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ABSTRACT - Birnbaum Importance Measure (IM) allows ranking the components sterswith respect

to the impact that their failures have on the sy&gmerformance, e.g., its reliability or availability. Such
ranking is done in industry to efficiently manage Operation and MaintenancM)@é&tivities, andto
optimize plant design. In the computation thé Birnbaum IM of the components, uncertainty in the
parameters of the system model is often neglected. This neglect may leawrteous, possibly non-
conservative rankingn this work, we develop a method based on Possibility Theory (PT) for giving due
accountto epistemic uncertaintiéga Birnbaum IMs. An example is given with reference to the components

of the Auxiliary FeedWater System (AFWS) of a Nuclear Power Plant (NPP).

Acronyms
AFWS Auxiliary FeedWater System
CDF Cumulative Distribution Function
DSTE Dempster-Shafer Theory of Evidence
IM Importance Measure
NPP Nuclear Power Plant
O&M Operation and Maintenance

PT Possibility Theory
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PWR Pressurized Water Reactor
RBD Reliability Block Diagram
UiM Uncertainty Importance Measure
UoD Universe of Discourse
Notation
n Number of components in the system
Q Failure probability associated to tjxh component
Q Vector containing the variablgg),,....Q,)
g The generic value taken Ky,
fo, (@;) Probability density function (pdf) of the variale
Fo, (a)) CDF of the variable),
No, (A) Necessity measure associated to the subset A of the domain of the \@riable
11, (4) Possibility measure associated to the suBs#tthe domain of the variabl@,
7o, (a;) Possibility function of the variablg,
|7 Birnbaum IM of thg-th component
| B Vector containing the componehtis (1.°,...,1 %)
9,0 Function linking the components failure probabilit@sto the BirnbaumM | ?
uU(t) System failure probability at tinte

1 Introduction

The notion of risk involves some kind of loss or damage that might be receivaeddrget, and the

uncertainty of its transformation in an actual loss or damage [1]. A releutctime of a risk analysis of a

complex industrial system is the quantification of the importance of the component faients with

respect to the system overall risk. To this aim, various Importance Meéddsghave been proposed [2]-



[16] . The importance of a component failure depends on its role in the failure logiargtrofcthe system
and its probability of occurrence, which captures the (aleatory) uncertaintg the inherent variability of
the failure behaviors. In practice, IMs are useful because they allow one to cahgpamgportance of the

different component (random) failure events.

The IM considered in this work is the Birnbaum IM, which was originallyothiced to assess the
contributions to the system failure probability due to the failure probabilifethe various system
components. In particular, components for which a variation in this probability resuieslargest variation
of the system reliability have the highest importance [2], [8]. Then,bBimm IM allows ranking the
components of a system on the basis of the influence of their stochastic behaviorsystetnereliability
performance. Nowadays, it is widely used in industry for different purposes asuchtionalizing or
optimizing O&M [9]- [12], performing Probabilistic Risk Assessment studies, (®dhe nuclear field) [13]
even when failure events are meindependent [14] or the system is not coherent [15], addressing the

component assignment problem [16], etc.

In the computation of IM, it is generally assumed that the values of the paranmtersimg the
probabilistic distributions of the failure event occurrences are perfentiywik (e.g., the failure rates).
However, imprecise knowledge of #wevalues is typically encountered in practical applications. This

uncertainty is usually referred to as epistemic or reducible undgriaif.

In [18] and [19] it has been shown that disregarding the epistemic uncertainties in the component failure
probabilities can lead to biased IMs values and ranking. To quantify the @ffeistemic uncertainties i
IMs, Uncertainty IMs (UIMs) have been propounded [20]-[22]. According to, [ main uncertainty
contributors (i.e., with highest UIMs) tend to be different from thenmiak contributors (i.e., with highest
IMs). Thus, UIMs alone do not allow tackling the issue of ranking the impogt of the components
accounting for the epistemic uncertainty affecting their behaviors. In thiectegyven and Ngkland have

proposed a ranking method based on the couple (IM, UIM) [20].

A different approach to rank component IMs taking into account the epistemicaimiyein the failure

probabilities of the componenhas been proposed in [1&nd applied to an industrial case study in [13]



This is a global sensitivity-based method based on a probabilistic exceedance meaisumealbles
comparing the importance of two components. This method has been further investigh®ddvitngre the

authors have used the Quicksort algorithm [23] for effectively ranking the compdsent |

These approa@s handle epistemic uncertainty within the probability theory framework. Recently
resorting to probability distributions to represent insufficient knowledge beam questioned in risk
assessment [24] because it forces assumptions which may not be justifiedabgithlgle information, and
may lose generality of the results. For examleoring whether a value of a parameter is more or less
probable than any other value within a given range does not justify assuming a uniform probability
distribution, which is the less informative probability distribution according to both the Laplace principle of

insufficient reason and the maximum entropy criterion [24].

