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ABSTRACT 
 
Large scale outages on critical infrastructures (CIs) resulting from small initial 
failures, although infrequent, are increasingly disastrous to society; thus, it’s 
imperative to optimally design these systems in order to maximize their resilience 
against cascading failure. The optimization task requires the understanding and 
modelling of the dynamics of these systems. In this paper, we consider two 
approaches to infrastructure modelling: (i) a simplified (computationally cheap) 
graph-theoretical (topological) approach based on network theory; (ii) a realistic 
(computationally intensive) physical approach based on power flow models. The 
objective of the work is to investigate whether the optimal network obtained using a 
simplified topological model is also physically optimal when a more realistic power 
flow model is embraced. This is performed through simulations on the 400kV French 
power transmission network. A discussion of the usefulness of topological models to 
study the dynamics of cascading failures in electrical infrastructures is also 
contributed. 
 
1 INTRODUCTION 
 

Our modern society has come to depend on large-scale critical infrastructures 
(CIs) to deliver resources and services to consumers and businesses. These CIs are 
complex networks of interconnected functional and structural elements. Large scale 
outages on these systems, although infrequent, are increasingly disastrous to society, 
with estimates of direct costs up to billions of dollars and inestimable indirect costs 
(Lewis, 2006). Research regarding modeling, prediction and mitigation of cascading 
failures in CIs, whereby small initial disturbances may propagate through the whole 
system, has tried to address the problem by different ways (Baldick et al., 2008).  

Albert et al. (2004) demonstrated that the vulnerability of modern 
infrastructure networks is inherent to their organization. Thadakamalla et al. (2004) 
revealed that the topology of a supply infrastructure has great impact on its 
resilience. Essentially, intensive studies in the optimal design and renovation of CIs 
have been emerged during the last decades (Gutfraind, 2010). In practical cases, the 
cost of knocking down an existing infrastructure and rebuilding it from scratch is 



prohibitive. A more practicable alternative is to reconfigure parts of the system, e.g. 
by reallocation of the links which connect production facilities to consumers.  

The primary objective of this paper is to propose a methodology for optimal 
allocation of the links connecting generators and distributors in a power transmission 
network for obtaining high resilience to cascading failures while keeping the 
investment costs low. Formulated as a nonlinear and combinatorial multi-objective 
optimization problem, this problem is solved by an evolutionary method, i.e., the 
non-dominated sorting binary differential evolution (NSBDE) (Li et al., 2012).  

The search by the NSBDE requires also: (i) the construction of a model to 
describe the cascading failure process in the network, and (ii) the repeated evaluation 
of the model for every possible solution proposed by the algorithm during the search. 
With respect to the model, two approaches are typically considered in the analysis of 
power transmission systems: complex network theory models, such as the Motter-Lai 
(ML) model (Motter and Lai, 2002) and power flow models, such as the ORNL-
Pserc-Alaska (OPA) model (Dobson et al., 2001).  

The OPA model seeks to faithfully describe the dynamics of the power flows 
during the evolution of the cascading failure, by explicitly incorporating the standard 
DC power flow equations and minimizing generation cost and load shedding 
(Dobson et al., 2001); this results in a significant increase in the computational 
burden, which limits its application to large-scale realistic networks (Baldick et al., 
2008).  On the contrary, the ML model is relatively simple and it does not consider 
all the physical details of the electrical system. Its application to large-scale networks 
is feasible and more readily than OPA (Kinney et al., 2005). However, the abstract 
nature of the ML model has posed questions on whether or not it is adequate in 
practice, although it offers a new and interesting perspective on the study of 
cascading failures on power grids (Sun and Han, 2005; Cupac et al., 2013).  

In the present paper, we embrace the topological ML cascading failure model 
and embed it in the NSBDE for optimally solving the problem of generators-
distributors link allocation. For exemplification, we apply the method to the 400 kV 
French power transmission network, under the objectives of maximizing network 
resilience to cascading failure and minimizing investment costs. We, then, tackle the 
problem of realistic significance of the results that can be obtained with the proposed 
methodology. For this reason, optimal power flow is performed on the optimal 
network topologies found. 

The reminder of this paper is organized as follows. In Section 2, we introduce 
the ML and OPA cascading failure models briefly. We, then, formulate the multi-
objective optimization taking investment costs and failure resilience into account in 
Section 3. Section 4 illustrates the French 400kV power transmission network case 
study and the analysis of the results. Conclusion is drawn in Section 5. 

