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ABSTRACT 
 

This paper extends previous works related to the assessment of 
component degradation, through Markov multi-state physic models. The 
extension includes the evaluation of the effects of uncertain parameters 
in the model and the definition of their importance with respect to their 
influence on the output of the model. Global Sensitivity Analysis (GSA) 
is selected as the technique because able to: 1) consider the simultaneous 
effects of parameters variations and 2) to define importance indexes that 
allow a ranking of the components. GSA requires a large number of 
evaluations for specific points, identified by an appropriate design of 
experiment. To avoid the many costly evaluations, a meta-model is built 
based on polynomial chaos expansion (PCE). A PCE is a multi-
dimensional polynomial approximation of the model with coefficients 
determined by evaluating the model in a reduced set of predetermined 
points. Importance indexes values are then derived directly from the 
PCE. Since in the problem considered, the model provides the time-
dependent behavior of the state probabilities, the importance indexes are 
also functions of time. An application is presented, related to the 
cracking process in an Alloy 82/182 dissimilar metal weld in the primary 
coolant system of a nuclear power plant. 
 
Keywords: Degradation; Global Sensitivity Analysis; Inhomogeneous 
Continuous Time Markov Chain; Multi-state physics model; Parameter 
Uncertainty; Polynomial Chaos Expansion; State-space Enrichment. 

 

I. INTRODUCTION 
 

Multi-state models (MSM) [1]-[4] have been proposed to assess the degradation 

processes of components or systems [5]-[6]. In general, a state-space diagram is used 
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to define the stochastic process of transition among system states which represent a 

range of levels from perfect functioning to complete failure.  

Then, a model is developed and solved to represent the dynamical behavior of the 

probability of being in each state [7]-[8].  In general, transition rates are estimated 

from field data, but “in practice, it can be difficult or even impossible to collect 

relevant data especially for the highly reliable devices” [9].  

Recently, Unwin et al. [10] proposed a multi-state physics modeling approach to 

assess the degradation processes (e.g. crack growth) of components or systems. The 

main idea is to describe the transition rates among states by physic functions rather 

than estimated from service data. As a result transition rates are time-dependent thus 

defining a non-Markovian model. Several approaches have been devised to solve the 

non-Markovian problem, such as state-space enrichment approach [10], stochastic 

Petri net (SPN) [9]-[11] and Monte Carlo simulation [9]. 

In general, the physic functions used to describe transition rates depend on a set of 

parameters or factors. For example the micro-crack initiation transition rate 1, of the 

application considered in Section 5, from initial state S to micro-crack state M is 

defined as:    1

1




btb
 , where  and b are fitting parameters estimated from 

observed data, and possibly subject to uncertainties.  

The existence of uncertainties poses the typical question: What happens to the 

probability of a specific state if parameters have uncertainty? Moreover, which 

parameters affect the output of the model the most? In general, these questions are 

often addressed by analyzing the effect of the variation of a single parameter at a time 

(also known as Once At a Time evaluation) or using Taylor-series based expansions 

[12]. However, to account for the possible effects of interactions among parameters 

(for example between b and  in 1), global sensitivity analysis (GSA) methods are 

 



 

required. GSA is known to consider the effect of a factor while all others are varying 

as well, thus allowing the exploration of the multi-dimensional input space [13] and is 

able to produce indexes that assess the importance of the factors, taking into account 

interactions among them.  

In general, importance indexes are calculated by evaluating the model output (i.e. the 

state probabilities for the case of interest here) at a set of specific points derived using 

random or special sampling techniques from the joint distribution of the space of 

input factors [14].  

GSA methods based on variance decomposition decompose the output variance in 

contributions of each factor (main effects) and possible interactions. GSA has been 

used in many applications (e.g., [15]-[16]). Recently, Rocco and Zio [17] applied 

GSA to assess the importance of transition rates, in homogeneous continuous Markov 

models of power system components. 

