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Abstract

In this paper, we describe a multiscale strategy that allows to couple stochastic and deterministic models. The transition condition
enforced between the two models is weak, in the sense that it is based on volume coupling in space (rather than more classical
boundary coupling) and on a volume/sample average in the random dimension. The paper then concentrates on the application
of this weak coupling technique for the development of a new iterative method for the homogenization of random media. The
technique is based on the coupling of the stochastic microstructure to a tentative homogenized medium, the parameters of which
are initially chosen at will. Based on the results of the coupled simulation, for which Dirichlet or Neumann boundary conditions
are posed at the boundary of the tentative homogenized medium, the parameters of the homogenized medium are then iteratively
updated. An example shows the efficiency of the proposed approach compared to the classical KUBC and SUBC approaches in
stochastic homogenization. c© 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of
Karlsruhe Institute of Technology (KIT), Institute of the Engineering Mechanics.
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1. Introduction

Classical deterministic models provide global predictions that are satisfactory for many industrial applications.
However, when one is interested in a very localized behavior or quantity, or when multiscale phenomena come into
play, these models may not be sufficient. For instance, the limited heterogeneity of a material modeled as a continuum
might have no influence on its behavior on a large scale, while the study of a local stress intensity factor would strongly
depend on the local heterogeneity of the mechanical parameters. Unfortunately, for these problems, the information
necessary to parameterize the relevant, very complex, models is usually not available. Stochastic methods have
therefore been proposed and now appear unavoidable in multiscale modeling. Although the use of stochastic models
and methods has expanded rapidly in the last decades, the related numerical costs are still often prohibitive. Hence,
the application of these methods in a complex or industrial context remains limited. An important field of research is
therefore concerned with the reduction of the costs associated with the use of stochastic methods, for example by using
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iterative methods specially adapted to the structure of the matrices arising in the Stochastic Finite Element method,
using reduced bases for the representation of random fields, or using special domain decomposition techniques for
parallel resolution on clusters of computers.

The first part of this paper describes an alternative to these purely mathematical/numerical approaches through the
coupling of two models: one deterministic and one stochastic. The general goal is that of modeling a global problem
in a mean or homogeneous way where it yields sufficient accuracy, while retaining a stochastic model where needed.
Hence, additional complexity is added in the model only where required, and the general approach is both more
elegant and numerically cheaper than a global all-over stochastic model would be. Further, the cuts on computational
costs mean that industrial applications come within reach. The core idea is to extend the Arlequin coupling method,
described in a general setting in [1, 2], to the case of the coupling of a stochastic model with a deterministic one.
The main ingredients are the choices of the operator and functional space for the coupling, and are described in detail
in [3, 4]. They will be recalled and summarized in this first part of the paper. The most interesting feature of the
coupling strategy is that it really couples the random microstructure with the deterministic homogenized model, and
not one (deterministic) realization of the random medium with a homogenized model.

For the first part of this paper, it is assumed that both the stochastic microstructure model and the corresponding
deterministic macroscale model are available. However, in practice, it is often a difficult task to derive the homog-
enized model corresponding to a given stochastic microstructure. This question has been treated extensively in the
mathematical literature, starting with [5, 6, 7, 8] and many existence results have been obtained for different random
media [9, 10, 11, 12, 13]. Fewer results, however, exist for the computation of homogenized models corresponding to
actual microstructures [9, 14, 15]. The basic problem lies in the requirement to cut the physical space at finite length
(no periodicity hypothesis a priori) for computational reasons, hence introducing a bias in the estimate of the homoge-
nized coefficients. We propose in the second part of this paper a new numerical homogenization strategy that attempts
to solve that issue. It is based on the previous stochastic-deterministic coupling approach, and on a self-consistent
iterative process to update the value of the homogenized tensor until convergence. The general idea of the scheme is
exactly the same as that of self-consistent homogenization, although it is here performed numerically and extended to
stochastic homogenization. Through the volume coupling, the boundary conditions (in space and random dimension)
are repulsed away from the stochastic microstructure, and the ergodicity of the random medium can be used in full to
accelerate convergence. The weakness of the coupling, both in the space and the stochastic dimensions, is essential in
order not to create a strong properties contrast between the two models, as in [16].