Recently, stvalued representations have been used to represent the epistemic uncertaintyanssituati
where all that is known is that the parameter value belongs to a certain 2&hg€elchniques based on
Dempster-Shafer Theory of Evidence (DSTE), PT, Interval Analysis, and Fuzzy Set Theorgebkave
proposed to represent the epistemic uncertainties associated to this type of iofprinad way less
committed to assumptions than that offered by the probability theory framework (e.g255¢@8] for

surveys and comparisons of these techniques).

In this context, the objective of this work is to propose a procedure for raifidrgpmponentM in the
case in which the epistemic uncertainty in the parameters of the component failure imdéstribed using

PT. This procedure is applied to a case study concerning the AFWS of a nuclear pressurized water reactor

The presentation of the work is organized as follows. In Sectitt,eZBirnbaum IM and its calculation
are recakd the problem of uncertainty is stated, and a simple example of refesamoekied out within the
probability theory framework. The same case studg-onsidered in Section 3 within the PT framework of
representation. The AFWS case study is worked out in Section 4. Concludingsemdhle findings of the

paper are provided in Section 5.



2 Uncertainty in IMs

Consider a system made up of n components, assumed binary (i.e., they have only two possible states

‘working’ and ‘failed’), and s-independent.

The BirnbaumM IJ.B(t) of thej-th component of such system at titrie given by [20]:

() o

2(0)="0

- (t)

Simple analytical manipulation yields [2]

)

. Uj*(t)zu(Qj =1,Q(t)) is the system failure probability when compongns in failed state. It

represents the maximum risk achievement if compagnisrtonsidered failed [2].

U (t)=U(Q =0,Q(t)) . . - .. o
J() (Q‘ Q( )) is the system failure probability when compongns functioning. It

represents the maximum reduction in risk if componentonsidered working [2].

Consider, as an example, the system in Fig. 1, and assume to know the exact values of the component

unreliabilities,Qa, Qg, Qc. The system unreliabilitis

U (QAiQB 1Qc ) = QAQB + Qc - QAQBQC
The Birnbaum IMs of the components are then obtained by usiag (1)

I E QB - QBQC
=1 BB = Qy—QuQ (3
I g 1- QAQB



Fig. 1. System Reliability Block Diagram.

However, the exact values of the component failure probabiigg=(Q (t),Q,(t)....Q,(t)) are often

not precisely known in practical situations, e.g., because they are assigned by an exgtimiatad through
statistical means. Then, our objective is to rank the components according tartiEuB IMs, taking into
acount the epistemic uncertainties in the component failure probabilities. Inajemhichever is the

framework adopted to represent the epistemic uncertainties, this entails three sucegssive st

1. representation the uncertainties on the compdnéilure probabilities,

2. propagation th&euncertainties onto the compon®ari values|?,...,1%, and

3. ranking the componentIMs 17,...,I° taking into account the uncertainties obtained in the previous

step.

Table |

Component unreliabilities, and IMs (taken from [19]).

Unréliability: Unréliability:

Mean Standard Deviation
A 0.015 0.005
B 0.010 0.005

C 0.095 0.044




In the remaining part of this section, we will consider the example in Figsdming that the uncertain

unreliabilities Qj, j=A, B, C, are described by the Cumulative Distribution Functions (CDFQsj)gqj),

whose mean and standard deviations are reported in Table |. Notice thatidtebations have been
numerically obtained in [19] by assuming that an expert is able to represent theaintiesrin the
component failure rates using lognormal distributions, and by propagating uhesdainties onto the

component unreliabilities.

Fig. 2 (continuous line) shows the Birnbaum IMs distributid?ll§(if‘) obtained by propagating the
]

uncertainties in the component unreliabilit@s onto the Birnbaum IMd 7, j=A, B, C.

2.1 Components importance ranking, under a probabilistic representation of

uncertainty

Here we recall the procedure propounded in [19] to rank the components accordiieig Birhbaum

importance considering the probabilistic uncertaintsheir IMs.

Let us consider two generic componeltsand s; to establish which is the most important, the

distribution of the random variablen, =A_(12,12)=1°-1Z is considered. Then, we compute the

probability that1? is larger thanl?, referred toas ‘exceedance measurand given byr, =1- Fre (0).

Finally, the relation order between compondntnds is obtained by comparing, to a threshold range

[T,,21-T,], symmetric around 0.5, and considering the following criteria.

e |If r,>1-T thenkis more important thas
e If r <T thensis more important thak
e |If T <r, <1-T, thenkis equally important ts. In this case, different kinds of additional constraints or

targets should guide the ranking order (costs, repair times, failure impacts on public oggrjion, et

In practice, the attention is concentrated on composéfithe decision maker judges ‘large’ enough

(e.g., >0.7) the probability that componeri$ more important than compondant



Notice that there may be some cases in which the comparison of the Birnbaum impoftdnee

generic components, k, s, may lead to a contradictory ranking which does not obey the transitive property

ie,1’>17 and 12 >12, but ISB > | JB However, the demonstration in the Appendix shows that by setting
T, lower than 1/3this contradictory ranking is avoided, and at worst it can happenlfhatlf, 1> > ISB,

and ISB =1 JB which can be interpreted as a condition in which the three components are equally important.