 
2 CASCADING FAILURE MODELS CONSIDERED IN THIS WORK 
 
2.1. The ML model 
 

The ML model has been proposed by Motter and Lai (2002), with extensions 
to differentiate generators and loads (Kinney et al., 2005). The network is 



represented as an undirected graph Q with a set of N nodes representing NG 
generation nodes and ND loading nodes, interconnected by a set of edges representing 
transmission lines. The ML model assumes that at each time step, one unit of the 
relevant quantity is exchanged between every pair of generation and loading nodes, 
and transmitted along the shortest path connecting them. The flow at one node is, 
then, the number of shortest paths passing through it. More precisely, the load �� of 
node k is quantified by the node betweenness: �� = �����∑ 	
�(�)	
��∈��,�∈��,�����                                           (1) 

where ��� is the number of shortest paths between generator nodes and distributor 
nodes, and ���(�)  is the number of generator-distributor shortest paths passing 
though node k.  

The capacity of node k is assumed to be proportional to its initial node �� 
with a network tolerance parameter α,  �� = (1 + �)��                                                            (2) 
The concept of the tolerance parameter α (α > 0) can be understood as an operating 
margin allowing safe operation of the component under potential load increment. The 
occurrence of a cascading failure is initiated by removal of a node, which in general 
changes the distribution of shortest paths. Then the load at a particular node can 
change and if it increases and exceeds its capacity, the corresponding node fails. Any 
failure leads to a new redistribution of loads and, as a result, subsequent failures can 
occur.  

The vulnerability of network Q against cascading is characterized by the 
fraction of network efficiency lost in the cascading failure: ���(�) = �(�) �(�!)�(�)                                                         (3) 

where Vul(Q) 	∈ (0,1)  and �!  represents the residual network structure after the 
cascading failure. E(Q) measures the network efficiency based on the node pair 
shortest path distance between generators and distributors: 

   $(�) = �����∑ ∑ �%(�,�)�∈���∈��                                                (4) 

where &(', () is the number of edges for an unweighted network or the sum of edge 
weights for a weighted network in the shortest path from i to j. 

Complex network theory models, such as the ML that we use within our 
optimization framework in Section 3, have no direct physical relation to the 
mechanisms of realistic power grids, but they have the key advantage that by 
utilizing techniques from graph theory they can be applied to analyze various large-
scale networks. For this reason, this modeling approach is seeing increasing 
applications for modelling cascading failure in infrastructure networks. 

 
2.2. The OPA model 
 

 The OPA model (Dobson et al., 2001) contains two different time scale 
dynamics, i.e., fast power flow dynamics and slow power grid growth dynamics, and 
describes the complexity and criticality of power systems. Our analyses focus on the 
fast power flow dynamics, in order to ensure comparability with the ML model 
shortest path assumption. 



The cascading failure model is based on the standard DC power flow 
equation, 

F = AP                                                             (5) 
where F is a vector whose components are the power flows through the lines, P is a 
vector whose components are the power injection of each node, and A is a constant 
matrix that depends on the network structure and impedances (see Donbson et al., 
2001 for details about the computation of A).  

The generator power dispatch is solved using standard linear programming 
methods. Using the input power demand, the power flow equation (5) is solved with 
the condition of minimizing the following cost function: 

  �)*+ = ∑ ,�(+)�∈�� + -∑ ,�(+)�∈��                                   (6) 
where VG and VD are the sets of generators and distributors, respectively. This 
definition gives preference to generation shift whilst assigning a high cost (set K = 
100) to load shedding, and it is assumed that all generators operate at the same cost 
and that all loads are served with equal priority. The minimization is done with the 
following constraints: 
(1) Generator power injections are generally positive and limited by installed 

capacity limits: 0 ≤ ,� ≤ ,�/01 , ' ∈ �2. 
(2) Loads always have negative power injections:	,�%3/ ≤ ,� ≤ 0, ( ∈ �4. 

(3) The absolute flow through links is limited by link capacities: 56��5 ≤ 6/01. 
(4) Total power generation and consumption remain balanced: ∑ ,� = 0�∈��∪�� . 

After solving the linear optimization, a link is considered to be overloaded if 
the power flow through it is within 1% of its limit capacity 6/01. Each overloaded 
line may outage with probability 8�. If an overloaded line experiences an outage, its 
power flow limit 6/01 is divided by a very large number �� to ensure that practically 
no power may flow through the line. Besides, to avoid a matrix singularity, the 
impedances of failed lines are multiplied by a large number �9, resulting in changes 
of the network matrix A.  