Throughout the paper, we will use bold characters for random quantities, lowercase characters for scalars and
vectors, and uppercase characters for matrices and tensors.

2. A stochastic-deterministic coupling method

Let us consider a (stochastic) microstructure defined over a domain D, with a stochastic parameter field kkk(x), and a
(deterministic) effective model defined over a domain D, with a constant parameter K. The supports of the two models
are such that D ⊂ D, and we also define a subset of their intersection Dc ⊂ D, over which they will be considered to
communicate. These definitions mean that there is part of the domain where only the effective model is defined, part
of the domain where both models are defined and over which they are coupled, and part of the domain where both
models are defined but over which they do not communicate.

The coupling problem is set in the general Arlequin framework (see in particular [1, 17, 2, 18] for details on
the Arlequin framework in a deterministic setting and [3, 4] for the stochastic case), and is recalled here in the
particular context of the homogenization technique that will be presented in the next section. It reads: find (u,uuu,ΦΦΦ) ∈
V ×W ×Wc such that

a(u,v)+C(ΦΦΦ,v) = `(v), ∀v ∈ V

A (uuu,vvv)−C(ΦΦΦ,vvv) = 0, ∀vvv ∈W

C(ΨΨΨ,u−uuu) = 0, ∀ΨΨΨ ∈Wc

, (1)

where the forms a and A are the forms corresponding to the equations driving the two models, weighted by two
weight functions α1 and α2 that enforce the conservation of the global energy, by appropriate partitioning among the
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Fig. 1. Section (left) and perspective view (right) of a 2D Arlequin problem where an effective model, defined over domain D, and several
realizations of a random model, defined over D, are coupled through a coupling domain Dc. On the overlap outside of Dc: (D∩D)\Dc, both
models are defined but behave independently.

two available models. More specifically, these forms are:

a(u,v) =
∫

D
α1(x)K∇u ·∇v dx, (2)

and

A (uuu,vvv) = E
[∫

D
α2(x)kkk(x) ∇uuu ·∇vvv dx

]
. (3)

The weight functions allow to put emphasis on one or the other of the two models. Hence, where the stochastic (fine
scale) model is defined (and outside of the coupling area), the weight function α2(x) is given a value close to one (and
α1(x) a value close to zero). We will consider in this paper surface loading at the boundary of the deterministic model:
`(v) =

∫
∂D g0vdx, with typically g0 = 1 (for Neumann approach, see further) or g0 = 0 (for Dirichlet approach).

The coupling operator C enforces weakly the equality of the two fields uuu and u in the coupling area Dc. It is defined
by:

C(uuu,vvv) = E
[∫

Dc

(κ0uuuvvv+κ1∇uuu ·∇vvv)dx
]
, (4)

with κ0 and κ1 two constant given parameters. Concerning the choice of functional spaces, we will consider in this
paper V =H 1

x (D) for homogeneous unit Dirichlet boundary conditions around D, and V =H 1
0 (D) for homogeneous

unit Neumann boundary conditions. The other spaces are W = L 2(Θ,H 1(D)) and

Wc = H 1(Dc)⊕L 2(Θ,R) (5)
=

{
ψ(x)+θθθIc(x)|ψ ∈H 1(Dc),θθθ ∈L 2(Θ,R)

}
. (6)

The indicator function Ic(x) is such that Ic(x ∈Dc) = 1 and Ic(x /∈Dc) = 0. Hence the mediator space Wc can be seen
as composed of functions with a spatially varying mean and perfectly spatially correlated randomness. Thanks to the
specific structure of the space Wc, the last equality of the system (1) can be written equivalently, ∀ΨΨΨ=ψ(x)+θθθIc(x)∈
Wc, or otherwise said, ∀ψ ∈H 1(Dc) and ∀θθθ ∈L 2(Θ,R),