Fig. 3 shows the CDF of the random variables, with s, k=A, B, C obtained by applying the probabilistic
ranking procedure to the case study of Fig. 1. Bexaug=1-F, (0)=P(,;>1.)=0, and
rs =1-F,, (0)=P(Ig >15)=1, one can conclude that componedtis certainty more important than

componentsA andB. With respect to the comparison between componrasdB being the exceedance

measurer,, =1-F, (0)=0.25, the ranking of the two components depends from the threshold ranges

[T,,21-T,]. Assuming, for example, th@t=0.3, componenB turns out to be more important than component
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Fig. 2. Possibility measure, necessity measure, and CDF of the IMs of the components.
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Fig. 3. Comparison of the possibility measure, necessity measure, and CDF of the variables A k, j=A, B, C and k#j.

3 Components importance ranking, under a possibilistic representation

of uncertainty

Experts may not be willing to specify probability distributions of the paramet¢ing system model such as
the component failure probabilitie(t)=(Q,(t),Q,(t)....Q,(t)) when the available information is

incomplete, sparse, conflicting, vague, or non-specific [39]. Possibility theory has been proposedith deal w
epistemic uncertainty in situations characterized by insufficient knowledge on parameter values.

Section 3.1 briefly introduceBT, and shows how to obtain a possibility distributionpractical cases;
Section 3.2 deals with the propagation of the uncertainty from the component failure pxolbakithe
component Birnbaum importance; finally, Section 3.3 illustrates the proposedprogetiure for ranking

the component Birnbaum importance.

3.1 Possibilistic representation of uncertainty in component unreliabilities

Let us consider the generic varialgde in PT, uncertainty in this variable is represented by means of a

possibility functionz,(q) , which expresses the degree of possibility of each \bfethe variableQ in a
set S of being the true (but unknown) value @ When 7,(q) =0, it means that the outcontis

considered an impossible situation. Whe@(q)=1, it means that the outcomg is possible, i.e.,



unsurprising, typical, usual [32]. These values are mutually exclusive bdtauecertain variable can

assume one true value only. This result also gives the normalization corﬁﬁtbﬁ:ﬁQ(q)zl, which

claims that at least one value is viewed as totally possible, a much weaker stdteanemthen the

probability is 1.0 [33].

A possibility distribution may also be viewed as a nested set of confidenaaistevhich are the—cuts
[g,a]a ={d 709 >a of z. The degree of certainty th[eg,a]a containsQ is Ny ([9.0],) =1-a if 74 is
continuous [25].

The possibility and necessity measurgs, (4), No(A) for all subsetsAcS are defined by the

associated possibility distributionz,(q) through the following maximization and minimization

relationships, respectively:

11(4) = ngAp{ﬂQ @)} 4)

N, (A) =1~ T, (notd) =1~ f:ip{vrQ @)} (5)

Let Po(7) be a family of probability distributions such that for all eveAts N, (A) < P,(A) < I1,(4) .

Then,
NQ(A) =inf PQ(A) and HQ(A):supPQ A) (6)

where inf and sup are taken with respect to all probability measuReg89]. Hence, the necessity measure
is interpreted as a lower limit for the probability, and the possibilitysomeais interpreted as an upper limit.
Referring to subjective probabilities, the bounds reflect that the analyst ableobr willing to precisely
assign his or her probability, and the bounds are the best he or she can do giviemtiadion available; in

other words, he or she can only describe a sub$gg which contains his or her probability.

On this basis, we can define the upﬁ_g(q) and lowerF,(q) cumulative distribution functions such that

vQqe S,E(q) <K@= F_Q(q) , with F,(q) =N, (-, q]) , and F_Q(q) =I1,(]-,q]) (i.e., the generic sét



in (4)-(6) assumes here the form]ef o, g] ). For the sake of brevity, in the present work the possibility, and

necessity measured, (] -«,q]) and N,(]-«,q]) are indicated with abuse of notation By,(q), and

N, (0), respectively. For further theoretical details, the interested reader may refe}-8d].

