., 
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high values of the corresponding uncertain parameters α , β , Zvµ  and Zvσ ) and low values of both 

sK  and mZ  (i.e., low values of the corresponding uncertain parameters Ksµ , Ksσ , Zmµ  and Zmσ ); 

conversely, the lowest possible values for the model output cZ  are obtained with a combination of 

low values of both Q  and vZ  and high values of both sK  and mZ . These extreme situations (which 

give rise to the largest separation between the upper and lower cumulative distribution functions, 

i.e., to the most “epistemically” uncertain and, thus, conservative case), can be obtained only in case 

iii.a above, i.e., assuming independence between the epistemically uncertain parameters. Actually, 

if a pure random sampling is performed among independent uncertain parameters, all possible 

combinations of values can be in principle generated, since the entire ranges of variability of the 

uncertain parameters can be explored independently: thus, in some random samples, high values of 

Q  and vZ  may be combined by chance with low values of both sK  and mZ , whereas in other 

random samples low values of both Q  and vZ  may be combined by chance with high values of 

both sK  and mZ . Conversely, such “extreme” situations cannot occur if there is total dependence 

between the uncertain parameters (i.e., case iii.b above). Actually, in such a case high (low) values 

of both Q  and vZ  can only be combined with high (low) values of both sK  and mZ , giving rise to 

values of output cZ  which are lower (higher) than the highest (lowest) possible: in other words, the 

separation between the upper and lower cumulative distribution functions produced in case iii.b is 

always smaller than that produced by the “extreme” situations described above (which are possible 

only in case iii.a).  

A final, straightforward remark is in order. The considerations made above about what 

combinations of parameter values would lead to the most conservative results (i.e., to the largest 

gap between the upper and lower cumulative distribution functions) are strictly dependent on the 

input-output relationship considered: obviously, a different model (with different functional 

relationships between inputs and outputs) would require different combinations of input values in 
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order to obtain the most conservative results. For example, for the hypothetical model zyxw /)*(=  

the most conservative results (i.e., the largest separation between the upper and lower cumulative 

distribution functions) would be obtained by imposing total dependence between x  and y  and 

opposite dependence between z  and both x  and y . 

We now move on to compare i. and ii.. Figure 7 shows the plausibility and belief functions of the 

model output cZ  produced by the MC-based DS-IRS method (case ii.) and by the hybrid MC and 

possibilistic approach (case i.). 

 

Figure 7 

 

The results are very similar because, in the present case, the effect of the different dependence 

relationships between the epistemically uncertain paramenters is not evident. This may be explained 

as follows. In general, the closer the shape of the possibility distribution of a parameter is to that of 

a rectangle, defined over a given support, the higher the epistemic uncertainty associated to that 

parameter (actually, if a parameter is represented by a rectangular possibility distribution, the only 

information available about the parameter is the interval where it is defined, i.e., we are totally 

ignorant about its distribution). It can be easily seen that if the state of knowledge of many of the 

epistemically uncertain parameters is close to that of total ignorance, the state of dependence 

between them becomes negligible. By way of example, refer to the possibility distributions of the 

parameters Zmµ  (Figure 8, left) and β  (Figure 8, right) described in Section 3.2. Selecting the same 

confidence level 5.011 === βµ ααα Zm  for the two variables (i.e., imposing total dependence 

between them) produces the same couple of �-cuts than selecting different levels 

1.05.0 21 =≠= βµ αα Zm . Notice that this holds for many other combinations of α  values: for 
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example, in this case all combinations with βα  ranging between 0 and 0.6 and Zmµα  ranging 

between 0 and around 0.25 produce the same couple of �-cuts. 

 

Figure 8 

 

Since, in the present case study the shape of many of the possibility distributions are quite close to 

that of a rectangle (see Figures 1-4), the state of dependence between the uncertain parameters 

scarcely affects the results. 

 

A final consideration is in order with respect to the results obtained. The first comparison (Figure 6) 

shows that in the present case study the two-level MC approach assuming dependence among 

parameters gives rise to a smaller separation between the cumulative distribution functions than the 

two-level MC approach assuming independence among parameters: in other words, it can be 

considered less conservative. The second comparison (Figure 7) shows that the results obtained by 

the hybrid MC and possibilistic approach and the MC-based DS-IRS approach are very similar. 

Therefore, the state of dependence between the epistemically uncertain parameters of the aleatory 

probability distributions is more likely to become a critical factor (e.g., in risk-informed decisions) 

when the representation of the uncertain parameters is probabilistic.  

4.2.2. Studying the effect of the probabilistic/non-probabilistic representation of the 

epistemically uncertain parameters of the aleatory probability distributions 

In this Section, we perform comparisons between approaches ii. and iii.a and between approaches i. 

and iii.b above, i.e., approaches that represent epistemic uncertainty in radically different ways: in 

particular, both in hybrid and in MC-based DS-IRS methods, possibility distributions are employed 
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which identify a family of probability distributions for the epistemically uncertain parameters3; on 

the contrary, in the two-level MC approach, only a single probability distribution is assigned to 

represent the epistemic uncertainty associated to the parameters. 

Figure 9 shows the upper and lower cumulative distribution functions of the model output cZ  

obtained by the two-level MC approach assuming independence between the uncertain parameters 

(case iii.a) and the plausibility and belief functions produced by the MC-based DS-IRS approach 

(case ii.).  

 

Figure 9 

 

The results are very similar, which is explained as follows. First of all, there is obviously a strong 

similarity between the shapes of the probability distributions of the epistemically uncertain 

parameters used in the two-level MC approach (case iii.a) and the corresponding possibility 

distributions used in the MC-based DS-IRS approach (case ii.)4. For example, the ranges of 

variability of the uncertain parameters are the same for both the probability and the possibility 

distributions considered (see Section 3.2.1-3.2.3); in addition, some of the possibility distributions 

employed in the MC-based DS-IRS approach (e.g., those of parameters α  and β  of the Gumbel 

distribution for Q ) are obtained by simple normalization of the probability distributions employed 

in the two-level MC approach (Section 3.2.1); finally, the trapezoidal probability distribution used 

in the two-level MC approach for the Strickler friction coefficient sK  is also obtained by simple 

                                                 
3 Remember that in the MC-based DS-IRS approach the possibility distributions are discretized into focal sets 

(Appendix B). 