The number of model evaluations required for a GSA depends on the number of 

factors in the model and the sample size. The evaluation of the indexes depends on the 

complexity of the model and could require very large computational times. In these 

cases, it is possible to use surrogate or meta-models that approximate the original 

model performance. Several techniques have been suggested to build such meta-

models, like regression models, artificial neural networks or support vector machines, 

among others. 

In this paper, a particular technique named Polynomial Chaos Expansion (PCE) is 

selected to create a meta-model represented by a polynomial of the factors. If the 

factor uncertainties are modeled as random variables with known probability density 

functions, then the coefficients of the resulting polynomial contain “the complete 

 



 

response of the model” [18]. In this way, factor importance indexes can be assessed 

directly from the coefficients of the polynomial decomposition. 

PCE has been used in many areas including GSA [19]-[34]. To our best knowledge it 

has not been used to assess importance indexes in multi-state physics models of 

component degradation. 

In this paper, we extend the use of GSA in Markov models [17] to multi-state physics 

models whose solutions are not known analytically and thus obtained by numerical 

methods. 

Note that multi-state physics models assess the behavior of the system under analysis 

as a function of time. For this reason, in this paper, the PCE of a dynamic system, 

recently suggested in [18] is selected. As a result, a PCE is used at each time in order 

to derive the dynamical behavior of the importance indexes of the factors. 

The presentation of the work is structured in the paper as follows: Section II defines 

the Markov model setting. Section III briefly reviews some SA concepts, while 

Section IV provides a brief introduction to PCE. Section V presents results of 

experimentation and Section 6 presents conclusions and future work. 

 
Acronyms, Notations and Assumptions 
 
Acronyms 
CTMC  : Continuous Time Markov Chain 
DOE  : Design Of Experiment 
gPC  : generalized Polynomial Chaos 
GSA  : Global Sensitivity Analysis 
IM  : Importance Measure 
LHS  : Latin Hypercube Sampling    
OAT  : One factor at A Time 
MSM   : Multi-state models 
PC  : Polynomial Chaos 
PCE  : Polynomial Chaos Expansion 
pdf  : probability density function 
SA  : Sensitivity Analysis 
 
 

 



 

Notation 
 
 vector of random variables 
i  i-th random variable with a pdf defined  
i()  polynomial of the selected basis. 
ai i-th PCE coefficient 
d polynomial degree 
m  number of states 
ni number of integration points 
M +1 Number of coefficients in the PCE 
n   number of random factors 
oq order of the Smolyak algorithm 
P(t) Transient probability vector (P1(t), P2(t), … Pm(t))t 
Pi(t) Transient probability of state i 
Q(t) infinitesimal generator matrix 
qij(t)  transition rate from state i to state j 
Si main order sensitivity IM for factor i 
STi total order sensitivity IM for factor i  
 
 
Assumptions 
 

1. The number of states in the Markov models is finite 

 

II. MARKOV MODELING 

 
The evolution in time of a system which changes state stochastically as its 

components change modes of operation at random times (due to degradation, reduced 

production, failure, repair, etc.) can be mathematically described by a discrete-state, 

continuous-time Markov chain (CTMC) Z={z(t), t  0}, with finite state space 

E={1,2,…, m}.  

Let Q(t) be the m x m infinitesimal generator matrix whose generic element qij(t) 

represents the transition rate from state i to state j (i,jE), qii(t)= ij qij (t), and Pi(t) 

be the probability that the system is in state i at time t. The m-dimensional probability 

vector P(t) is obtained by solving: 

)()()( tQtPtP           (1) 
 
given initial conditions for P(0). 

 



 

 
In general, transition rates can be constant (homogenous Markov Chain) or functions 

of time (non-homogeneous Markov Chain). General techniques for solving Ordinary 

Differential Equations, like Euler or Runge-Kutta methods [35], the special implicit 

method [36] in case of stiff models or uniformization-based algorithms can be used 

for solving (1) [37]. 