Various approaches for constructing possibility distributions have been proposed nigpenttie available

information [25],[40], [41]. In this work, we assume that the only available knowledge on the uncertain

variableQ is constituted by its meaq; , and standard deviation) . In this case, the Chebyshev inequality

can be used to build a possibility distributida]. Such inequality defines a bracketing approximation on the

confidence intervals around the known megnof Q knowing its standard deviatios :
. R 1
P(Q, €lqg, —ac;,q; +ac,]) 21—; for a>1 (7)

The Chebyshev inequality defines a possibility distributitmaj (9;) by considering intervals
[a) — a0}, q) +ao,] asa-cuts of 7, (q;) , and lettingz, (q —ac;) =, (d, +ac;)=1/& . This possibility
distribution defines a probability family which has been proven to contain all distributions withqnesnd

standard deviatiorr;, s-independently from the type of probability distribution, i.e, normal, lognormal,

gamma, symmetric or not, unimodal or not, gtz].

With regard to the three-components case study of Fig. 1, we now assume that the tailjeavai
knowledge is constituted by the means and standard deviations of the componentrisilindities (Table
1), without any information on the type of distribution. The possibilityritistions obtained by using the

Chebyshev inequality are shown in Fig. 4 a, b, and c.

Fig. 4 d, e, and f show the possibility, and necessity measﬂgje(qj) , and NQJ (q,) obtained from the
corresponding possibility distributiorstj (g,) of Fig. 4 a, b, and ¢ by using)(4and (5) respectively. In
details, for a given valu€; of Q,, the possibility measurel, (g,) takes the maximum value me] a;)

for any g; <q;, whereas the necessity measure takes the minimum value(gtqga foranyq; >q;.



Fig. 4 a, b, and c also report the CDIFQ§(qj) of the component unreliabilities considered in Section 2
for j=A, B, C. In this respect, notice thaﬁ:Qj (qj)e[NQj(qj),qu (¢;)], for everyj=A, B, C. This result
confirms that the CDFSFQ]_ (9;) belong to the corresponding famil?(ﬂQj) of all the probability
distributions that are upper bounded by the possibility meaﬂgje(qj), and lower bounded by the

necessity measurbl,, (g)).
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Fig. 4. a,b,c: possibility distributions of the unreliabilities of the components A,B, and C, respectively. d,e,f: possibility (dashed

lines), and necessity (dotted lines) measures of the corresponding component unreliabilities. The continuous lines refers to the

CDF of the component unreliability obtained in Section 2 in the probabilistic framework. The scales of the abscissas of a and b
are different from that used in c.

3.2 Possibilistic representation of uncertainty in component Birnbaum IMs

To propagate the epistemic uncertainty from the component unreliabilities onto thenemnhimportance

measures, the fuzzy extension principle is used [29]. In practice, the following steps arequerfor



1. Select a value ob on [0,1], and take as the interval of possible values of the reliedbilitf the
components the CL[%, 6j]a ={ql ﬂQj(qj) >a , j=A B, C. For example, ifz=1, then the 1-cut of the
distributions 74, (d,), and 74 (Qg) are  [Q, Ql.. :[9.98(3’3 ,19.7@] , and
[Q., Ql.. =[5.00e’3 ,14.8?5’] , respectively (Fig. 4 a, and.b

2. For every component of the vectSr, compute the smallest, and largest values of the fungtj¢Q)
encoding the relationships between the failure probabilities and the Birnbaumtiijah component
(denoted by& 'j , and g_J'a’B , respectively), when the elements@f range within the intervalﬁg, Q_j]a ;

that is, calculate

g, = inf g,Q) (8)

s 1adeal

B

g,, = sup g, Q) 9)
16 <lQ.Q .

These results are the lower, and upper bounds, respectively, af-dhe of the possibility

diStI’ibUtiOﬂSﬂ'ljB (i),j=A.B,C.

For example, with reference to the compor@aind (3), we have

0. = inf g.(Q= _inf 1-QQ,=1-19.7+14.8°= 0.9997
—a=1  1,6€Q.Qlum daq| 9.98¢° ,19.76
gse| 5.0063 ,14.3’%

— B

Oe,,= SWp 0.(Q= sup 1-QQ,=1 998 508°= 0.999

1,6 €[Q,Q loa dae|9.986° ,19.76
dg e 5.006° 14,873

3. Repeat steps 1-2 for another value:of

4. Build the possibility, and necessity measufé, (i7) , and N , (iy’) of the IMs |7 using (4, and (5).
J ]

Fig. 3 a, b, and ¢ show the obtained possibility and necessity measures in the considered example.



3.3 Components Importance Ranking

In this section, we present a procedure for ranking the possibility disbrisutiepresenting the
uncertainty in the BirnbaurtM of the system components. If, for example, we consider the possibility and
necessity measures of componehts8, C, Figs. 3 a, b, and ¢ show that the upper limit (possibility measure)
of the probability that the importance of compon€ns smaller than 0.9 is 0, whereas the lower limit of the
probabilities that the importance of componekiandB are larger than 0.06 is 0. Thus, in this case one can

conclude that compone@tis certainly more important than componetizndB.