4 As before, notice that this comparison is fair because both methods assume independence between the epistemically 

uncertain parameters. 
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normalization of the trapezoidal possibility distribution proposed in the present paper and shown in 

Figure 4 of Section 3.2.3. 

In addition to the similarity between the probability and possibility distributions considered, the 

second motivation for the similarity between the results lies in the assumption of independence 

between the epistemically uncertain parameters and in the characteristics of the two algorithms used 

to propagate the uncertainties. In the two-level MC approach, a plain random sampling is performed 

from the probability distribution of the epistemically uncertain parameters, which are considered 

independent: as a consequence of this independence, in principle all possible combinations of 

values of the parameters can be sampled, since the entire ranges of variability of the parameters are 

explored randomly and independently. In the MC-based DS-IRS approach, the focal sets generated 

by the discretization of the possibility distributions are selected randomly and independently by MC 

(step 2. of the procedure in Appendix B); in addition, all the focal sets selected are exhaustively 

searched to maximize/minimize the model output. 

As a final comparison, Figure 10 shows the upper and lower cumulative distribution functions of 

the model output cZ  obtained by the two-level MC approach assuming total dependence between 

parameters (case iii.b) and the hybrid MC approach (case i.) (which assumes total dependence 

between parameters). 

 

Figure 10 

 

From the consideration made above it is clear why the gap is smaller between the cumulative 

distributions in the two-level MC approach assuming total dependence between the uncertain 

parameters (case iii.b) than between the plausibility and belief functions produced by the hybrid 
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approach (case i.)5. Actually, in case iii.b only a limited set of combinations of uncertain parameter 

values can be randomly explored, whereas in case i., the same confidence level α  is chosen to build 

the �-cuts for all the possibility distributions of the uncertain parameters (step 3. of the procedure in 

Appendix A). Then, the minimum and maximum values of the model output cZ  are identified 

letting the uncertain parameters range independently within the corresponding �-cuts (step 3. of the 

procedure in Appendix A): thus, contrary to the case iii.b, once a possibility level α  is selected, all 

possible combinations of parameter values can be explored, since the �-cuts of all the parameters 

are exhaustively searched to maximize/minimize the model output cZ  (giving rise to a larger 

separation between the plausibility and belief functions).  

A final remark is in order with respect to the results obtained. Since in this case the hybrid MC and 

possibilistic approach gives rise to a larger separation between the plausibility and belief functions 

than the two-level MC approach (assuming total dependence between the epistemically uncertain 

parameters), it can be considered more conservative. As a consequence, embracing one method 

instead of the other may significantly change the outcome of a decision making process in a risk 

assessment problem involving uncertainties: this is of paramount importance in systems that are 

critical from the safety view point, e.g., in the nuclear, aerospace, chemical and environmental 

fields. On the contrary, since the results obtained by the two-level MC approach (assuming 

independence among the epistemically uncertain parameters) and the MC-based DS-IRS are very 

similar, embracing one method instead of the other would not change significantly the final 

decision.  

In conclusion, it is worth highlighting that when there is total dependence between the epistemically 

uncertain parameters, a probabilistic representation of epistemic uncertainty may fail to produce 

                                                 
5 As before, notice that this comparison is fair because both methods assume total dependence between the 

epistemically uncertain parameters. 
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reliable and conservative results, which raises concerns from the point of view of safety. A 

quantitative demonstration of this statement is given in what follows.  

The final goal of the uncertainty propagation is to determine i) the dike level necessary to guarantee 

a given flood return period or ii) the flood risk for a given dike level. 

With respect to issue i) above, the quantity of interest that is most relevant to the decision maker is 

the 99% quantile of cZ , i.e., 99.0
cZ , taken as the annual maximal flood level. This corresponds to the 

level of a “centennial” flood, the yearly maximal water level with a 100 year-return period. With 

respect to issue ii) above, the quantity of interest that is most relevant to the decision maker is the 

probability that the maximal water level of the river cZ  exceeds a given threshold *z , i.e., 

( )*zZP c ≥ ; in the present report, *z  = 55.5 m as in [3]. Table 3 reports the lower (99.0
,lowercZ ) and 

upper ( 99.0
,uppercZ ) 99th percentiles obtained from the two limiting cumulative distributions and the 

corresponding ( )*zZLowerBound c ≥  and ( )*zZUpperBound c ≥ . In addition, as synthetic 

mathematical indicators of the imprecision in the knowledge of cZ  (i.e., of the separation between 

the lower and upper cumulative distribution functions), the following percentage widths have been 

reported: 

•  99.0
,

99.0
,

99.0
,

probc

lowercupperc
Zc Z

ZZ
W

−
=  of the interval [ ]99.0

,
99.0

, , upperclowerc ZZ  with respect to the percentile 99.0
,probcZ  

obtained by the pure probabilistic approach of Section 4.1; 

•  
( ) ( )

( )probc

cc

zZP

zZLowerBoundzZUpperBound
W

*

**
*

≥
≥−≥=  of the interval 

( ) ( )[ ]* ,* zZUpperBoundzZLowerBound cc ≥≥  with respect to the percentile 99.0
,probcZ  

obtained by the pure probabilistic approach of Section 4.1. 

