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Abstract— This paper deals with the modeling of the gas flow
supplied to a boiler in order to implement a soft sensor. This
study is a part of ANR CHIC project which has an aim to
minimize the measuring chain cost in the energy efficiency
improvement programs. This implementation requires the
estimation of a mathematical model that expresses the flow
rate from the control signal of the solenoid valve and the
gas pressure and temperature measurements. Two types of
models are studied : LPV (Linear Parameter Varying) model
with pressure and temperature as scheduling variables and
a non-parametric model based on Gaussian processes.

Keywords— Soft sensors, Identification, Gaussian process mo-
deling, LPV model, Flow measurement
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I. INTRODUCTION

The concept of energy efficiency is becoming more and
more important in the context of high energy demand. The
international standard ISO 50001 represents the desire for
saving energy. This standard is based on a preliminary
energy audit and implementation of systems for measuring
and monitoring to ensure that the objectives are achieved.

In the industrial sector, each investment is made in re-
lation to the expected benefits. The cost of a program to
improve energy efficiency must be offset by the gained be-
nefits. Sometimes a project, though promising, is rejected
on the basis of the amount of initial capital costs, the imple-
mentation requiring a production stop. To foster the accep-
tance of improved energy efficiency programs, production
stops must be kept to a minimum and costs of measures
need to be low.

It is in this context that the ANR CHIC project (CHaines
de mesures Innovantes a bas Coiit) was born. The objective
is to develop and to test low-cost sensors to monitor and to
analyze the energy consumption of the major fluids used in

industrial sites (electricity, gas, compressed air). The stu-
died sensors in the ANR CHIC project should allow mo-
nitoring of consumption and drift detection consumption.
EDF R&D, the initiators of this project gave the objec-
tive of achieving a measurement accuracy of about 5%.
The project is to develop new sensors (both physical and
“soft”) at low cost in the following areas : current sensors,
voltage sensors, power sensors, gas flowmeters. The work
presented in this paper only concerns the study of gas flow
measurement.

The objective of the study presented in this paper is the
modeling of a boiler with the aim of developing a “soft” sen-
sor. The concept of soft sensor is to combine measures avai-
lable or easily achievable and mathematical models which
link the measured quantities and the quantities to be deter-
mined. This concept is used in various fields and especially
in chemical processes [4], [6], [10], or biological processes
(3], [5], [8], [12]. The implementation of the soft sensor is
based on a simulation, an observer or an inverse method
and modeling is a key point for the measurement quality.
Modeling can be based on physical principles or empirical
approach, or a combination of both.

For the sake of economy, it is desirable that the sen-
sor software can easily be installed. The development of a
physical model dedicated to a plant is excluded because it
would induce a too high cost of development. For this pur-
pose, it is proposed to build black-box behavioral models.
In the case of the gas flow measurement, the dynamic beha-
vior of the signal to be modeled is very fast, consequently,
the construction of static models is sufficient regarding the
objectives of energy monitoring.

The study focuses on installation of gas boiler with a
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power of 750kW, located on the Renardiéres sitc of EDF
R&D near Paris, France. Two approaches are explored. The
first one consists of a parametric model and the parameters
depend on the pressure and temperature, i.e. an LPV (Li-
near Parameter Varying) model is estimated [7], [13]. The
second approach is to estimate a nonparametric model [1].

Developed modcls allow representing the mass flow of
gas in a boiler from the gas pressure, the gas temperature,
and the solenoid valve control signal.

II. BOILER AND EXPERIMENTS PROTOCOL

A schematic representation of the boiler installation and
its instrumentation is shown in the figure 1.
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Fig. 1. Schematic view of the boiler

The experiments realized on this installation consist of
a’stepwise increase of the electrical control signal C of a
modulating gas plug valve. These tests are repeated for
different values of pressure p and temperature T of the
gas. The pressurc is an input data which can be practically
corntrolled by a pressure regulator. The gas having a long
air routing system, its temperature is thus influenced by
weather conditions. These experiments are the same ones
realized in operation with the aim of calibration of the pro-
posed models.

Figure 2 shows a typical experiment. Figure 3 lists the
operating points used in this study.

III. MODELING
A. Parametric modeling

In this modeling, the primary idea is to consider the mass
flow @, as an output and C as an exogenous input. Howe-
ver, as can be seen in Figure 4, the pressure p and the tem-
perature T also influence the flow value and a simple law
only based on the control signal can not provide a good es-
timation of the flow. Therefore, we propose an LPV model
with one scheduling variable p or two scheduling variables
pand T.