 
In some models, as the one of Section 5, some transition rates are functions of the 

holding times in each state. In these cases, the previous general methods can not be 

used directly. As suggested in [9]-[10] one of the possible techniques that can be used 

is the method of state enrichment. Basically the method is based on the “discretization 

of the component lifetime into equally sized time intervals, during each of which the 

transition rate remains constant”. The new enriched state-space is described by the 

original states and the vector of discretized times at each state. For example, given a 

component with 6 original states and a lifetime of 100 years discretized in time steps 

of 0.5 years, the approximation method would generate a transition matrix with 

(6x(100/0.5))2 entries.  

In any case, no matter the solution technique used for solving (1), the numerical 

values of Pi(t) are non-linear functions of the transition rates qij(t) with possible 

interactions among them. To evaluate the influence of transition rate uncertainties on 

Pi(t) would mean to consider the variability in their values and the corresponding 

variability in the model state probabilities output.  It is also of interest to identify, 

through a sensitivity analysis, those transition rates most influential in terms of the 

variations that they induce on the state probabilities when their variability is 

considered.  

 
 

 



 

III. SENSITIVITY ANALYSIS 
 
Sensitivity analysis (SA) is “the study of how uncertainty in the output of a model 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the 

model input factors” X=(x1, x2, …., xn), n being the number of factors  in the model 

[14]. 

Global sensitivity analysis (GSA) considers the exploration of the multi-

dimensional input space [13] and is able to determine the effect of a factor while all 

others are varying as well. Some of the methods developed, such as Fourier 

Amplitude Sensitivity Technique (FAST), extended FAST [14] provide a numerical 

assessment of the importance of each the factor and are able to consider and quantify 

the interaction among them.  

In this paper, variance-based sensitivity indexes are evaluated. The main idea 

is to decompose the variance of an output as a function of the main effects of each 

factor and possible interactions. 

 
Let Y = f(x1, x2, ..., xn), be a scalar output and xi the n orthogonal input factors treated 

as random variables (i.e. uncertainty is characterized in terms of a probability density 

function (pdf)). The variance V(Y) of the output Y can be written as [14]: 

 


 
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where: 
 ii XYEVV   is the main effect (or first-order term) due to xi, 

   jijiij VVXXYEVV  ,  is the two-way interaction between xi and xj, and so on. 

 
Main and total order sensitivity indexes can then be defined as [14],[38]: 
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where X-i = {x1, x2,…xi-1, xi+1, ...xn) and E-i(Y│xi) is the expected value of Y 

conditioned on xi, thus being a function of factor xi alone. The final expression in (4) 

is derived from the fact that, given two random variables A and B: 

    BAEVBAEAV )(  [14]. 

The main index Si is the fraction of variance of the output V(Y) that can be attributed 

to xi alone, while STi corresponds to the fraction of V(Y) that can be attributed to xi 

including all its interactions with other factors [14]. For example, in the case of 3 

factors x1, x2 and x3: ST1= S1+ S12+ S13. 

That means that “the computation of total sensitivity indices is a shortcut to measure 

the overall effect of “main effect” and all higher order interactions” [13].   

 
The main index Si is the measure to be used to determine which subset of 

parameters accounts for most of the output uncertainty [38], while STi must be used as 

a screening tool for identifying the subset of non-influential factors, i.e. factors that 

when fixed to any value within their uncertainty range, do not significantly reduce the 

output variance [38]. The difference (STi-Si) assesses the interaction effects of a factor. 

The estimation of Si and STi are approximated by assuming independence 

among factors and using random or special sampling techniques (e.g., Monte Carlo 

simulation based on Latin Hypercube Sampling (LHS) approach from the joint 

distribution of the space of input factors). Techniques such as Sobol or extended 

FAST could be used to determine Si and STi [14].  One of the main disadvantages of 

this approach is that it requires several model evaluations and, thus, can be 

computationally time consuming. For example, the "extended-FAST" method [39] 

used to estimate first-order and total indices for all the n factors of a model, has a total 

 



 

computational cost of (ns x n) model evaluations, where ns is an integer (that can vary 

“from a few hundreds to a few thousands” [40]) representing the sample size selected 

and depends on the convergence properties of the sensitivity indexes. Thus, 

depending on the number of factors and the computational complexity of the model, 

the technique could require very large computational times.   