 

Table 3 
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The considerations previously reported are confirmed: there is a similarity between the values of the 

indicators relative to the hybrid MC and possibilistic approach (case i.), to the MC-based DS-IRS 

approach (case ii.) and to the two-level MC approach assuming independence among the uncertain 

parameters (case iii.a); on the contrary, there is a significant difference between these indicators and 

those produced by the two-level MC approach assuming total dependence between the uncertain 

parameters (case iii.b). In particular, as anticipated before, one consideration concerning the 

comparison between the hybrid approach and the two-level MC considering total dependence is 

worth to be done. Analyzing, for instance, the probability that the maximal water level of the river 

cZ  exceeds the threshold *z  = 55.5 m, [ ]5.55* =≥ zZP c , it can be seen that the hybrid approach is 

much more conservative than the two-level MC approach assuming total dependence between 

parameters: in fact, for instance, the upper bounds of [ ]*zZP c ≥  are 0.0241 and 0.0111 for cases i. 

and ii.b, respectively. Thus, in this case the use of the two-level MC approach would lead to 

underestimating by about 54% the probability that the maximal water level of the river cZ  exceeds 

the threshold *z  = 55.5 m: in other words, it would lead to underestimating by about 54% the 

“failure probability” of the dike and, at the same time, the flood risk. The same consideration holds 

for the dike level necessary to guarantee a 100 year-return period represented by the 99% quantile 

99.0
cZ  of the water level of the river; for example, the upper bounds of 99.0

cZ  are 56.03m and 55.50m 

for cases i. and ii.b, respectively. Thus, also in this case the use of the two-level MC approach 

would lead to a slight underestimation of the dike level necessary to guarantee a 100 year flood 

return period. Therefore, even if the two-level MC approach purposedly tries to separate variability 

from imprecision, differently from the hybrid approach, it treats lack-of-knowledge in the same way 

as it treats variability (i.e., using probability distributions): as a consequence, in some cases, it may 

fail to produce reliable and conservative results, which can raise great concerns from the safety 

point of view: in particular, in the present case study, the two-level MC approach leads to less 
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conservative results when total dependence between the epistemically uncertain parameters is 

assumed. This leads to conclude also that when the state of dependence between the parameters is 

not known to the analyst (which is far from unlikely in practice), a non-probabilistic representation 

of epistemic uncertainty may represent the “safest” choice.  

5. Discussion of the results 

The analyses performed in the previous Section 4 can be summarized as follows: 

1. a comparison between the hybrid method and the one-level pure probabilistic approach, 

highlighting that: 

•  the hybrid method explicitly propagates the uncertainty by separating the 

contributions coming from the aleatory and epistemic variables; 

•  the uncertainty in the output distribution of the pure probabilistic approach is given 

only by the slope of the cumulative distribution;  

•  as expected, the cumulative distribution of the model output obtained by the pure 

probabilistic method is within the belief and plausibility functions obtained by the 

hybrid approach;  

2. comparisons between the hybrid, MC-based DS-IRS and two-level MC approaches with the 

following objectives: 

a. the study of the effect of dependence between the epistemically uncertain parameters 

of the aleatory probability distributions when a probabilistic/non-probabilistic 

representation of epistemic uncertainty is adopted: 

•  the comparison between two-level MC approaches assuming total 

dependence and independence between the parameters, respectively, has 

shown that in the case study considered assuming dependence between the 
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parameters leads to a smaller gap between the upper and lower cumulative 

distributions of the model output, i.e., to less conservative results; 

•  the comparison between the MC-based DS-IRS and hybrid approaches has 

shown that the plausibility and belief functions produced by the two 

approaches are similar: in other words, the hybrid method is not significantly 

influenced by the total dependence between the epistemically uncertain 

parameters, due to the large uncertainty that is associated to the parameters in 

the case study considered. 

Based on the considerations above, it can be argued that the state of dependence 

between the epistemically uncertain parameters of the aleatory probability 

distributions is more likely to become a critical factor (e.g., in risk-informed 

decisions) when the representation of the uncertain parameters is probabilistic. 

b. the study of the effect of the probabilistic/non-probabilistic representation of 

epistemic uncertainty when the state of dependence between parameters is defined: 

•  the comparison between the MC-based DS-IRS approach and the two-level 

MC approach assuming independence between the epistemically uncertain 

parameters has shown that in the case study considered the upper and lower 

cumulative distribution functions of the model output produced by the two 

approaches are similar. This is due to i) the strong similarity between the 

shapes of the possibility and probability distributions of the epistemically 

uncertain parameters used in the MC-based DS-IRS and two-level MC 

approaches, respectively, ii) the independence between the parameters and iii) 

the similar characteristics of the two algorithms used to propagate the 

uncertainties; 
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•  the comparison between the hybrid and the two-level MC approach assuming 

total dependence between the parameters has shown that the gap between the 

plausibility and belief functions of the model output produced by the hybrid 

approach is larger than the gap between the upper and lower cumulative 

distribution functions produced by the two-level MC method. This is due to 

both the different representations of epistemic uncertainties and to the 

characteristics of the two algorithms used to propagate the uncertainties. 

Actually, in the hybrid method the epistemic uncertainty on the parameters is 

represented by possibility distributions defining a family of probability 

distributions; on the contrary, in the two-level MC approach only a single 

probability distribution is selected to represent the epistemic uncertainty on a 

parameter. As a result, the two algorithms propagate the uncertainty 

differently: in the hybrid method, an exhaustive interval analysis is performed 

for different �-cuts of the possibility distributions, whereas in the two-level 

MC method a plain random sampling is performed from the probability 

distribution of the uncertain parameters: the result is that the hybrid approach 

is able to explore a larger set of combinations of uncertain parameter values 

than the two-level MC approach (assuming dependence among parameters), 

thus producing more conservative results. This has been quantitatively 

confirmed by way of the risk model for the design of a flood protection dike 

through the computation of i) the dike level necessary to guarantee a 100 year 

flood return period and ii) the flood risk for a given dike level. In fact, both 

quantities have been underestimated by the two-level MC approach with 

respect to the hybrid approach.  
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Based on the considerations above, it can be argued that a probabilistic 

representation of the epistemically uncertain parameters of the aleatory probability 

distributions may fail to produce reliable and conservative results when there is total 

dependence between the uncertain parameters, which raises concerns from the point 

of view of safety. 

The findings gained by the comparisons performed in Section 4 are summarized in Table 4 for the 

sake of clarity. 