The LPV model, like the other models described in this
paper, is static.

The estimated LPV model is obtained by a local ap-
proach (7], [13] which consists of :
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— estimating local models for different operating points
of the scheduling variables,

— and calculate the global LPV model by a local models
interpolation.

A.1 LPV model with one scheduling variable

Local modcls arc cstimated at different operating points
defined by a constant pressure and temperature. With re-
gard to the evolution of the gas flow Q,, depending on
the control signal C, the chosen model is presented in the
following polynomial form :

Qum(t) =0, C(t)? | 0,C(t) | 63 (1)

The global LPV model as a function of pressure p is de-
termined from the local models. A fixed pressure value is
considered throughout the experiment, and is equal to the
average of the level corresponding to the highest control
signal valuc. The choice of a fixed valuc is justified be-
cause the pressure varies slightly around a value set by the
user via the pressure regulator. It justifies again to consi-
der the pressure as a scheduling variable to fit to different
installations. Thus, the parameters 61, 8, and 5 variations
depending on the pressure are represented by the following
polynomials :

0 = o p? +agp+ag
O = B10* + B2p+ B3

(2)
93 :51p3+52p2+53p+54
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‘ The global LPV model becomes :

Qm(t) = (a1P® + azp+ as) C(t)?
+ (B1p* + Bap + B3) C(t)
01 PP+ 62 p® + 83p+ 04

®3)

A2 LPV model with two scheduling variables

. The considered local models are the same as those given
by the equation 1. The global LPV model is still obtained
by interpolating the evolution of 6, 6; and 3. The only
differences are :

— the average test pressure p is replaced by the instan-
~ taneous pressure p(t) ;

~ instantaneous temperature 7'(¢) is also taken into ac-
(o rcount.
o By taking into account the instantaneous measurements
and by adding temperature, it is hoped that more accurate
estimates than those provided by the first model will be
obtained. Each coefficient 01, 03 and 03 is modeled by a
polynomial p(t) and T'(¢) (see section IV-A.2).

B. Non-parametric modeling

Modeling using Gaussian processes is also considered. It
is a non-parametric approximation method that aims to
build an approximation f of the function @, = f(C,p.T)
from m observations Q,, = f(Cs, 1, T;),1 < i < n (ob-
servations may contain measurement errors), and from a
priori about the speed variations of the searched function.
To simplify notations, note z; = (Cy, p;, T;).

The @ priori is expressed assuming that the searched
function is the realization of a regular random process, in
practice a Gaussian process determined by its mean and
covariance function. The mean is here taken equal to zero
to reflect the absence of a priori about a possible tendency
of f(x). The covariance function is chosen from a set of
parameterized covariance functions family (also called ker-
nels) whose parameters are estimated using the maximum
likelihood criterion. We considered that the process was
stationary and we chose to model its covariance by a Ma-
térn covariance [11]. This family of covariance was chosen
both for its ability to represent a wide range of processes,
because its parameters are easily interpretable, and also
because it avoids potential numerical problems.
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To cxpress the constraint that the scarched function f(z)
is close to the n observations, we search among all the Gaus-
sian process realizations, those thal explain the observed
points : it is the principle of the modeling with Gaussian
process that consists of conditioning of the process law with
respect to the observations. The conditioned process is ac-
tually a new process with a law, including both the a prior:
(regularity, process variation speed) and the information
provided by the observation of the process at some points,
can be calculated. This principle is shown in the figure 5
on an example where the variable x is a scalar.
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Fig. 5. Example of randomly generated realizations from a Gaussian
process with Matérn covariance of parameters (A =1,h=1,v =
2) conditioned to a set of n = 6 observed values (assumed here
free-noise case)

The cstimate f(z) commonly used to cstimate the func-
tion f(z) at one point z is the mean of the process condi-
tioned at this point. The covariance function of the condi-
tioned process enable also to calculate confidence intervals
for the function f(2). Figure 6 includes the data of figure 5
(same function f(z), the same abscissa z; and same obser-
ved values) and gives the estimate f(z) and the associated
confldence intervals.
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Fig. 6. Illustrative example of the Gaussian process modeling — Red
dolted lines : function Lo estimate, red circles : observations, black
dotted line : estimation, shaded area : confidence intervals 95 %