0 = C(ΨΨΨ,uε −uuuε) (7)

= E
[∫

Ωc

(κ0(ψ +θθθIc)(uε −uuuε)+κ1∇ψ ·∇(uε −uuuε))dx
]

(8)

= C(E [ΨΨΨ] ,uε −E [uuuε ])−E
[

θθθ

∫
Ωc

(uuuε −E [uuuε ])dx
]
. (9)
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Therefore, this condition imposes that, in each space point x∈Dc, the (ensemble) average of the random field E[uuuε(x)]
should be equal to the field uε(x), and that the variability of the space-averaged random variable

∫
Ωc

(uuuε −E [uuuε ])dx
should cancel. It should be noted that this condition is the weakest possible in order to maintain solvability of the
coupled system. The stability of the coupled problem (1) was proved in [4], and its solution can be provided either by
Monte Carlo sampling of the random space, or by a spectral approach.

3. A new method for the numerical homogenization of random materials

Before presenting the numerical homogenization technique we propose to introduce, we recall some definitions of
homogenization of random media.

3.1. Definition of homogenization

Let us introduce a domain D ∈ Rd , with a typical length scale L, a (deterministic) loading field f (x) and a field
uuu(x) verifying the random heat equation: find uuu(x) ∈L 2(Θ,L 2(D)) such that, ∀x ∈ D, almost surely:

−∇ · (kkk(x)∇uuu(x)) = f (x), (10)

for a random field kkk(x) fluctuating over a length scale `c (usually defined through the correlation length), and with
appropriate boundary conditions. Here, (Θ,F ,P) is a complete probability space, with Θ a set of outcomes, F a
σ -algebra of events of Θ, and P : F → [0,1] a probability measure.

Homogenization deals with the situation when the ratio ε = `c/L is small. We then scale the fluctuations of the
microstructure by 1/ε , and look at the fluctuations of the solution uuu(x) at the original scale. The following sequence
of problems is therefore considered: find uuuε(x) ∈L 2(Θ,L 2(D)) such that, ∀x ∈ D, almost surely:

−∇ · (kkkε(x)∇uuuε(x)) = f (x), (11)

where kkkε(x)= kkk(x/ε), and with appropriate boundary conditions (for instance uuuε(x)= 0 and ∀x∈ ∂D for the definition
of Dirichlet and Neumann approximations of the homogenized coefficients). Under suitable hypotheses, in particular
on the random field kkkε(x), each of these problems admits a unique solution.

f(x)

��D

L

lc
f(x)

�
�D

L

Fig. 2. Description of one realization of the random medium (left), with fluctuating coefficient kkkε (x), and corresponding effective medium (right),
with constant deterministic effective tensor K∗.

Using different sets of hypotheses and with different methods, many authors (see the bibliography in the introduc-
tion) have shown that, independently of the load f (x), the sequence of solutions uuuε(x) converges when ε → 0 to the
solution u∗(x) of the following deterministic problem: find u∗(x) ∈L 2(D) such that, ∀x ∈ D:

−∇ · (K∗∇u∗(x)) = f (x), (12)

with corresponding boundary conditions. A priori, the effective coefficient K∗ is a full second-order tensor, meaning
that the homogenized material potentially exhibits anisotropy.
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The constructive definition of the effective tensor requires the solution of the so-called corrector problems, which
state: find wwwε(x) ∈L 2(Θ,(L 2(D))d) such that, ∀x ∈ D, almost surely:

−∇ · (kkkε(x)(I +∇wwwε(x))) = 0. (13)

As wwwε is a vector, ∇wwwε(x) is a tensor, and this equation is a d-dimensional equation. The tensor I is the identity tensor
in Rd×Rd . The homogenized tensor is then defined as:

K∗ = lim
ε→0

E
[
(I +∇wwwε(x))

T kkkε(x)(I +∇wwwε(x))
]
. (14)

Approximate values of the homogenized tensor can be estimated by considering finite values of the ratio ε , and
imposing unit-strain boundary condition (hence obtaining the KUBC estimate) or unit-stress boundary conditions
(hence obtaining the SUBC estimate). The estimates are biased and bound (SUBC from below, and KUBC from
above) the exact homogenized coefficient. In the next section, we introduce an alternative approach for computing
approximations of the homogenized coefficients, with less bias.