Table 4 

6. Conclusions 

In the present paper, we performed the joint hierarchical propagation of hybrid probabilistic and 

possibilistic uncertainty representations onto a flood risk-based design model in a “two-level” 

framework. The results obtained have been compared with those produced by a one-level pure 

probabilistic approach, a MC-based DS-IRS approach and a two-level (double loop) MC approach 

with the objective of studying the effects of (i) (in)dependence between the epistemically uncertain 

parameters of the aleatory probability distributions and (ii) probabilistic/non-probabilistic 

representations of epistemic uncertainty. To the best of the authors’ knowledge, this is the first time 

that the above mentioned methods are systematically compared with reference to risk assessment 

problems where hybrid uncertainty is separated into two hierarchical levels. 

The findings of the work show that adopting different methods for jointly propagating hybrid 

uncertainties may generate different results and possibly different decisions in risk problems 

involving uncertainties: this is of paramount importance in systems that are critical from the safety 

viewpoint, e.g., in the nuclear, aerospace, chemical and environmental fields. 

In particular, it seems advisable to suggest that, if nothing is known about the dependence 

relationship between the epistemically uncertain parameters, one should resort to the hybrid MC 



31 

 

and possibilistic approach or to the MC-based DS-IRS approach because their risk estimates are 

more conservative than (or at least comparable to) those obtained by the two-level MC approach 

assuming dependence (or independence) between the epistemically uncertain parameters: thus, a 

non-probabilistic representation of epistemic uncertainty represents in general a “safer” choice than 

a probabilistic one. 
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Appendix A: operative procedure for the propagation of aleatory and 

epistemic uncertainty in the hybrid MC and possibilistic approach 

The operative steps for the propagation of hybrid probabilistic and possibilistic uncertainty in a 

“two-level” framework are the following: 

1. sample a matrix }{ i
ju , mi  , ,2 ,1 �= , kj  , ,2 ,1 �= , of random numbers from a uniform 

distribution U[0,1); 

2. set 0=α  (outer loop processing epistemic uncertainty); 

3. select the �-cuts jmjjj AAA ,2,1,  ..., , ,
θ
α

θ
α

θ
α  of the possibility distributions 

( ) ( ) ( ){ }  ..., , , )( ,2,1,
,2,1,

j

jmjjjj

mjjjj θπθπθπ
θθθ=��

�  of the parameters { }
jmjjjj ,2,1,  ..., , , θθθ=� , of 

the “probabilistic” variables kj YYYY ,...,,...,, 21 , and the �-cuts nkk AAA ααα  ..., , , 21 ++  of the 

possibility distributions { })( ..., ),( ..., ),( ),( 21
21

n
Y

l
Y

k
Y

k
Y yyyy nlkk ππππ ++

++  of the “purely 

possibilistic” variables, nlkk YYYY  ..., , ..., , , 21 ++ , as intervals of possible values 

[ ] [ ] [ ] [ ]{ }αααααααα ,,,,,2,,2,,1,,1,,,  , ..., ,  , ,  , ,
jj

mjmjjjjjjj ������=�� , kj  , ,2 ,1 �= , and [ ]αα ,,
, ll
yy , 

nkkl  , ,2 ,1 �++= , respectively; 

4. set 1=i  (inner loop processing aleatory uncertainty); 

5. sample the thi −  random intervals [ ]i

j
i

j
yy αα ,,

, , kj  , ,2 ,1 �= , of the “probabilistic” variables 

jY , kj  , ,2 ,1 �= , corresponding to the �-cuts [ ] =αα ,, , jj ��  

[ ] [ ] [ ]{ }αααααα ,,,,,2,,2,,1,,1,  ,  ,..,  ,  ,  , 
jj

mjmjjjjj ������  (found at step 3. above) and to the thi −  

random vector } ..., , ..., , ,{ 21
i
k

i
j

ii uuuu  (generated at step 1. above). In particular, the thi −  
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random interval [ ]i

j
i

j
yy αα ,,

,  for kjYj  , ,2 ,1 , �= , is calculated by 

( )j
i
jY

i

j
uFy

j
jjj

�
���

|inf 1

],[, ,,

−

∈
=

αα
α

 and ( )j
i
jY

i
j uFy

j
jjj

�
���

|sup 1

],[
,

,,

−

∈
=

αα

α , where ( )jYj
F �|1 ⋅−  is the inverse 

of the cumulative distribution function (cdf) ( )jYj
F �|⋅  of ( )jYj

p �|⋅ ; by way of example, 

Figure A.1 shows the procedure for sampling the thi −  random interval [ ]i
j

i

j
yy αα ,,

,  for the 

generic uncertain variable jY . 

6. calculate the smallest and largest values of ( )nlkkkj YYYYYYYYf  ..., , ..., , , , ..., , ..., , , 2121 ++ , 

denoted by if
α

 and 
i

f α  respectively, letting variables jY  range within the intervals 

[ ]i

j
i

j
yy αα ,,

, , kj  , ,2 ,1 �= , and letting variables lY , nkkl  , ,2 ,1 �++=  range within 

[ ]αα ,,
, ll
yy , nkkl  , ,2 ,1 �++= ; in particular, 

( )nlkkkj
yyYlyyYj

i YYYYYYYYff
lll

i

j

i

jj

 ..., , ..., , , , ..., , ..., , ,inf 2121
],[,];,[, ,,,,

++
∈∈

=
αααα

α
 and  

( )nlkkkj
yyYlyyYj

i
YYYYYYYYff

lll

i

j
i

jj

 ..., , ..., , , , ..., , ..., , ,sup 2121
],[,];,[, ,,,,

++
∈∈

=
αααα

α . 