On the other side, ranking the IMs of componéngndB is not straightforward, as their possibility and
necessity measures overlap. This case calls for the development of a gensgdunerdo rank the
possibilistic IMs of the components. To this aim, the ranking procedure discussedimtfi@probabilistic
frameworkis modified to take into account that the IMs are not represented by probabilitgutistrs but
by families of probability distributions whose upper, and lower bounds are theilityssalnd necessity
measures, respectively. The procedure proposed in this work for the rankimg Idfs is based on the

following steps.

1. Compute the possibility distributions,_(&,) of the variablez, =2, (17,17), defined as

1if 12-12>0
= (15,18 = ko o's 10
ks(k s) { O Oth . ( )

This calculation requires one to repeat the following steps for different valugn tie range [0,1].

1.1. Select a value o, and identify the bounds of thecut of the possibility distributions,_(J) ,

k#s, of the variablesA, =172 —12 which represent the differences between the IMs of the

_|SB

components. These values are giver{§y* —g. . g_k'f —g.” 1. In the example of Fig. 1, K=A,

—B
A

and s=C, then 7, (J,.) =1 for 5,. ranging within the interval[g_Af\:l_g_Ci, a9 ]

1

=[0.00320-0.99995,0.01420-0.99970]=[-0.9950,-0.9860] (in Fig. 3, these values are the smallest

values ofA,. in whichI1, _(5,.)=1, and the largest in which, _(J,.)=0, respectively).



1.2. Identify the a-cut of 7. _(§) for everyk, s, k#s; in this regard, notice that. (0)=a if

%f —g_sf <0, and 7, (D)=« if 5':8 —9':5 >0. In the reference example, we can see that the
possibility 7., _(0) that=,.=0is 1, whereag.,_(1)=0.
2. Considering the lower threshol@ defined in Section 2,1the relation order between the IMs of
component& ands is established on the basis of the following criteria.
i. If z._(0)<T, then componeritis more important thas
i. If 7._(1)<T,, then componergis more important thak

iii. Component& ands are equally important in the other cases.

These criteria are justified by the following considerations.

o 7. (&) =1 for at least one out of the two values&f (i.e., 0 and 1), being the distributions,_

normalized (i.e., there must be at least one point of the Universe of Discdoi3gifi which the
distribution reaches 1). Thus, it is not possible that both the above conditions i arel i

contemporarily verified.
e Letus consider a case in whigh_(0)=0.2, andz._(1)=1. Equations (4) and (5) allow stating that
o N, (0)=0 and 1. (0)=02, which can be probabilistically interpreted as
0<P, _(0)=P(7<1%)<II,_(0)=02 and
o N, (1)=0.8, and I ()=1, which can be probabilistically interpreted as
08<P,_()=P(; 1)), _(1)=1

To sum up, the probability that componé&ris more important than componesiies in the interval
[0.8,1], whereas the probability of the opposite case is a value between 0 and 0.2. weatios sih

which we are confident of the relevancekofith respect t, it is reasonable to decide in favor of

componenk.

According to the proposed criteria, the result of the comparison of thetanperof two componentk,

and s, does not depend on the order in which they are considered because the possihttityiahistr



7. (&) of the variableZ, =17 —12 corresponds to the possibility distribution., of =, =17 -1/

evaluated in-¢, i.e., 7o, and 7., are symmetric with respect to the ordinate axis [44]. Thus, as it is shown

in Fig. 5 if componentk results more important than componentcomputing the distribution of

« =17 —12, then componerg always results less important than comporkecwmputing the distribution

~ _ B B
of 5, =18-12.

16 x— 7B
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Fig. 5. Possibility distributions of the IMs of two generic components k and s, and corresponding possibility distributions of the

—

variables =

=121 and E =12 -12.

The results of the application of the proposed procedure to the Birnbaum thks thfee components
A, B, andC of Fig. 1 are reported in Fig. 6. Fig. 6. Comporémtrns out to be the most important, whereas
componentsA and B are equally important. Té final ranking is different from that obtained in the
probabilistic framework (Section 2.1), where comporieigt judged more important than componAant his
result is due to the fact that in the probabilistic framework the analgasés on one out of the infinite
probability distributions encompassed by a possibility distribution. Thus, as expdwefinal ranking
derived from the uncertain IMs depends on the information available: if the analgsebdhat resorting to

the probability theory framework is justified, then he or she will be capalalssesing that compondhis

more important than componefst whereas, in the opposite case, if the analyst is not able to speiifjjea s



probability distribution but prefers to use a possibility distribution, then he or she has not enoughtioh
to conclude that one component is more important than the other.
Analogously to the probabilistic case, if we consider the problem of ranking the amp®rof three

generic componentg, k, s, one may obtain a contradictory ranking which does not obey the transitive

property‘if 1°>17 and 12 >12, then IJ.B> ISB’. However, as in the probabilistic framework, setting

smaller than 1/3 allows avoiding the contradictory ranking wfth- 172, 12 >12, and1? > I ?, but can lead

s ! s !