3.2. Principle of the method

The general motivation for the design of this technique lies in the observation that the biases observed in the
SUBC and KUBC estimates of the homogenized coefficients originate from the boundary conditions chosen for each
realization of the random corrector problems. Somehow, in order to obtain good estimates of the homogenized
coefficients, these boundary conditions have to be taken away (by reducing ε), in order to minimize their influence.
The approach that we propose here builds on this idea, originally proposed by [16]. However, it brings down the
issues encountered by these authors by considering a volume coupling, which is much smoother than an interface-
based one. Further, it allows to perform the coupling between the entire set of realizations of the random medium and
the tentative homogenized medium through the coupling operator described in equation (4), which is extremely weak
and hence introduces less stiffness mismatch.

The issue with that approach is that it is necessary to know beforehand the value of the homogenized coefficient in
order to construct the coupled Arlequin model. We therefore construct the estimate of the homogenized tensor through
a fixed-point iterative scheme. This optimization scheme builds on the idea that, once the homogenized model has
been identified, it should behave exactly the same, whether it is solved alone or coupled to the micro-structure it
represents. In particular, the solution of a coupled Arlequin problem with that homogenized model and the micro-
structure under homogeneous Dirichlet or Neumann boundary conditions should yield exactly the same result as if
the homogenized model was solved alone. On the other hand, if the tentative homogenized model is not correct, there
will be a mismatch of impedances that can be detected through the distance between the response of the homogenized
model in the coupled model and that of the same homogenized model solved alone.

Algorithm 1: Algorithmic description of the proposed iterative technique for numerical homogenization of ran-
dom materials with Dirichlet boundary conditions

Data: N realizations of random medium kkkε(x) of correlation length ε

Result: Dirichlet Arlequin estimate of homogenized tensor Ǩε

N

Initialization: K0←− E[kkkε ]I;
while ‖Ki−Ki−1‖> criterion do

set the mechanical parameter: Kε ←− Ki;
solve the Arlequin coupled system (1) and estimate (u,uuu,ΦΦΦ), with unit-strain boundary conditions at the
boundary of D ;
update Ki+1 to minimize

∫
D ‖∇uε − I‖dx

end
Store estimate: Ǩε

N = Ki.
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3.3. Description of the algorithms

We present here two different algorithms: one for an estimate arising from imposing unit-strain boundary condi-
tions around D (see algorithm 1), which corresponds to the classical KUBC estimate; and one for an estimate arising
from imposing unit-stress boundary conditions around D (see algorithm 2), which corresponds to the classical SUBC
estimate.

Algorithm 2: Algorithmic description of the proposed iterative technique for numerical homogenization of ran-
dom materials with Neumann boundary conditions

Data: N realizations of random medium kkkε(x) of correlation length ε

Result: Neumann Arlequin estimate of homogenized tensor K̂ε

N

Initialization: K0←− E[kkk−1
ε ]−1I;

while ‖Ki−Ki−1‖> criterion do
set the mechanical parameter: K←− Ki;
solve the Arlequin coupled system (1) and estimate (u,uuu,ΦΦΦ), with unit-stress boundary conditions at the
boundary of D ;
update Ki+1 to minimize

∫
D ‖K∇u− I‖dx

end
Store estimate: K̂ε

N = Ki.

In these algorithms, note that the iterative loop can be efficiently implemented through classical general-purpose
optimization schemes. In particular, we have used the Nelder-Mead algorithm (see [19] for details), but others could
be considered. Similarly, we have chosen initial values for each of these algorithms that correspond to the arithmetic
and harmonic averages, but other choices are equally reasonable.