7. take the values if
α

 and 
i

f α  found in 6. above as the lower and upper limits of the �-cut of 

( )nlkkkj YYYYYYYYf  ..., , ..., , , , ..., , ..., , , 2121 ++  in correspondence of the thi −  random 

realization of the aleatory uncertainty; 

8. if mi ≠ , then set 1+= ii  and return to step 5. above; otherwise go to step 9. below; 

9. if 1≠α , then set α∆αα +=  (e.g., 05.0=α∆ ) and return to step 3. above; otherwise, stop 

the algorithm: the fuzzy random realization (fuzzy interval) f
iπ , mi  , ,2 ,1 �=  of 

( )nYYYfZ ,...,, 21=  is constructed as the collection of the values if
α

 and 
i

f α , mi  , ,2 ,1 �= , 

found at step 6. above (in other words, f
iπ  is defined by all its �-cut intervals [ ]ii ff αα

, ). 
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It is worth noting that performing an interval analysis on �-cuts assumes total dependence between 

the epistemically uncertain variables. Actually, this procedure implies strong dependence between 

the information sources (e.g., the experts or observers) that supply the input possibility 

distributions, because the same confidence level α  is chosen to build the �-cuts for all the 

epistemically uncertain variables [15]. 

 

Finally, by way of example and only for illustration purposes, in Figure A.1 the procedure for 

sampling the thi −  random interval [ ]i
j

i

j
yy αα ,,

,  for the generic uncertain variable jY  is shown. Let 

us suppose that the probability distribution of jY  is normal with parameters { } { }σµθθ ,, 2,1, == jjj� ; 

the mean 1,jθµ =  is represented by a triangular possibility distribution with core c = 5 and support 

[a, b] = [4, 6] and the standard deviation 2,jθσ =  is a fixed point-wise value ( 42, == jθσ ). With 

reference to the operative procedure outlined above, a possibility value α  (e.g., 3.0=α  in Figure 

A.1, left) is selected and the corresponding �-cut for 1,jθµ =  is found, i.e., [ ] [ ]αααα
θθµµ ,1,,1, ,, jj=  = 

[4.3, 5.7] (see step 3. of the procedure above). The cumulative distribution functions j

j

YF
�

 are 

constructed using the upper and lower values of µ , i.e., 3.4,1, == αα
θµ j  and 7.5,1, == αα θµ j  

(Figure A.1, right); then, a random number i
ju  (e.g., 7.0=i

ju  in Figure A.1, right) is sampled from 

a uniform distribution in [0,1) and the interval [ ]i
j

i

j
yy αα ,,

,  is computed as 

( ) ( ) =
�
�
	

A

B
B
C

D
−

∈

−

∈ j
i
jYj

i
jY uFuF

j
jjj

j
jjj

��
���

���

|sup ,|inf 1

],[

1

],[
,,

,, αα
αα

( ) ( ) =�
	

A
B
C

D −

∈

−

∈
µµ

αα
αα µµµµµµ

|sup ,|inf
1

],[

1

],[

i
jY

i
jY uFuF

jj
 

( ) ( ) [ ]8.7 ,4.6|7.0sup ,|7.0inf 1

]7.5,3.4[

1

]7.5,3.4[
=�

	

A
B
C

D −

∈

−

∈
µµ

µµ jj YY FF  (see step 5. of the procedure above). 

 

Figure A.1 
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Appendix B: operative procedure for the propagation of aleatory and 

epistemic uncertainty in the Monte Carlo-based Dempster-Shafer 

approach employing independent random sets 

In the MC-based DS-IRS approach, the possibility distributions employed in the hybrid MC and 

possibilistic method (Appendix A) are encoded into discrete (focal) sets as follows: 

i. determine q (nested) focal sets for the generic possibilistic variable/parameter Y  as the �-

cuts [ ]
t

t
t

yyA ααα  ,= , , ..., q, t 21= , with 0...1 121 =>>>>= +qq αααα ; 

ii.  build the mass distribution of the focal sets by assigning 1+−== tttt
m ααα∆α . 

In particular, in the case study of the work presented in this paper, q = 20 and 

05.0=== α∆α∆α tt
m , for the sake of comparison with the hybrid MC and possibilistic approach 

described in Section 2 and Appendix A and applied in Section 4.  

The operative steps for the propagation of aleatory and epistemic uncertainty in a “two-level” 

framework according to the MC-based DS-IRS approach are the following6: 

1. set 1=αi  (outer loop processing epistemic uncertainty); 

2. sample the values { }αα i
ij p , , , ..., k, j 21= , jp mi  ..., ,2 ,1= , from the discrete distribution 

( ){ }20 ..., ,2 ,1:, 
 , , , , == qtm
tpijp tij αα ( ) ( ) ( ){ } , ..., , , , , 

20 , ,2 , ,1 , , 20 , ,2 , ,1 , , ===
qpijppijppijp

mmm qijijij ααα ααα

( ) ( ) ( ){ }05.0 ,0 ..., , 05.0 ,95.0 , 05.0 ,1 = ; these sampled values represent the α  levels of the 

focal sets of the discretized possibility distributions 

( ) ( ) ( ){ }  ..., , , )( ,2,1,
,2,1,

j

jmjjjj

mjjjj θπθπθπ
θθθ=��

�  of the parameters { }
jmjjjj ,2,1,  ..., , , θθθ=�  of 

the “probabilistic” variables kj YYYY ,...,,...,, 21 . Then sample the values { }αα i
l , 

                                                 
6 The reader is referred to Section 2 and Appendix A for the notation used. 
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, ..., n, kkl 21 ++= , from the discrete distribution 

( ){ } ( ) ( ) ( ){ } ( ){  ,05.0 ,1  , ,...,, ,, 20 ..., ,2 ,1:, 
20q ,2 ,1 , , 20 ,2 ,1 , , ====

== llltl
mmmqtm qllltl αααα αααα  

( ) ( ) } 05.0 ,0 ..., , 05.0 ,95.0 ; these sampled values represent the α  levels of the focal sets of 

the discretized possibility distributions )( ..., ),( ..., ),( ),( 21
21

n
Y

l
Y

k
Y

k
Y yyyy nlkk ππππ ++

++  of the 

“purely possibilistic” variables, nlkk YYYY  ..., , ..., , , 21 ++ . Notice that, differently from the 

hybrid MC and possibilistic approach (Appendix A), a different value α  is randomly and 

independently sampled for each epistemically uncertain parameter/variable, i.e., 

independence is assumed between the epistemically uncertain parameters/variables; 