 

IV. POLYNOMIAL CHAOS EXPANSION 
 
A. Introduction 
 
The basic idea of PCE is to approximate the outputs of a system (e.g., state 

probabilities in our case) through an orthonormal polynomial basis in the uncertain 

parameter spaces (e.g., transition rates). Wiener [41] was the first to propose the use 

of Polynomial Chaos (PC), when parameters follow a Gaussian distribution. In this 

case, the basis is defined through Hermite polynomials. However, this limitation was 

extended to generalized polynomial chaos (gPC), which is able to consider more 

distributions [42]. Recently [30] defines the arbitrary polynomial chaos (aPC), which 

generalizes PC and is able to accommodate arbitrary distributions or distributions 

known with a few statistical moments. 

Let =[1,…, n] define the vector of n random input factors and ()=f() a second-

order with finite variance model output. PC theory [42] shows that the spectral 

expansion the model output () can be expanded as: 

 

()=          (5) 



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0
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where: 
 ai are the coefficients of the expansion 
i are random variables with a pdf defined  
i() are polynomials of the selected basis.  
 

 



 

The polynomial basis is selected based on the pdf of i. As an example, if i are 

standard normal random variables, then the basis is defined as multivariate Hermite 

polynomials. Table 1 shows the type of distribution and the associated polynomials as 

suggested in the Wiener-Askey scheme [42]. 

Table 1: Relation between probability distribution and polynomial basis 

based on the Wiener-Askey scheme [42] 

 For example, if  is a standard normal random variable, the Hermite polynomials up 

to third order are: 

 
k Hk() 
0 1 
1  
2 -1+2 
3 -3+3 

 
 
For practical purpose, the infinite series in (2) is limited to a finite number of terms 

M+1 which depends on n, the number of random variables of the model and on the 

selected polynomial degree d: 
!!

)!(
1

dn

dn
M


  [18]. For example, if n=2 and d=3, 

then M+1=10. 

 
The multivariate polynomial i() is given by the tensor product of the corresponding 

one dimensional selected polynomial [18]. For example, if 1 and 2 are standard 

normal random variables, the 10 terms of the PCE expansion for (1,2) up to third 

order is given by [43]: 
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The terms ai are unknown and must be determined. There are two approaches for their 

evaluation: the first is based on the modification of the model () and its solution 

(intrusive approach) while the second does not require any modification of the model 

equations (non-intrusive approach). In the latter approach, the terms are estimated 

from the evaluation of the model under study in a set of selected samples of the 

random vector . In our case, the set of differential equations (1) is solved, based on a 

set of transition rate deviates. 

 
Two techniques are described in the literature for the non-intrusive approach. The first 

(regression method) is based on the optimization of the mean-square difference 

between the model and the approximation [24]. The optimization is performed on a 

set of N=2(M+1) samples j and its corresponding evaluation (j). The second 

technique is based on projection methods which exploit the orthogonality properties 

of the PC basis. In fact, by evaluating the inner product of the PC expansion (equation 

(2)) with l(): 

(), l()  )(),( 11

0

nlni

M

i
i ,...,ξξ,...,ξξa 



      (6) 

where , is the inner product in the Hilbert space, and taking into account the 

orthogonality of the basis, the coefficients can be obtained as [18]: 
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The numerator in (4) is computed as: 

 
d
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where h(1,…, n) is the joint probability density function of . 

 



 

As mentioned in [18], the coefficients could be obtained by solving up to (M+1) 

multidimensional integrals (5). However, the integrals are numerically approximated 

by evaluating (j) in a set of selected ni integration points j (j=1,..,ni), using the 

following general expression [18]: 
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where w(j) are specific weights. This means that the computational cost for 

determining the polynomial coefficients are proportional to the number of integration 

points ni.  

There are two approaches to solve the multidimensional integrals: Deterministic and 

Probabilistic algorithms [44]. The first ones are based on high order interpolation 

schemes. For example, the Smolyak algorithm [45] of order oq uses an interpolation 

approach by evaluating polynomials from lower dimensions to higher order at 

selected points. Figure 1 shows the set of points generated by the algorithm for d = 2 

and oq=4 (33 points) and oq=6 (65 points). Note that the set of points for oq =4 is 

included in the set of points for oq =6. 