4. Applications

In this section, we consider the implementation of our homogenization approach on a simple problem, for which
an analytical solution is available. The software used for the solution of the coupled Arlequin systems is freely
available at https://github.com/cottereau/CArl. In all the simulations presented in this section, we have used κ0 = 1
and κ1 = 10−3 for the definition of the coupling operator (see Eq. (4)). Also, we have used α2(x∈ (D∩D)\Dc)= 1−η

and α1(x ∈ (D∩D)\Dc) = η , with η = 10−3, for the weighting of the energies of the two models. The realizations
of the random fields kkkε(x) have been generated using the spectral representation method [20], and its Fast Fourier
Transform implementation. Finally, in the implementation of the loops in algorithm 1 and 2, a relative tolerance of
criterion = 10−2 was selected for both the value and the argument of the potential function .

We consider a two-dimensional problem, within a domain D = [0,1]× [0,1], of typical size L = 1. The operator to
be homogenized is ∇ ·kkkε(x)∇uuuε , with kkkε(x) a random heterogeneous modulus. We consider for kkkε(x) a homogeneous
random field with log-normal first-order marginal distribution, and average and standard deviation E[kkkε ] = σ =

√
2.

The power spectrum is considered triangular (which corresponds to a square cardinal sine correlation), with correlation
length `c. We will consider the homogenization problem for three different relative correlation lengths: ε = `c/L= 10,
ε = 1 and ε = 0.1. These correlation lengths span several orders of magnitude (see figure 3 for examples of realizations
of the random media considered) in order to show a wide range of behaviors for our method. Note that considering a
domain of fixed size and variable correlation lengths, as is done here, is strictly equivalent to considering a constant
random field homogenized over cells of variable sizes, as is more often done in the micro-mechanical community.

The homogenized tensor is known analytically [21] to be:

K∗ =
[

1 0
0 1

]
. (15)

Indeed, the inverse of a log-normal random variable follows exactly the same law as the variable itself in the case
when the mean and the standard deviation are equal. Note that, because we know beforehand that the homogenized

https://github.com/cottereau/CArl
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(a) ε = 10, Sample 1 (b) ε = 1, Sample 1 (c) ε = 0.1, Sample 1

Fig. 3. Map of parameter kkkε (x) (in logarithmic scale) for one realization of each of the cases considered here (left: ε = `c/L = 10, center: ε = 1,
and right: ε = 0.1).

tensor is isotropic, we will only discuss here the convergence toward the scalar value K∗xx = 1. This means that the
KUBC, SUBC, and Arlequin estimates will really be based only on numerical experiments in one direction (using
only the imposed gradient ∇uε = [1 0]T for the KUBC estimate for instance). More complex cases, with anisotropic
homogenized behavior in particular, will be considered in the future.

First, we consider the KUBC and SUBC estimates of the homogenized coefficient. To observe the convergence
with respect to the number N of realizations of the random medium over which averages are taken, we compute KUBC
and SUBC estimates for different values of this number N. Note that, for a given correlation length, the values of the
KUBC and SUBC estimates depend not only on the number N, but also on the realizations themselves. We therefore
compute, for each value of N, n = 10 different estimates for different ensembles of N realizations of the random
medium. These results are plotted in figure 4, as grey crosses for the KUBC and grey circles for the SUBC. The linear
Finite Element method was used to compute the corrector problems, with 400, 800, and 5000 elements, respectively
for the cases ε = `c/L = 10, ε = 1 and ε = 0.1. On these plots, we retrieve the expected asymptotic behavior of the
homogenized coefficients. Both the KUBC Ǩε

N and SUBC K̂ε
N estimates converge to the exact value K∗ for small ε

and large N. Also, at large ε and large N, the KUBC estimate tends towards the arithmetic average E[kkkε ] and the
SUBC estimate tends towards the harmonic average E[kkk−1