3. on the basis of the α  levels sampled at step 2., select the random focal sets 

jmj

i

jmj

j
i
j

j
i
j

AAA ,

,

2,

2,

1,

1,

..., , ,
θ
α

θ
α

θ
α ααα , , ..., k, j 21= , for the parameters { }

jmjjjj ,2,1,  ..., , , θθθ=�  and the 

random focal sets nkk
i
n

i
k

i
k

AAA ααα ααα  ..., , , 21

21

++
++

 for the “purely possibilistic” variables 

nlkk YYYY  ..., , ..., , , 21 ++ , as intervals of possible values 

[ ] [ ] [ ] [ ]{ }αααααααα αααααααα
i

jmjj
i

jmjj

i
j

i
j

i
j

i
j

i

pij
i

pij
mjmjjjjjjj ������

 , ,2 ,2,1 ,1,  ,  ,
,,,,,2,,2,,1,,1,,,  , ..., ,  , ,  ,  , =�� , kj  , ,2 ,1 �= , 

and [ ]αα αα
i
l

i
l

ll
yy ,,

, , nkkl  , ,2 ,1 �++= , respectively; 

4. perform the same steps 4. – 8. (inner loop processing aleatory uncertainty) as in the 

procedure of Appendix A to obtain αiif  ,  and αii
f

 ,
, mi  , ,2 ,1 �= , αα mi  , ,2 ,1 �= , as the 

upper and lower limit of ( )nYYYf  ..., , , 21  in correspondence of the thi −  random realization 

of the aleatory uncertainty and of the thi −α  random realization of epistemic uncertainty; 

5. if αα mi ≠ , then set 1+= αα ii  and return to step 2.; otherwise, stop the algorithm: the 

random sets [ ]ααα
iiiiii ffE
 , , ,  ,= , mi  , ,2 ,1 �= , αα mi  , ,2 ,1 �= , of ( )nYYYfZ  ..., , , 21=  are 

obtained with the collection of the values αiif  ,  and αii
f

 ,
, mi  , ,2 ,1 �= , αα mi  , ,2 ,1 �= , 
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found at step 5. above. A probability mass ( )
mm

Em ii

*

1 ,

α

α = , is associated at each random 

set αiiE  , . 

For each set A  contained in the universe of discourse ZU  of the output variable Z , it is possible to 

obtain the belief )(ABel  and the plausibility )(APl  for any setA , respectively [14], [15]: 

�
⊆

=
AE

ii

ii

EmABel
α

α

 ,

)()(  ,          (B.1) 

�
≠∩

=
0

 ,

 ,

)()(
AE

ii

ii

EmAPl
α

α          (B.2) 

 

Appendix C: two-level Monte Carlo method 

Let us consider a model whose output is a function ( )nj YYYYfZ  ..., , ..., , , 21=  of n  uncertain 

variables jY , nj  , ,2 ,1 �= , that are “probabilistic”, i.e., their uncertainty is described by probability 

distributions )|( ..., ),|( ..., ),|( ),|( 2211 21 kkYjjYYY ypypypyp
kj

����  with parameters 

{ }
jmjjjj ,2,1,  ..., , , θθθ=� , nj  , ,2 ,1 �= ; the parameters { }njj  , ,2 ,1 : �=�  are themselves described 

by probability distributions ( ) ( ) ( ){ }  ..., , , )( ,2,1,
,2,1,

j

jmjjjj

mjjjj ppp θθθ θθθ=�p� . By way of example, let 

Y ~ ( ) ( ) ( )21  , , θθσµ NNN == �  and the parameters { } { }σµθθ  ,  , 21 ==�  have a normal distribution 

with known mean and variance, i.e., µθ =1 ~ ( )µµ σµ  ,N  and σθ =2 ~ ( )σσ σµ  ,N 7. 

                                                 
7 It is worth noting that in the following, for ease of notation, the entire set of epistemically uncertain parameters 

{ }
jmjjj ,2,1,  ..., , , θθθ , nj  , ,2 ,1 �= , is “condensed” into a single vector { }

pnk θθθθ  ..., , ..., , , 21=� , with 

�
=

=
n

j

jp mn
1

, and the corresponding probability distributions are referred to as 

( ) ( ) ( ) ( ){ }  ..., , ..., , , 21
21

p

pnk

nk pppp θθθθ θθθθ  
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In such a case, the propagation of uncertainty can be performed by a two-level Monte Carlo (MC) 

technique, which is constitued by the following two main steps [2], [4]: 

i. MC sampling of the parameters affected by epistemic uncertainty (outer loop processing 

epistemic uncertainty); 

ii.  repeated MC sampling of possible values of the “probabilistic” variables from the 

corresponding probability distributions conditioned at the values of the epistemically 

uncertain parameters sampled at step i. above (inner loop processing aleatory uncertainty). 