IV. EXPERIMENTAL RESULTS
A. Parametric modeling
A.1 LPV model with one scheduling variable

Figure 7 lists the local models defined by (1), estimated
with all 14 available experiments. Figures 8 and 9 show
the parameters of the different local models based on the
operating point of the test. The polynomials defined by
(2) allow a good approximation of the estimated values of
the parameters 61, 03 and 603, depending on the pressure
as it can be seen in Figure 8. Figure 9 shows that it is
more difficult to define a mathematical law that fits these
points. Initially, it is proposed to use a global LPV model
only function of the control signal and the pressure.
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Fig. 7. Local models Qm (t) = 01 C(t)® + 03 C(t) + 63 for different
pressure values p
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Fig. 8. Evolution of the local parameters models with respect to the
pressure p (markers) and the polynomial models (2) (solid line)

The global LPV model can then be used directly as a
soft sensor ; for a measured control signal C' and a pressure
setting, we simply apply the equation (3) to estimate flow
gas. The results of models simulation for an experiment
are shown in Figure 10 and compared to the real data.
The maximum relative error (stepwise averaged) is shown
in the figure 11 for all experiment set. Maximum relative
error equal to 3.92 % is obtained for a 80 mbar pressure.

A cross-validation was performed to verify the behavior
of the virtual sensor for all experimental conditions poten-
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Fig. 10. Local model and one scheduling input global model simula-
tions with 200mbar experiment data

tially faced in the operating phase. The number of experi-
ments is relatively low (14 experiments); we chose to use
a Leave—One-Out approach [9]. It consists to use 13 of the
14 tests for identification and one for validation, and repeat
this operation so that each test is used as a validation.

The results are shown in Figure 12. The relative errors
on the model simulation, estimated using 14 experiments
are represented by crosses. The relative errors of the esti-
mated models using 13 experiments and simulated on the
validation test are represented by circles. A higher error is
noted in validation. Nevertheless, it remains less than 5 %
as shown in this figure.

A.2 LPV models with two scheduling variables

The global model is now based on the valve control signal
C(t) and the instantaneous measurements of pressure p(t)
and temperature T'(¢). The model is given by :
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where degP and degT represent the polynomials degrees of
p(t) and T(t).

After several tests, the best results are obtained for
degP = 2 and degT = 1. The stepwise maximum relative
error in cross-validation are given in Figure 13. The maxi-
mum relative error is equal to 3.7 %, i.e. lower than those
of the first model. However, it has a higher complexity. Fi-
gure 14 presents the simulation of the LPV model obtained
for a value of C' = 50% and varying pressures and tempe-
ratures. We can note that the influence of pressure on the
flow variations is higher than the temperature, which may
jﬁStify the use of a model taking into account only of the
pressure.

Wit

B. Nonparametric modeling

The implementation of this method on the 14 experi-
ments realized on the boiler was performed using the Mat-
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lab toolbox STK (Small Toolbox for Kriging) [2]. As for the
other simulations, Figure 15 gives the maximum stepwise
relative errors obtained by cross-validation. We can note
that the errors are lower than the parametric model errors.
In addition, the non-parametric model provides reasonable
crrors without having to specify structure models.

Figure 16 shows the results obtained by cross-validation
tests on 4 from the 14 tests. As suggested by the results
shown in Figure 15, the predictions are close to the real
values. The simulation of the obtained model at variable
pressures and temperatures for a 50 % control signal, pro-
vides similar results to those presented in Figure 14 .

C. Soft sensor implementation on the industrial boiler

The LPV model with one scheduling variable was expe-
rimented on site owing to its simplicity. The model was
directly implemented on the PLC with C# programming
language. The pressure setpoint has been tuned and fixed
to the value read on the manometer during the pressure
regulator setting. Figure 17 shows the flow measurement
with the soft sensor. As we can see, the results are accep-
table with a maximum mean relative error of 3.5 % for the
LPV model with one scheduling variable.
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V. CONCLUSION

In this paper, the modeling of an industrial boiler was
investigated towards a consumed gas flow measurement.
Three static models were estimated : two LPV parame-
trig.models and a nonparametric model. A cross-validation
showed that the simulation of these models gives a flow
measurement error lower than 5 %. This value corresponds
to the fixed objectives of low-cost sensors implementation
that allow consumption monitoring and detection of pos-
sibles drifts.

Models degraded uses should also be considered. While
the online temperature measurement could be considered
low-cost, this is not the case of the pressure. But, in prac-
tice, the boiler engineer tunes the pressure with the pres-
sure regulator and measures it with manometer.

Finally, the genericity of models to different installations
and other kinds of valves, should be studied. 1t is then
necessary to define a model parameters calibration metho-
dology which is the least intrusive.
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