ε ]−1.
We now turn to the estimation of the Arlequin estimate Kε

N of the homogenized coefficient over domains D =
[−1;2]× [−1;2] and D = [0;1]× [0;1]. The coupling zone Dc is a band of width 0.2 circling at the boundary of
D, and we consider a unit strain boundary condition at the boundary of D. This last condition means that we are
really following the algorithm 1, and aim for Dirichlet Arlequin estimates Ǩε

N . In the Arlequin coupled problem (1),
there exist the same typical lengths as before (`c and L), plus an additional one, corresponding to the size L = 3 of
the tentative homogeneous medium D. In order to simplify the comparisons between the Arlequin estimate and the
KUBC/SUBC estimates, we continue to define ε as the ratio of the correlation length `c to the size L of the random
cell D, that actually indicates the amount of statistical information available about the random medium. In figure 4,
we plot the values of the Arlequin estimates Kε

N for three different correlation lengths (ε = `c/L = 10, ε = 1, and
ε = 0.1) as a function of the numbers of Monte Carlo trials N. As in the previous case, the Arlequin estimate depends
on both the number of Monte Carlo trials, but also on those realizations themselves, so each value of Kε

N is computed
for n = 10 different ensembles of realizations of the random medium. On the same figure 4, we compare the Arlequin
estimates with the KUBC and SUBC estimates discussed above.

The results are extremely convincing in the case presented here. Even when the correlation length is much smaller
than the computational cell (ε = 10), the iterative Arlequin method predicts the correct homogenized coefficient, in
the limit of large number of Monte Carlo realizations. The bias that is observed in the KUBC and SUBC estimates
for large ε cancels completely for our estimate. However, it should be reminded that we have considered here the
homogenization of a particular random medium. The random field kkkε is indeed locally invariant by inversion, and
the homogenized tensor does not depend on the correlation structure. At this point, it therefore cannot be stated
unambiguously whether the excellent behavior of our method is a coincidence or a general behavior. In any case,
it should be stressed that the KUBC and SUBC approaches behave much worse than our Arlequin estimate. A first



Author / Procedia IUTAM 00 (2012) 000-000

(a) ε = 10 (b) ε = 1 (c) ε = 0.1

Fig. 4. Convergence of the Dirichlet Arlequin estimate Ǩε

N (black pluses) for different correlation lengths ((a) ε = `c/L = 10, (b) ε = 1, and (c)
ε = 0.1) as a function of the numbers of Monte Carlo trials N, and comparison with the KUBC Ǩε

N (light grey crosses) and SUBC K̂ε
N (light grey

circles) coefficients. The dashed lines indicate the values of the arithmetic average E[kkkε ] and of the harmonic average E[kkk−1
ε ]−1. The solid lines

indicate the value of K∗ = 1.

explanation for this different behavior should be sought in the fact that we indeed have limited the influence of the
boundary conditions by projecting them far away for the sample of interest.

5. Conclusions and prospects

In this paper, we have discussed a stochastic-deterministic coupling approach based on a very weak energy cou-
pling operator. The introduction of this coupling approach allowed us to propose a new numerical scheme for the
homogenization of random media. The results obtained for the chosen 2D example are spectacular. The bias observed
in the KUBC and SUBC estimates completely vanishes, even for very large correlation length ε = `c/L. This might
put under question the widely-used concept of Representative Volume Element (RVE). Indeed, this RVE is usually
understood as the (physical) size of the cell over which homogenization should be performed to yield the correct value
of the homogenized coefficient. Our study would seem to show that this RVE vanishes in some cases. However, fur-
ther studies are required to check the conditions under which this behavior is observed. Applications to polycrystals
or matrix-inclusions materials, of interest for the composites and micro-mechanics communities, will be considered.
Another approach will consist in deriving theoretical bounds linking the Arlequin estimates to both the theoretical
homogenized coefficient and to the KUBC and SUBC estimates.
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