In more detail, the operative steps of the procedure are: 

1. set 1=pi  (outer loop processing epistemic uncertainty); 

2. sample a vector }{ pi
kr , pnk  , ,2 ,1 �=  of uniform random numbers in [0,1) (pn  is the total 

number of epistemically uncertain parameters, i.e., �
=

=
n

j
jp mn

1

); 

3. identify the thi p −  set of random realizations pi
kθ , pnk  , ,2 ,1 �= , of the epistemically 

uncertain parameters kθ , pnk  , ,2 ,1 �= , using the random vector } ..., , ..., , ,{ 21
p

p

ppp i
n

i
k

ii rrrr  

sampled at step 2. above. In particular, the value pi
kθ  is calculated by [ ] ( )pkp i

k
i
k rF

1−
= θθ  

pnk  , ,2 ,1 �= , where [ ] 1−
kFθ  is the inverse of the cumulative distribution kF θ of kpθ ; 

4. set 1=i  (inner loop processing aleatory uncertainty); 

5. sample a vector }{ i
ju , nj ,,2,1 �= , of uniform random numbers in [0,1); 

6. identify the thi −  set of random realizations pii
jy , , nj  , ,2 ,1 �= , of the “probabilistic” 

variables jY , nj  , ,2 ,1 �= , using the random vector } ..., , ..., , ,{ 21
i
n

i
j

ii uuuu  sampled at step 5. 

above and the random realizations pikθ , pnk  , ,2 ,1 �= , of the epistemically uncertain 

parameters sampled at step 3. above. In particular, the value pii
jy ,  is calculated by 
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( )p

j

p i
k

i
jY

ii
j uFy θ|1, −= , nj  , ,2 ,1 �=  where ( )p

j

i
kYF θ|1 ⋅−  is the inverse of the cumulative 

distribution ( )p

j

i
kYF θ|⋅  of ( )p

j

i
kYp θ|⋅  (notice that ( )p

j

i
kYp θ|⋅  is the probability distribution of 

jY  conditioned at the values pikθ , pnk  , ,2 ,1 �= , of the epistemically uncertain parameters 

kθ , pnk  , ,2 ,1 �= , sampled at step 3. above; 

7. calculate the value piiz , of the model output Z as ( )ppppp ii
n

ii
j

iiiiii yyyyfz ,,,
2

,
1

, ,...,,...,,= ; 

8. if mi ≠ , then set 1+= ii  and return to step 5.; otherwise, build the empirical cumulative 

distribution function Z
i p

F̂  for Z  using the m  values of ( )ppppp ii
n

ii
j

iiiiii yyyyfz ,,,
2

,
1

, ,...,,...,,= , 

mi  , ,2 ,1 �= , obtained performing steps 5. - 7.: in other words, Z
i p

F̂  is the empirical 

cumulative distribution function of the model output Z  when the epistemically uncertain 

parameters kθ , pnk  , ,2 ,1 �= , are set to the values pikθ , pnk  , ,2 ,1 �= . 

9. if pp mi ≠ , then set 1+= pp ii  and return to step 2.; otherwise, stop the algorithm: the output 

of the algorithm is a set of pm  empirical cumulative distribution functions 

{ }pp
Z

i miF
p

 ..., ,2 ,1  :ˆ =  for the model output Z . This set { }pp
Z

i miF
p

 ..., ,2 ,1  :ˆ =  have to be 

post-processed in order to obtain the upper and lower cumulative distribution functions for 

Z : Figure C.1 shows an example of 10=pm  cumulative distribution functions (solid lines) 

produced by the two-level MC approach together with the corresponding upper and lower 

cumulative distribution functions (dashed lines). 

 

Figure C.1 
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The operative steps of the two-level MC method described above assume independence between the 

epistemically uncertain parameters: actually, the random vector } ..., , ..., , ,{ 21
p

p

ppp i
n

i
k

ii rrrr  sampled at 

step 2. above is such that p

p

ppp i
n

i
k

ii rrrr ≠≠≠≠≠ ......21 ; on the contrary, in case of total dependence, 

the condition p

p

ppp i
n

i
k

ii rrrr ===== ......21  have to be imposed (Figure C.2). 

Figure C.2 
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FIGURE CAPTIONS 

 

Figure 1. Possibility distributions ( )απα  (left) and ( )βπβ  (right) of the parameters � and � of the Gumbel probability 

distribution (6) of the maximal water flow Q [m3/s], obtained by normalization of the probability distributions )(ααp  

and )(ββp  proposed in [3] 

 

Figure 2. Left: possibility distribution Zmµπ  of Zmµ  constructed using Chebyshev inequality (7) with Zmµ̂ = 55.03 and 

Zmµσ ˆˆ = 0.08. Right: possibility distribution Zmσπ  of Zmσ  constructed using Chebyshev inequality (7) with Zmσ̂  = 0.45 

and 
Zmσσ ˆ

ˆ = 0.06 

 

Figure 3. Left: possibility distribution Zvµπ  of Zvµ  constructed using Chebyshev inequality (7) with Zvµ̂ = 50.19 and 

Zvµσ ˆ
ˆ = 0.07. Right: possibility distribution Zvσπ  of Zvσ  constructed using Chebyshev inequality (7) with Zvσ̂ = 0.38 and 

Zvσσ ˆ
ˆ = 0.05 

 

Figure 4. Trapezoidal possibility distribution function for the parameter Ksµ  with support [a, b] = [22.3, 33.3] and core 

[c, d] = [26.5, 29.1] 

 

Figure 5. Comparison of the cumulative distribution function of the maximal water level of the river Zc obtained by a 

one-level pure probabilistic approach (solid line) with the belief (lower dashed curve) and plausibility (upper dashed 

curve) functions obtained by the “two-level” hybrid Monte Carlo and possibilistic approach of Section 2 

 

Figure 6. Comparison of the upper and lower cumulative distribution functions of the maximal water level of the river 

Zc obtained by the two-level Monte Carlo approach, considering both independence and total dependence between the 

epistemically uncertain parameters 

 

Figure 7. Comparison of the cumulative distribution functions of the maximal water level of the river Zc obtained by the 

Dempster-Shafer method and the hybrid method 
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Figure 8. Left: possibility distribution, )( Zm
Zm µπµ , of the parameter Zmµ  of the probability distribution of the variable 

mZ  (Section 3.2.2); right: possibility distribution, )(βπβ , of the parameter β  of the probability distribution of the 

variable Q  (Section 3.2.1) 

 

Figure 9. Comparison of the cumulative distribution functions of the maximal water level of the river Zc obtained by the 

Dempster-Shafer method and the two-level Monte Carlo method assuming independence between the epistemically 

uncertain parameters 

 

Figure 10. Comparison of the cumulative distribution functions of the maximal water level of the river Zc obtained by 

the hybrid method and the two-level Monte Carlo method assuming total dependence between the epistemically 

uncertain parameters 

 