to undesirable situations in which® > 17, 12>12, and 17 =17, or similarly, 17 >17, 12 =12, and

|7 =12 (see the Appendix for the mathematical details). These situations are addressed by #satithing

three components have the same ranking.lig=17 =1

In the case in which the system is made by several components, a sortingralgeeds to be used to
automatically order the components according to their importance. To this aim, a mdralggrithms can
be found in the literature, which have different computational complexities, mamage strategies, etc.
[23], [45]. They usually sort the component IMs by performing a limited number thfegiossible pairwise

comparisons. However, whichever is the sorting algorithm chosen to arrangentpenents’ IMs in

ascending order, it needs to be modified to address the case, previously outliiedhin® > 17, 1°>12,

and 1’ =17, which may lead to different rankings depending on which pairwise comparisons are performed.

For example, if the ranking algorithm compajr@gth k, andk with s, but it does not compayjewith s, it will

produce a ranking WitHjB > 12 >12; whereas, if it compargswith k, andj with s, but notk with s, it will
rank | JB = ISB > IkB. To avoid that the obtained final rank depends from which comparisons are made by the

ranking algorithm, it is necessary to apply to the components ranking proposed by titgeadgaiithm an
additional control procedure which checks whether equally important components ocoeigntgbsitions

in the ranking. In this situation, the final ranking is correspondingly modifjedssigning the same rank to

all the involved components. The Appendix describes one of the most used sorting algaiththe i
Quicksort algorithnj23], and proposes a control procedure to verify whether equally important components

occupy different positions in the ranking.
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Fig. 6. Comparison of the Importance measures: possibility distributions of the variables Z,; k, j=A, B, C, and k#j.

4 Industrial case study: Auxiliary Feedwater System

Let us consider an AFWS of a Pressurized Water Reactor (PWR) whose simplifigiliReBlock
Diagram (RBD) is reported in Fig. 7. The case study is taken from [18], where it is assumed that

a) all components are in standby mode,

b) all components are periodically tested, and

c) the componentsunavailabilitiesQ; are affected by epistemic uncertainties which are described by

lognormal probability distributions.

In this work, instead of assumpti@nwe consider a case in which the only available knowledge o the
values is constituted by their mean and standard deviation @abke ) without any information on the
type of probability distributions. To allow a comparison with a probabilisticageh, the values in Table |l
correspond to the mean and standard deviations of the lognormal distrbusied in [18] to represent the

uncertainty in th&; values within a probabilistic approach.

Fig. 7. RBD of the AFWS system [18].



Table I

Failure data for the components of the AFWS [18]

Component .
Mean unavailabilityd Standard deviatior,
Name
A 9,963E05 1,787E05
B 9,963E05 1,7875E05
C 70.22E-05 17.750E-05
D 70.22E-05 17.750E-05
E 70.22E-05 17.750E-05
F 70.22E-05 17.750E-05
G 5,129E05 1,762E05
H 4,080E05 1,740E05
| 0,07088 0,01705
J 0,07088 0,01705
K 0,02458 0,001735
L 23.72E-05 8,875e05
M 0,10858 0,053250
N 3,9778E05 1,7875E05

The uncertainties in theomponents’ unavailabilities Q,,...,Q, are propagated by the procedure

illustrated in Section 3.2, and the possibility and necessity measuBasilohum IMs of the components are
obtained (Fig. 8). As expected, the largest Birnbaum IM is assigned to compbreéhith is a single point
failure (i.e., its failure results in the loss of AWFS functionality), and thus teeah\AWFS reliability is
strongly sensitive to the improvement of the reliability of this component.

Because the AFWS has a large number of components, the Quicksort algorithm has been used to
automatically order the components on the basis of their importance. Tables IM egyubrt two different
rankings obtained by applying the Quicksort algorithm with two different isiétiings. According to Table

I, there is a first group of elementBCDE) whose IMs are sensibly smaller than those of the components
of the second groupABIIM). Another groupGHK) of components with similar importance values has been
identified; these are less important tharfthe second most important component), which is sensibly less
important thanN. Differently, in the case of the Quicksort execution reported in Thblethe direct

comparison between the Birnbaum IMs of compon&néndl is performed, and the two components turn



out to be equdl important; this result leads to assigning the same importance to the comgoBdrtd1 G

H K.