The second, like Monte Carlo methods, uses random samples. In both approaches, the 

convergence of the integrals depends on the smoothness of the model under analysis 

[25]. 

As suggested in [25], the Smolyak approach is, in general, a convenient method when 

the number of factors is less than 15, while Monte Carlo methods are “best suited for 

higher dimensional problems”. In this paper, the Petras-technique [45], a special 

Smolyak-based method is used, as implemented in the Scilab toolbox NISP [46]. 

 

After determining the coefficients, the polynomial meta-model is already defined. As 

shown in [24] and [25] sensitivity indexes for all factors, including Si and STi are 

 



 

evaluated analytically from the polynomial coefficients. So the computational cost for 

deriving them corresponds basically to the cost required to evaluate numerically a set 

of multidimensional integrals. 

  
B. PCE for dynamical systems 
 
The PCE of dynamical systems has been recently proposed in [18]. Since the output 

of the model is a function of time, the PCE is based on coefficients that also vary as a 

function of time. This means that at each time instant a set of parameters are required.  

If =f(,t) then [18]: 

(,t)           (10) 



M
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As in the previous subsection, each time the variance decomposition is performed 

analytically from the polynomial coefficients, all sensitivity indexes are determined 

for each parameter in the model.  

Based on the two-step procedure proposed in [18], the following approach is defined: 

1. Based on the parameter distribution, select the corresponding polynomial 
type 

2. Define the polynomial degree d 
3. Calculate M+1  
4. For t=0 until a specific time limit tmax 

{ 
5. Estimate the PC coefficients  
6. Calculate sensitivity indexes for each parameter 
} 

 
In step 2, the selection of the appropriate degree d could be done iteratively, that is, 

trying different values for d and evaluating the average relative error between the 

model output and the PCE approximation [18].  

 



 

V. EXAMPLE: A NUCLEAR COMPONENT UNDERGOING STRESS 
CORROSION CRACKING 

 
This example refers to the cracking process in an Alloy 82/182 dissimilar metal weld 

in a primary coolant system of a nuclear power plant, previously analyzed by [9]-[10] 

using a multi-state physics model. Figure 2 shows the six-state transition diagram 

model.  

Figure 2: Transition diagram of the multi-state physics model of crack 

development in Alloy 82/182 dissimilar metal welds [9] 

Transition rates among states are defined as: 1 is the micro-crack initiation transition 

rate, 2, 3 and 4 are crack growth transition rates, 5 and 6  are transition rates that 

lead to ruptures, 1, 2, 3 and 4 are transition rates associated with detection/repair 

at the different states. In [10], the transition rates 1, 2 3 and 4 are time-dependent 

and/or stochastic, whereas the others are assumed constant.  

An interesting fact in this example is that some transition rates depend on the time the 

system is in a particular state. For example, the transition rate 2 (between state M and 

D) describes the transitions from micro-crack state M to radial-crack state D and is 

defined as a function of u, the time of crack initiation. 

The expressions for transition rates 1, 2 3 and 4 are presented in Table 2. As 

shown in Table 2, the transition rates are function of a set of 14 factors (i.e., n=14) 

whose base values are shown in Table 3.  

Table 2: Expressions for transitions rates 1, 2 3 and 4 

Table 3:  Parameter definition and base value 

Figure 3 shows the time-dependent behavior of Pi(t) for each state, computed using 

the state enrichment method for a component lifetime tmax=80 years and a time step of 

1 year [9].  

 



 

Figure 2: Transient behavior for Pi(t), base case [9] 

As observed in [9], “1) there is an early, rapid transition from the Initial state to the 

Micro-crack state; 2) there is a monotonic increase in the probability of the Rupture 

state”. In the time span 5-20 years it is possible to detect a transient behavior. 

For the importance indexes assessment, a  10 % variation on base values is assumed 

described by uniform distributions. Importance sensitivity indexes are derived using 

the PCE approach, based on a Legendre polynomial basis as suggested from Table 1. 