Figure A.1. Left: triangular possibility distribution of the mean µ of the normal probability distribution of Yj ~ N(µ, 4) = 

N(�); in evidence the �-cut of level � = 0.3 [ ] [ ] == αα
αα µµθθ ,, ,1,,1, jj

[4.3, 5.7]. Right: cumulative distribution functions of 

Yj built in correspondence of the extreme values 3.4=
α

µ  and 7.5=αµ  of the �-cut [ ]αα
µµ ,  of µ. The random interval 

[ i

j

i

j
yy αα ,,

, ] (corresponding to the uniform random number 7.0=i

ju ) is found using the inverse transform method 

 

Figure C.1. pm =10 cumulative distribution functions Zi p
F̂ , pp mi  ..., ,2 ,1= , (solid lines) produced by a two-level MC 

approach together with the corresponding upper and lower empirical cumulative distribution functions (dashed lines) 

 

Figure C.2. Left: random sampling of realizations of the uncertain parameters �1 and � 2 assuming total dependence; 

right: random sampling of realizations of the uncertain parameters �1 and � 2 assuming independence 
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TABLES 

 

Method 
Epistemic uncertainty 

representation 
Epistemic uncertainty 

propagation 

State of dependence 
between the epistemically 

uncertain parameters 
Hybrid MC and 
possibilistic (i.) 

Possibility distributions Fuzzy interval analysis Total dependence 

MC-based DS-
IRS (ii.) 

Focal sets with associated 
probability masses (discretization 

of possibility distributions) 

Random sampling (of 
discrete focal sets) by MC 

Independence 

Two-level MC 
(iii.) 

Probability distributions 
Random sampling (of 

probability distributions) 
by MC 

Independence (iii.a) / Total 
dependence (iii.b) 

Table 1. Characteristics of the approaches considered to propagate aleatory and epistemic uncertainties in a “two-level” 

framework 
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State of dependence between the 

epistemically uncertain parameters 
  

  Independence  Total dependence  Objective 

Representation 
of epistemic 
uncertainty 

Probabilistic 
Two-level MC 

(iii.a) vs 
Two-level MC 

(iii.b) 

 Study the effect of the state 
of dependence between the 

epistemically uncertain 
parameters of the aleatory 
probability distributions 

when a probabilistic/non-
probabilistic representation 
of epistemic uncertainty is 

given 

 vs  vs  

Non-probabilistic 
MC-based DS-IRS 

(ii.) vs 
Hybrid MC and 
possibilistic (i.) 

 

       

 Objective 

Study the effect of the probabilistic/non-
probabilistic representation of the 

epistemically uncertain parameters of the 
aleatory probability distributions when the 

state of dependence between the 
epistemically uncertain parameters is given 

  

Table 2. Comparisons performed between the different approaches, and their relative objectives 
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Method 
Zc

0.99 
(Pure probabilistic value = 

55.34) 

P[Zc � 55.5] 
(Pure probabilistic value = 

0.0076) 

  [[[[ ]]]]990990 .
,

.
, , upperclowerc ZZ  [[[[ ]]]]%ZcW  [LowerBound, 

UpperBound] 
[[[[ ]]]]%*W  

Hybrid MC and possibilistic 
(total dependence) (case i.) 

[54.79, 56.03] 2.2 [0.0024, 0.0241] 286 

MC-based DS-IRS 
(independence) (case ii.) 

[54.82, 56.23] 2.6 [0.0014, 0.0335] 423 

Two-level MC (independence) 
(case iii.a) 

[54.56, 56.06] 2.7 [0.0013, 0.0293] 368 

Two-level MC (total 
dependence) (case iii.b) 

[54.05, 55.50] 0.8 [0.0042, 0.0111] 91 

Table 3. Comparison of the lower and upper values of Zc percentiles and threshold exceedance probability obtained by 

the three methods analyzed; the respective percentage widths W of the intervals are also reported. All values are in 

meters 
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State of dependence between the  
epistemically uncertain parameters 

  

Independence  
Total  

dependence  Findings 

R
ep

re
se

nt
at

io
n 

of
 e

pi
st

em
ic

 u
nc

er
ta

in
ty

 

P
ro

ba
bi

lis
tic

 

Two-level MC  
(iii.a) vs 

Two-level MC  
(iii.b) 

���� 

Method (iii.a) vs (iii.b): 
-In the case study considered, assuming 
dependence between the parameters leads to a 
smaller gap between the upper and lower CDFs 
of the model output, i.e., to less conservative 
results 
Method (i) vs (ii): 
-The plausibility and belief functions produced 
by the two approaches are similar: in other 
words, the hybrid method is not significantly 
influenced by the total dependence between the 
epistemically uncertain parameters 
 
General: 
-The state of dependence between the 
epistemically uncertain parameters of the 
aleatory probability distributions is more likely 
to become a critical factor (e.g., in risk-
informed decisions) when the representation of 
the uncertain parameters is probabilistic 

 vs  vs  

N
on

-p
ro

ba
bi

lis
tic

 

MC-based  
DS-IRS (ii) vs 

Hybrid MC and 
possibilistic (i) 

���� 

  ����  ����   

 

F
in

di
ng

s 

Method (ii) vs (iii.a): 
-In the cases study considered, the upper and 
lower CDFs of the model output produced by the 
two approaches are similar 
Method (i) vs (iii.b): 
-The gap between the plausibility and belief 
functions of the model output produced by the 
hybrid approach is larger than the gap between 
the upper and lower CDFs produced by the two-
level MC method 
 
General: 
-A probabilistic representation of the 
epistemically uncertain parameters of the aleatory 
probability distributions may fail to produce 
reliable and conservative results when there is 
total dependence between the uncertain 
parameters, which raises concerns from the point 
of view of safety 

  

Table 4. Comparisons performed between the different approaches, and their relative findings 
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FIGURES 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure A.1 
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Figure C.1 
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Figure C.2 

 

 