Load shedding is utilized to quantify the damage of the cascading failure. For 
an individual node, load shedding is defined as the variance between its power 
injection and demand: :� = ,�%3/ − ,�                                                       (7) 
Subsequently, total load shedding for the system is: : = ∑ :��∈��                                                           (8) 

Finally, system load shedding is normalized by its total demand D and used 
as a measure of cascading failure damage: : <= = ∑ >

∈?�∑ @
ABC
∈?�                                                      (9)                           

The fact that simulation results from OPA model are consistent with historical 
blackout data for real power systems has justified its effectiveness (Carreras et al., 
2004). However, the applications of OPA have generally been limited to networks 
with a relatively small number of nodes compared to real power grids (Sun and Han, 
2005), due to the computational efforts involved. 
 
3 OPTMIZATION MODEL 



For a given network, cascading failure resilience could be enhanced in many 
ways. In this paper, we focus on choosing the connection patterns between generators 
and distributors of a realistic power grid, so as to optimize its resilience to cascading 
failures. Given the goal of analyzing a realistic-size network, the ML cascading 
failure model is used to evaluate the resilience of a connection pattern. By 
associating a cost to each link posed in the network, the optimization also seeks to 
minimize the total cost. 

The network is modeled as a weighted graph, in which the edge weights are 
given by their physical distances which we assume directly related to the transmitting 
cost of the link. We define the variables to be optimized as the links of generation 
nodes to the different distribution nodes: D�� = E1, if	'	is	connected	with	(	directly0, otherwise                       (10) 

for all ' ∈ �2 and ( ∈ �4. Two constraints have to be met when rewiring generators 
and distributors: (1) each distributor node is required to connect with at least one 
generator node or other distributor node, to make it accessible to the power supplying 
generators; (2) each generator node has to connect at least with one distributor node. 

We assume that the cost associated with each connection cutting and rewiring 
is linearly proportional to the physical length of the link, with factor φ. The total 
investment cost of a reconstructed pattern D	in the power transmission network can 
be defined as 

 � = ∑ TD���∈���∈�� &(', ()                                       (11) 
where &(', () is the physical distance between i and j. 

The cascading failure resilience of each reconstructed pattern D  can be 
quantified by the vulnerability of the new network, given by equation (3). It should 
be noted that the effect of the type of initial event could significantly influence the 
cascading failure result: the efficiency loss of a cascade triggered by the failure of a 
critical component could be much more severe than that originated by the failure of a 
normal component. Therefore, we consider a worst-case scenario in this study by 
choosing the failure of one of the top five most loaded (largest betweenness) nodes as 
initial failure in each cascade process simulation and, then, the results are averaged 
on the number of simulations. 

Through the quantification of the connection pattern cost and cascading 
failure vulnerability, the facility allocation problem is formulated as a multi-objective 
optimization problem: 

Umin �WD��X																																																													(12Z)min��� [�\
�]																																																					(12^)	  

*. +. `∑ D���∈��∪�� > 0	∀( ∈ �4																																			(12c)∑ D���∈�� > 0	∀' ∈ �2																																										(12&)	   

The objective function (12a) is the sum of the fixed rewiring costs; (12b) expresses 
the resilience objective. The two constraints mentioned above are enforced by 
formulas (12c) and (12d), respectively. Observe that the least costly generator 
allocation is simply that with no links among facilities and consumers. 



In our work, the multi-objective optimization problem (12a) – (12d) is 
tackled by the Non-dominated Sorting Binary Differential Evolution (NSBDE) 
algorithm. Readers could refer to Fang et al. (2013) for the details about this 
optimization algorithm. 
 
4 CASE STUDY AND RESULTS ANALYSIS   
 
4.1. Case study and parameters setting 

 
In this paper, the 400kV French power transmission network (FPTN400) 

(RTE, 2011) is taken for exemplification of the proposed approach. It has 171 
substations and 220 transmission lines (Figure 1). Among these substations, 26 are 
generators and 145 are distributors. For reallocation of the power generating nodes to 
the other nodes, the NSBDE algorithm is applied. The network tolerance parameter α 
is set to 0.3 to simulate the normal operating condition; linkage cost parameter φ is 
set to 1. 