Table Il

Ranking of the components' IMs obtained in the first execution of the Quicksort algorithm, and confirmed after applying the

procedure to verify whether equally important components occupy different positions (possibilistic framework)

FDCE ABIJM GHK L N

Table IV

Ranking of the components' IMs obtained in the second execution of the Quicksort algorithm (possibility theory framework)

FDCE ABIJMGHK L N

To avoid such instability of the importance ranking, according to the procedunebddsim the

Appendix, all the possible comparisons between the components of the system under gtedpraned

(TableV). In the case of Tabl#, the components’ ranking is modified to take into account that 12 =17,

and the final ranking becomes that of TaMe whereas in the second run of the Quicksort algorithm (Table

IV), the proposed ranking derot need to be modified.
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Fig. 8. Possibility, and necessity measures of the components' Birnbaum IMs (reported in different scales.). The continuous line

refers to the CDFs obtained in the probabilistic case[14].

Tablev

Results of the comparisons between the Birnbaum IMs of the components of the AFWS, according to the ranking criterion
discussed in Section 3.3. The symbols in the matrix describe the relation order between the elements in the rows and those in
the columns. For example, the < symbol in the first row, fifth column states that component F is less important than component
B.
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Table reports the results obtained in [19] applying the probabilistic approdeé sarme case study. The
main difference is that the probabilistic approach results in fewer cases pbrems with the same
importance because the CDFs of thenponents’ important measures appear to be more clearly separated
than are the necessity and possibility measures in the possibilistic approach.



Table VI

Final ranking of the components' IMs (probabilistic framework).
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With regards to the computational times, when the epistemic uncertainties arbedebgrimeans of
possibility distributions, then the application of the propagation techniq@eQuicksort algorithm, and the
procedure to verify whether equally important components occupy different positibiesranking take few
seconds. On the contrary, the time required to carry out the same analysis hatiprolability theory
framework is around 20 minutes, with most of the time dedicated to the uncertaintyapi@patep. This
result is due to the fact that uncertainty propagation is performed in theilgigsitase by using the fuzzy
extension principle which requires only to apply simple rules of intatgabra, whereas in the probabilistic

caseit is necessary to resort to MC simulation because analytical approaches are iaigeactic

5 Conclusions

In this work, a procedure has been proposed for ranking system components in order ahgaport
when their failure probabilities are poorly known, and the related uncestaanrte described by possibility
distributions. The ranking procedure is basediprthe use of the fuzzy extension principle to propagate
epistemic uncertainty from the system parameters to the component importanceesegspairwise
comparisons of the obtained component importance measuredi,i)atiee application of the Quicksort

algorithm. Because the method used to compare the Birnbaum importance of three generic corkpgnents,
j may lead to a ranking which can be partially contradictdr§f £ 17 and I’ >17, but 1> <I1Z) a

procedure to verify whether equally important components occupy different positions in the ranking has been

proposed.

The application of the proposed procedure has shown several results.



¢ We find the relevance of taking into account uncertainties in the computattbe &¥ls, and
the fact that the possibility distributions allow to represent the undéegiim a way less
committed than that offered by the probability theory.

¢ The final ranking may depend on the investigation framework used to carry out thesanalysi
which is mainly established on the basis of the quality and quantity of available data. In general,
the probabilistic representation and propagation of the uncertainty allows ge¢ @omore
refined final ranking, but it calls for a larger amount of available data and auwmurate

information (which may be lacking in real industrial applications).

The proposed procedure has been applied in this work to rank the components on thetbagis of
Birnbaum IMs, but it can be easily extended to other IMs (e.g., the Risk RedWgtrth, RRW, Risk
Achievement Worth, RAW, Fussel-Vesely, FV). Notice, however, that the propagstite epistemic
uncertainty from theystem parameters to the components’ importance measure by using the fuzzy extension
principle can become computationally more challenging when the importance measefiaed through
relationships more complex than those of Birnbaum IM, and which require one to perfimiondibetween
uncertain quantities. Furthermore, the larger the complexity of the systenmeassbttiated number of basic

events, the larger is expected to be the computational time required to perform the ranking.
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Appendix

Contradictory ranking (probabilistic framework)

Let us consider a case in which we have to rank the importance of three companBngsidC. We have

P >15)>1-T,, and P(I¢ >15)>1-T,. According to the decision criterion of Section 2.1, these



inequalities entaill ; > 12, and IZ >1Z. To avoid the contradictory inequality’ > I, we have to prove

that P(1S > 15)<1-T,.

To this aim, notice thaP(1g >17)<1-T, < 1-P(;>18)<1-T, < P(7 >12)>T,. Then, to prove that

the contradictory inequality is not possible, we have to showRfigt> 1) >T,. Notice also that

PUE<IE)2P(IE <1218 <15) 1)

because the event on the right-hand side of the equation only introduces amaddimnstraint onl S,

which is not considered in the left-hand side.
According to de Morgan’s laws,

PUS<IZ e <1)=1-P(UZ>12)-PUg>I)+PUE>I15>1}) (12)
Notice that because bof(IS > 15) and P(I$ > 17) are smaller thail, (by hypothesis), we obtain that

PUS<I)>1-2T +P(UZ>15>17) (13)

To verify that the conditiod— 2T, + P(IZ > 15 > 17)>T,, which avoids the contradictory sequer¢e> |

12>12, and Ig > 1} is verified, it is required thal, <1/3, whatever is the value d?(I1g > 15 >15) (in
[0,1]).
Contradictory ranking (possibilistic framework)

Suppose thar-, (0)<T, and Tz, (0)<T,, which entailll_, (0)<T;, and I, (0)<T, (from (4) and (»
respectively). On this basis, according to the criterion propounded in Se@ioveXan state thalt® is
larger thanl >, and 1/} is larger thanl [ . To avoid the inequality ° > 12, in this case we have to show that
7. (0)>T,.