Note that each factor must be mapped on the interval [-1,1]. 

In this paper, a non-intrusive approach is selected: State probabilities Pi(t) are 

evaluated using the state enrichment method as the “black-box” model. The PCE as 

well as the sensitivity indexes are evaluated using the Scilab toolbox NISP [46] and a 

Smolyak integration technique is selected based on Petras integration points [45].  

As suggested in [18], different values for d were selected and the average relative 

error between the model output and the PCE approximation were evaluated. For d=3 

the PCE is considered sufficient since the maximum error is less than 6.2%, as shown 

in Figure 4. In this case, the number of models evaluations is equal to 3361 [47] and 

the PCE expansion has 681 terms. 

 
Figures 5-7 show the time-dependent behavior of Si, STi along with the value of (STi - 

Si) for each factor considered and for each state probability. The title in each figure is 

coded as:  sx PETRAS yy z-ww, 

where:  

x is the state considered 
yy is the type of index presented 
z is the polynomial degree 
ww is the number of model evaluations 
(PETRAS stands for the option selected in NISP [46] for the determination of the ni 
integration points) 
 

 



 

Let us consider the time-dependent behavior of the sensitivity indexes related to the 

initial state S (state 1). As mentioned in Section C, Si is used to determine which 

parameters account for most of the output uncertainty, STi is used for identifying the 

non-influential factors, and (STi-Si) for quantifying interaction effects. To perform the 

analysis the following criterion was used: if Si or STi or (STi-Si) < 0.1 then the 

corresponding index is not considered.  

The analysis reveals: 

1) Top left panel in Figures 5: During the component lifetime, parameter  
accounts for most of the output uncertainty. However in the time span 8-10 
parameter aC accounts for most of the output. For t > 20,  and 1 are the most 
important parameters. 

2) Top left panel in Figures 6: Several parameters have low STi values, indicating 
that they are non-influential factors 

3) Top left panel in Figure 7: The index (STi-Si) reflects the interaction effects 
between a factor and all the others. In general the index is small (i.e., STiSi) 
during the component lifetime. However in the time span 5-10, there are 
interactions between  and the rest of the parameters. 

 
A similar analysis can performed for the other states. In general, the importance of 

each factor is dependent not only on the state considered but also at what time is 

evaluated.  

The index Si  0.1 is used to determine which parameters account for most of the 

output uncertainty. Table 3 shows the important factors for each probability state 

during the time-span simulated.  

 

CONCLUSIONS 

The output of a model depends on the input parameters. In many situations, inputs are 

not precisely known because subject to uncertainty. It is important to know how 

uncertainty in the parameters affects the results of the model. Such assessment is 

possible using global sensitivity analysis, an approach able to analyze the variance of 

the output and determine the individual effects of each parameter (factor) as well as 

 



 

the possible interactions among them. In practice, global sensitivity analysis requires 

many evaluations of the model which may pose a problem of computation time. In 

order to reduce the computation burden, a surrogate model can be constructed. 

 
This paper presents a hybrid approach for evaluating the importance of uncertainty 

factors in multi-state physics models of component degradation.  

The original contributions of the paper are : a) the assessment of the effects of 

uncertain parameters in a Markov multi-state physics model of component 

degradation and of their importance with respect to the model output  by using GSA; 

and b) the use of Polynomial Chaos Expansion to derive an efficient meta-model for 

coping with the computational cost of the analysis. 

An example is presented related to a cracking process described by a six-state Markov 

model with 14 uncertain factors, The meta-model is based on a PCE of third order 

whose coefficients are determined using only 3341 model evaluations. The meta-

model is able to mimic the dynamic behavior of the degradation state probabilities, 

with a maximum average relative error less than 6.2 %. The sensitivity indexes for 

each state reveal that the ranking of importance is time-varying and each state has its 

own set of important factors.  