At the beginning of the simulation, all 55 links among generators and 
distributors in the FPTN400 are cut off. The population is initialized by randomly 
assigning 0 or 1 to each bit of each chromosome in the population, forming a group 
of potential solutions. For evaluating the cascading vulnerability of a given 
connectivity pattern, the ML cascading failure model is run starting from failing one 
of the top five most loaded nodes in repeated cascading simulations at the end of 
which the vulnerability values are averaged. 

 

 
Figure 1. The 400kV French power transmission network  

 
4.2. Topological optimization results 
 

The Pareto front obtained by the NSBDE algorithm at convergence is shown 
in Figure 2(a). The diamond point represents the present network with the existing 
connection which is also the least costly network; the square point is the most 
resilient solution, whose cascading vulnerability is 0.184. It is not unexpected that 
the original network is the least costly one, since the electrical transmission lines and 
substations are placed with geographical constraints and connections between two 
distant substations are avoided. Truly, cost-efficiency is a major consideration in 
building power transmission networks. 



It is also noted from Figure 2(a) that the cascading resilience of the FPTN400 
can be improved significantly, though at a cost; the network vulnerability is 

decreased from 0.728 to 0.184 (when α=1.3) with an increased cost of 7.3 × 10g. 
Figure 2(b) reports the cascading vulnerability comparison between the original 
network and the most resilient one (Pareto solution #17) with different tolerance 
parameters. It shows that when the network tolerance is very low, i.e. 0< � < 0.1, 
the optimized network loses most of its efficiency, i.e., it is quite vulnerable to 
intentional attacks possibly due to its intensive loading condition. However, when α
≥0.3 (which is generally the normal operating condition (Baldick et al., 2008)), the 
optimized network loses less than 20% of its efficiency during a cascading failure 
initiated by intentional attack. 

 

 
Figure 2. (a) Pareto front reached by a population of 25 chromosomes evolving 
for 300 generations; (b) Comparison of the cascading vulnerability between the 

original and the most resilient networks under different network tolerance 
values 

 
Albeit a substantial improvement of the cascading failure resilience of the 

FPTN400 is possible by adding redundant links, a tradeoff between the cost and 
resilience improvement is necessary for rational decision-making. Along the Pareto 
frontier of the potential solutions, there are some points at which a small sacrifice of 
cost gives a large gain of cascading resilience. More generally, by taking a network 
solution and its neighbor on the frontier (the less costly one), one can define a rate of 
change of cascading resilience with respect to cost: |∆���/∆c)*+|. This rate can be 
utilized as a reference to choose the optimized network: the larger the ratio, the more 
preferred the network is.  

Figure 3 reports the topology of the network corresponding to the Pareto 
solution #3 (310.6, 0.59) whose |∆���/∆c)*+|  value is comparatively large. The 
bold links denote the 10 added links with respect to the original real network: notice 
that only 10 links are required to be rewired for the original network to gain a 19.2% 
cascading resilience improvement (the cascading vulnerability is decreased from 
0.73 to 0.59). Besides, it is noted from Figure 3 that the newly added links tend to 
connect distant generator and distributor pairs, indicating that the installation of 
power lines between remote power substations can improve the resilience of the 
system, although at larger costs.  
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Figure 3. The topology of the Pareto solution #3 

 
4.3. Validation by the OPA model 
 

In this section, the more realistic OPA model introduced in Section 2.2 is 
utilized to verify the optimization results based on the abstract ML model. The 
verification is not straightforward due to the differences of the two models in the way 
of representing system capacity, in the iterative algorithms they rely on, and in the 
way of measuring the damage. Accordingly, some assumptions and adjustments to 
the OPA model are necessary to ensure its applicability to assess the optimization 
solutions obtained based on the ML model. 

 
4.3.1 OPA Adjustments 
 

To facilitate comparability with the ML model, all the generators are assumed 
to have equal capacity, and all the loads are assumed to have equal constant demand 
(we use 26, i.e. the number of generators in the simulation). Furthermore, all edge 
impedances are calculated using the typical reactance value 0.28 ohm/km at 50 Hz 
(Zhou and Bialek, 2005). This heterogeneous impedance setting aligns with the 
weighted edge initialization in the ML model. 