Considering the probabilistic interpretation of the possibility distidogt (6), from our hypotheses

7., (0)<T, andz., (0)<T,, we can derive



0<P(7<12)=PR, (0)<II_, (0)<T,

0<P(; <I7)= R, (0)<IL, (0)<T,

Then, given the results showed eariiethis Appendix, we can guarantee thi > > 17) > T, if we
consider a value of, <1/3). This result entails thaf < P(17 <17) <TI;_(0)=7._(0), and thus that
7., (0)>T,.
Ranking algorithm

Quicksort is a divide-and-conquer algorithm which relies on a partition of theemigrbased on a
quantitative indicator of their ‘size’. To partition the elements, it is required to choose one of them as a pivot,
a reference for moving all elements of size smaller before the pivot, and athédenfi size larger after it. In
the resulting iterative partition procedure, the sublists of smaller and Elegeents are recursively sorted.

The pseudo-code of the algorithm can be found in @& [23].

Fig 9 illustrates the application of the Quicksort algorithm in the case sfuBgction 5, when the
components are initially arranged in alphabetical order, and the pivot is chosen asréh@leemént of each
sublist. At the first iteration, the pivot i, and two sublists are created: one containing the components that
are equally or more important than the pivot (right branch, in this casatiinsL andN), and the other
with the less or equally important components (left branch, in this case it indiB&®EFGIJK). Thus,H
takes the third place insteadlgfwhich currently occupies the second position being more importanHthan
Notice that the pairwise comparisons also show tthat equally important tha, although the algorithm
leavesG in its current position. The sublist of more important components is then sorted. Theisompar

betweerN andL shows that the former is more important than the latter.

The less important elements branch contABEDEFGMIJK; its middle element, is chosen as pivot.
The componentdBCDEFIIM are more or equally important th&n In particular, this latter component is
equally important ag, C, andD. With reference to the right sublist (more important compone@t#,the
pivot element, and it swaps its position withthat is, the importance dfis smaller than that o. The

algorithm proceeds as illustrated in Fig. 9


http://en.wikipedia.org/wiki/Algorithm

Once the Quicksort algorithm has been executed, we have to run the control algontarify whether
different rank orders have been assigned to equally important components. Thsdweetb the fact that
the algorithm does not perform all the possible direct comparisons.

In details, we consider thklength vectorX of sorted components (i.e., the output of the Quicksort
algorithm), and the vectdr of the ranking position initially associated to the components (i.e., front)1 to
In the case considered in this appendisFDCEBAIMIGKHLN.

The rationale of the code is that to have a difference in components impodakivey there must be a

column ofthe comparison matrix whose entries are all ‘<’.

We start from setting the ranking orderl, and our first objective is to find the set of the least important
components (i.e., all those components with rarill). Notice that the first component of the list provided by
the sorting algorithm which does not belong to this class is the first componbatlist tharacterized by a
column of the comparison matri@omp (TableV) containing only ‘<’, because this is the only condition
guaranteeing that all the previous components of the Quicksort list are less impootadéentify this
component, we set=2, and check whether thieth column of the comparison matriRomp (TableV)
contains only ‘<’. In the affirmative case, the rank of the componen®s fvbm position 1 td-1issd to 1,

and the rank of componeX({i) is set ta. On the contrary, if columincontains >’ or ‘=", then X(i) andX(1)
must be considered of the same importance, and thus of rank 1, because in X3 saequally important

to at least one of the previous components. The variablapdated té+1, and the procedure is iteratively

repeated by considering the new colunafithe comparison matri@omp.

The pseudo-code of the proposed algorithm follows.

r=1;
i=2;
whilei<=I
Col=i-th column ofComp
V=all(Col=="<’);
If V==
R(ji-1)=r;
r=i;
end
i=i+1;
End

For example, considérl; then X(1)¥. Flowing overX, we find that the Boolean variabié&=1 wheni=5.
Then the first group is made up of the componenté=1:4 of X (that isFDCE), which are of rank=1.
Thenr is set toi=5. The algorithm proceeds upitd, and the final resultiR=[111155555555 13
14].
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Fig. 9. steps of the Quicksort algorithm.
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