Future works aim to test some approaches for: 1) reducing the number of evaluations 

without affecting the accuracy of the expansion, for example, through an initial 

screening approach, as the one suggested in [24]; 2) evaluating the effects of different 

probability distributions associated to the uncertain factors; 3) considering the 

robustness of the importance indexes when modeling dependencies among factors; 

and 4) The convenience of using an integrated importance index able to consider 

simultaneously the effects of one factor in several outputs. 
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Figure 1: 2D Smolyak points: a) oq = 4; b) oq =6  
Figure 2: Transition diagram of the multi-state physics model of crack development in 
Alloy 82/182 dissimilar metal welds [9] 
Figure 3: Time-dependent behavior for Pi(t), base case [9]  
Figure 4: Error between the model output and the PCE approximation, using d=3 
Figure 5: Time-dependent behavior for Si, for states 1:initial; 2:microcrack; 
3:circumferential; 4:radial; 5:leak;6:rupture 
Figure 6: Time-dependent behavior for STi, for states 1:initial; 2:microcrack; 
3:circumferential; 4:radial; 5:leak;6:rupture  
Figure 7: Time-dependent behavior for STi-Si, for states 1:initial; 2:microcrack; 
3:circumferential; 4:radial; 5:leak;6:rupture 
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Figure 1: 2D Smolyak points: a) oq = 4; b) oq =6  
 

 

 
 
Figure 2: Transition diagram of the multi-state physics model of crack development in 

Alloy 82/182 dissimilar metal welds [9] 
 

 



 

  
Figure 3: Time-dependent behavior for Pi(t), base case [9] 

 

 
Figure 4: Error between the model output and the PCE approximation, using d=3 

 



 

 
 

  

  

  
 

Figure 5: Time-dependent behavior for Si, for states 1: initial; 2:microcrack; 
3:circumferential; 4:radial; 5:leak;6:rupture 

 



 

  

 

 
 

Figure 6: Time-dependent behavior for STi for states 1: initial; 2:microcrack; 
3:circumferential; 4:radial; 5:leak;6:rupture 

   
   

 



 

 
      

  

  

  
 

Figure 7: Time-dependent behavior for (STi-Si) for states 1: initial; 2:microcrack; 
3:circumferential; 4:radial; 5:leak;6:rupture 
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Table 1: Relation between probability distribution and polynomial basis  
based on the Wiener-Askey scheme [42] 

 
Distribution Polynomials Support 

Gaussian Hermite  
Uniform Legendre [-1,1] 
Gamma Laguerre [0,[ 

Beta Jacobi [-1,1] 
Poisson Charlier {0,1,…} 

Negative Binomial Miexner {0,1,…} 
Binomial Krawtchouk {0,1,…N} 

Hypergeometric Hahn {0,1,…N} 
 
 

Table 2: Expressions for transitions rates 1, 2, 3 and 4 

 
Transition rate Expression 
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Table 3:  Parameter definition and base value 

 
Parameter Definition Base value 

b Weibull shape parameter for crack initiation model 2.0 
 Weibull scale parameter for crack initiation model 4 years 
aD Crack length threshold for radial macro-crack 10 mm 
PD Probability that micro-crack evolves as radial crack 0.009 
aM Maximum credible crack growth rate 9.46 mm/yr 
aC Crack length threshold for circumferential macro-crack 10 mm 

PC 
Probability that micro-crack evolves as circumferential 
crack 

0.001 

aL Crack length threshold for leak 20 mm 
1 Repair transition rate from micro-crack 1 x10-3 /yr 
2 Repair transition rate from radial macro-crack 2 x10-2 /yr 
3 Repair transition rate from circumferential macro-crack 2 x10-2 /yr 
4 Repair transition rate from leak 8 x10-1 /yr 
5 Leak to rupture transition rate 2x10-2 /yr 
6 Macro-crack to rupture transition rate 1x10-5 /yr 

 
Table 4 Important Parameters using a PCE with d=3  

 
State Parameters  

1 b  aC 1 aD -- 
2  b aC aL aD 1 
3 aC aL aD aM -- -- 
4 -- -- -- -- -- -- 
5 aC aD aM 1 -- -- 
6 aC -- -- -- -- -- 
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