A simple initialization strategy (Cupac et al., 2013) is utilized to set the link 
capacity in the OPA model. In particular, the values of the initial flows 6��(0) and of 
the link capacities 6��/01 are determined as follows: demand for all distributor nodes 
is fixed to a constant amount, as mention above, and total generation capacity is set 
to be equal to total demand, and equally divided among the generators. Then, the 
power flows along the lines are estimated by assuming that every distributor node 
would obtain an equal amount of power from every generator. The initial flows are 
calculated by selecting a generator (one at a time), setting all other generator 
capacities to 0 and then computing power flows to each distributor node. The sum of 
the power flows over all the generators results in the estimated initial flow along 
each link, 6��(0) . Analogous to the initialization process in the ML model, the 
maximum capacity for a link connecting nodes i and j is given by 6��/01 = (1 + �)56��(0)5                                                       (13) 



It is noted that the values of the initial flows 6��(0) are only used to set the 
link flow capacities 6��/01 in such a way that they are comparable to the capacities �� 
used by the ML model. The network tolerance parameter is set to	0 ≤ � ≤ 2 in our 
approach, parallel to the ML model, representing excess transmission capacity. Then, 
the node transmission capacity is modelled as the sum of link flow capacities of 
adjacent links ∑ 6��/01�∈��  where �� is the set of nodes directly connected to node i. 

In the OPA implementation, the probability of an overloaded link is set to 8� = 1, where an overloaded node fails and is removed from the network with 
certainty. Besides, the cascade is initiated in the same manner in the ML model, as 
stated in Section 3. 

 
4.3.2 Evaluation Results 
 

Three representative solutions (i.e., the least cost network FPTN400, the most 
resilient network, namely, solution #17, and Pareto solution #3 whose |∆���/∆c)*+| 
value is comparatively large) along the Pareto front are chosen as the basic network 
topologies to be verified by the OPA model. The calculation of the correlation 
coefficients between capacities �� and 6��/01 under ML and OPA models shows that 
node capacities in ML are highly correlated with node capacities in OPA (the 
correlation coefficients are 0.904, 0.890 and 0.619 for FPTN400, Pareto solution #3 
and Pareto solution #17, respectively).  

 

 
Figure 4. Cascading vulnerability (normalized load shedding) evaluated by the 

OPA model for the three chosen networks over a range of network tolerance 
values α. 

 
In Figure 4, we plot the curves of normalized load shedding :/<  versus 

network tolerance α obtained by applying the OPA model to the three representative 
networks selected from the Pareto front. Analogous to the ML model (Figure 2(b)), 
the network damages decreases when network tolerance increases for all the 
networks. When network tolerance value is high enough (� > 1.2 ), any small 
intentional disturbance on the network would tend to cause quite low damage to the 
functioning of the network (< 1%). Most importantly, it is observed that in the OPA 
simulation, the network corresponding to Pareto solution #3 (green triangle curve) is 



more resilient, i.e., it presents less load shedding than the original network (circle 
curve) over a wide range of network tolerance α (i.e., 0 < � < 1.2); in addition, 
Pareto solution #7 (which is the most resilient network according to the ML model) 
presents the lowest load shedding among the three networks over the entire range of 
α values considered. This ranking of cascading failure resilience is consistent with 
the simulation results based on ML model, verifying that the insights gained by the 
topological optimization approach are valid. 

Also important is to remember that the results produced by the simple ML 
topological model are obtained at a much lower computational cost than those of the 
OPA model: actually, the average time needed to carry out a single cascading failure 
simulation is 3.9s and 20.8s for the ML and OPA models, respectively, on a double 
2.4 GHz Intel CPU and 4 GB RAM computer. 
 
5 CONCLUSION 
 

In this paper, we have investigated the allocation of generators to distributor 
nodes by rewiring links under the objectives of maximizing the network cascading 
failure resilience and minimizing the investment costs. The NSBDE algorithm is 
applied within a Pareto optimality scheme of search for non-dominated solutions. To 
simulate and quantify the cascading failure resilience of potential connection pattern 
selected during the NSBDE search, a complex network model – the ML model ‒ has 
been used, to exploit its rapidity of calculation. The results of the case study have 
shown that the cascading resilience of a realistic power transmission network can be 
improved at an acceptable cost. 

To validate the physical significance of the topological optimization results, a 
more realistic power flow model ‒ the OPA model ‒ has been considered. The OPA 
model has been applied to three solutions selected from the Pareto front found by the 
topological optimization. The ranking of the three selected networks with respect to 
their vulnerability to targeted attacks is consistent with that of the ML model; in 

addition, the computational time required by the ML approach is shown to be 5.5 
times lower than that of the OPA approach. This verifies (i) the physical 
meaningfulness of the topological optimization solutions and (ii) the practical 
usefulness of abstract cascading models in network optimization tasks. 
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