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§ SUPELEC, Gif-sur-Yvette, France † EDF R&D, Chatou, France

Abstract. We consider the problem of estimating mono-
tonicity properties of a scalar-valued numerical model—
e.g., a finite element model combined with some post-
processing. Several quantitative monotonicity indicators are
introduced. Since the evaluation of the numerical model is
usually time-consuming, these indicators have to be esti-
mated with a small budget of evaluations.

We adopt a Bayesian approach, where the numerical model
itself is modeled as a Gaussian process. We estimate
the monotonicity indicators, and quantify the uncertainty
surrounding them, through conditional simulations of the
Gaussian process partial derivatives. The approach is illus-
trated with a numerical model of a passive component in a
power plant.

Future work will leverage this framework together with
the Stepwise Uncertainty Reduction principle to create
sequential design strategies, in order get an improved
knowledge of the monotonicity properties of the model.

Understanding the structure of numerical models

Consider a (deterministic) numerical model:

x f (x)

with the following assumptions :

➠ x ∈ X ⊂ R
d,

➠ f (x) ∈ R (scalar output),

➠ f is expensive to evaluate.

Computer experiments, when properly designed, are a useful
tool to discover (or confirm) structural properties of such a
numerical model:

➠ active/inactive variables (screening)

➠ additive responses, low-order interactions (S.A.),

➠ and, in this work: monotonicity properties

using a limited number of evaluations (runs of the code).

Partial monotonicity properties

We assume that

➠ X is an hyper-rectangle: X =
∏d

j=1 [aj; bj],

➠ f admits (at least first-order) partial derivatives,

➠ but ∇f is not available.

Definition (increasing case). f is said to be increasing
with respect to its jth variable if

∀x(−j) ∈
∏

k 6=j

[ak; bk] , x(j) 7→ f (x) is increasing.

Proposition. f is increasing with respect to its jth variable
if, and only if,

∂f

∂x(j)
(x) ≥ 0 ∀x ∈ X.

Quantitative monotonicity indicators

Several quantities of interest (nonlinear functionals of f):

➠ extrema of the partial derivatives

M−
j (f ) = min

x∈X

∂f

∂x(j)
(x), and M+

j (f ) = max
x∈X

∂f

∂x(j)
(x),

➠ “positivity rate” of the partial derivatives

αj(f ) = µ (Γj(f )) , where Γj(f ) =
{
∂f/∂x(j) ≥ 0

}
,

where µ is a given probability measure on X.

Proposed (Bayesian) approach:

➠ Endow f with a Gaussian Process prior,

➠ Estimate the monotonicity indicators, and quantify the
uncertainty surrounding them, using conditional simulations
of the partial derivatives.

Prediction and simulation of derivatives: cokriging

Consider a classical GP model:

f | β, θ ∼ GP
( ℓ∑

j=1

βjhj(·), kθ(·, ·)
)

➠ h1, . . . , hℓ known functions, which admit first-order par-
tial derivatives (typically, polynomial functions)

➠ kθ a stationary covariance function (for simplicity).

Theorem (see, e.g., Stein, 1999). Let k̃θ(h) = kθ(x, x+
h). The random process f is mean-square differentiable if, and
only if, k̃θ is twice differentiable at h = 0.

Theorem (Scheuerer, 2010). The random process f is
mean-square differentiable if, and only if, the partial deriva-
tives exist almost surely in Sobolev’s weak sense.

Useful fact. Cokriging is just a special case of kriging with
an auxiliary discrete variable:

f̃ (x, j) =

{
f (x) if j = 0,

∂f/∂x(j) if j > 0.

➠ No need to replace your favorite kriging software
(if it is flexible enough. . . )
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Cokriging example: prediction and 95%-CI
The true function f (black line) is observed at six locations (red vertical dotted lines).

The kriging prediction (red line) and CI (black dashed lines) are performed using a

zero-mean GP model, with a Matérn 5/2 covariance function.
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Cokriging example: conditional simulations
Same setup as above. Observe that the samplepaths of f ′ are rougher than those of f :

indeed, f has a Matérn 5/2 covariance function, while f ′ has a covariance function with

the same regularity as a Matérn 3/2 covariance function.

Industrial test case (d = 7)

The methodology has been applied to an industrial test case
proposed by EDF R&D

➠ Goal: assess the performance of a passive component in
a power plant

➠ Thermomechanical numerical code, d = 7 quantitative
input factors.

Implementation ⇒ discretizations

➠ Intractable posterior distributions for the quantitative
monotonicity indicators: we rely on conditional simulations,

➠ Approximate computation of the indicators themselves
using a Monte Carlo sample x1, . . . , xm (m = 200)

➠ Simulation scheme

✏ R = 100 iid draws of the spatial MC m-sample,

✏ S = 500 iid conditional simulations on each of them,

✏ RS = 50 000 (dependent) conditional samplepaths.
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“Space-filling” design of size n = 70. Gaussian Process model: affine mean function,

Matérn 5/2 covariance function (similar results obtained with other covariance

functions) with MLE parameter estimation. Results in agreement with the prior

judgment of an EDF expert of this numerical model.
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Histrograms based on the same set of RS = 50 000 conditional simulation as above.

Left: confirms that, with high credibility, the function is not increasing w.r.t. x(1) on its

entire range of definition. Right: the function might be decreasing w.r.t.x(2).

Future work

Work is in progress on

➠ Advanced simulation techniques for excursion sets (see
Ginsbourger et al, 2014, for a preview): will replace the
crude MC-based technique used here,

➠ Stepwise uncertainty reduction (using ideas from Bect et
al, 2012): will be used to enrich a given initial design to
learn more precisely the value of the indicators αj, M

+
j

and M−
j , or the set Γj itself !
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