N
N

N

HAL

open science

Comparing Topological and Physical Approaches to
Network Modeling for the Optimization of
Failure-Resilient Electrical Infrastructures

Yi-Ping Fang, Nicola Pedroni, Enrico Zio

» To cite this version:

Yi-Ping Fang, Nicola Pedroni, Enrico Zio. Comparing Topological and Physical Approaches to Net-
work Modeling for the Optimization of Failure-Resilient Electrical Infrastructures. ICVRAM &
ISUMA 2014, Jul 2014, Liverpool, United Kingdom. pp.725 - 735, 10.1061/9780784413609.074 .

hal-01108227

HAL Id: hal-01108227
https://centralesupelec.hal.science/hal-01108227

Submitted on 22 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://centralesupelec.hal.science/hal-01108227
https://hal.archives-ouvertes.fr

Comparing Topological and Physical Approachesto Network Modelling for the
Optimization of Failure Resilient Electrical Infrastructures

Yi-Ping. Fang, Nicola Pedrortj and Enrico Zib ?

Chair on Systems Science and Energetic Challengepean Foundation for New
Energy — EDF, Ecole Centrale Paris — Supelec, Feuasce
Energy Department, Politecnico di Milano, Italy

ABSTRACT

Large scale outages on critical infrastructuress)Gesulting from small initial

failures, although infrequent, are increasinglyadisous to society; thus, it's
imperative to optimally design these systems ireptd maximize their resilience
against cascading failure. The optimization tasfjumes the understanding and
modelling of the dynamics of these systems. In tbégper, we consider two
approaches to infrastructure modelling: (i) a sifrgd (computationally cheap)

graph-theoretical (topological) approach based etwaork theory; (ii) a realistic

(computationally intensive) physical approach basadpower flow models. The
objective of the work is to investigate whether dpimal network obtained using a
simplified topological model is also physically opal when a more realistic power
flow model is embraced. This is performed throughusations on the 400kV French
power transmission network. A discussion of thefulsess of topological models to
study the dynamics of cascading failures in eleatriinfrastructures is also
contributed.

1INTRODUCTION

Our modern society has come to depend on large-sdical infrastructures
(Cls) to deliver resources and services to conssimed businesses. These Cls are
complex networks of interconnected functional atrdcsural elements. Large scale
outages on these systems, although infrequentpnareasingly disastrous to society,
with estimates of direct costs up to billions ofldis and inestimable indirect costs
(Lewis, 2006). Research regarding modeling, preafichnd mitigation of cascading
failures in Cls, whereby small initial disturbangeay propagate through the whole
system, has tried to address the problem by diffesays (Baldick et al., 2008).

Albert et al. (2004) demonstrated that the vulndéitgb of modern
infrastructure networks is inherent to their orgation. Thadakamalla et al. (2004)
revealed that the topology of a supply infrastreetinas great impact on its
resilience. Essentially, intensive studies in tpémal design and renovation of Cls
have been emerged during the last decades (Gutfra@10). In practical cases, the
cost of knocking down an existing infrastructured aebuilding it from scratch is



prohibitive. A more practicable alternative is tronfigure parts of the system, e.g.
by reallocation of the links which connect prodantfacilities to consumers.

The primary objective of this paper is to proposeethodology for optimal
allocation of the links connecting generators aistributors in a power transmission
network for obtaining high resilience to cascadifagures while keeping the
investment costs low. Formulated as a nonlinear comdbinatorial multi-objective
optimization problem, this problem is solved by erolutionary method, i.e., the
non-dominated sorting binary differential evolutiéSBDE) (Li et al., 2012).

The search by the NSBDE requires also: (i) the ttoagon of a model to
describe the cascading failure process in the nmktvend (ii) the repeated evaluation
of the model for every possible solution proposgdhe algorithm during the search.
With respect to the model, two approaches are &jlgiconsidered in the analysis of
power transmission systems: complex network thewgels, such as the Motter-Lai
(ML) model (Motter and Lai, 2002) and power flow d&ls, such as the ORNL-
Pserc-Alaska (OPA) model (Dobson et al., 2001).

The OPA model seeks to faithfully describe the dayica of the power flows
during the evolution of the cascading failure, @pleitly incorporating the standard
DC power flow equations and minimizing generatioostcand load shedding
(Dobson et al., 2001)this results in a significant increase in the compatel
burden, which limits its application to large-scadalistic networks (Baldick et al.,
2008). On the contrary, the ML model is relativelgnple and it does not consider
all the physical details of the electrical systdisiapplication to large-scale networks
is feasible and more readily than OPA (Kinney et 2005). However, the abstract
nature of the ML model has posed questions on venath not it is adequate in
practice, although it offers a new and interestpgrspective on the study of
cascading failures on power grids (Sun and Han5;20Qpac et al., 2013).

In the present paper, we embrace the topologicachficading failure model
and embed it in the NSBDE for optimally solving tpeoblem of generators-
distributors link allocation. For exemplificatiowe apply the method to the 400 kV
French power transmission network, under the objestof maximizing network
resilience to cascading failure and minimizing isiveent costs. We, then, tackle the
problem of realistic significance of the resultattban be obtained with the proposed
methodology. For this reason, optimal power flowpsrformed on the optimal
network topologies found.

The reminder of this paper is organized as follawsSection 2, we introduce
the ML and OPA cascading failure models briefly., Ween, formulate the multi-
objective optimization taking investment costs &atlre resilience into account in
Section 3. Section 4 illustrates the French 400kWer transmission network case
study and the analysis of the results. Conclusairawn in Section 5.

2 CASCADING FAILURE MODELS CONSIDERED IN THISWORK
2.1. The ML modd

The ML model has been proposed by Motter and L@D2Z2, with extensions
to differentiate generators and loads (Kinney et a@p05). The network is



represented as an undirected graphwith a set of N nodes representingjs
generation nodes amdh loading nodes, interconnected by a set of edgeesenting
transmission lines. The ML model assumes that el éme step, one unit of the
relevant quantity is exchanged between every dageaeration and loading nodes,
and transmitted along the shortest path connec¢tiagn. The flow at one node is,
then, the number of shortest paths passing thraudfore precisely, the loat, of
nodek is quantified by the node betweenness:

1 n;j(k)
L — . 110} 1
k NGNp ZLEVG,]EVD,L‘#]-‘#I( n;j ( )

wheren;; is the number of shortest paths between genenatdes and distributor
nodes, anch;;(k) is the number of generator-distributor shortesthpgpassing
though nodek.

The capacity of nod& is assumed to be proportional to its initial nage
with a network tolerance parameter

Ce =1+ a)Ly (2)

The concept of the tolerance parametde. > 0) can be understood as an operating
margin allowing safe operation of the componentanrmbtential load increment. The
occurrence of a cascading failure is initiated &yoval of a node, which in general
changes the distribution of shortest paths. Thenltlad at a particular node can
change and if it increases and exceeds its cap#uogtyorresponding node fails. Any
failure leads to a new redistribution of loads aa&la result, subsequent failures can
occur.

The vulnerability of networkQ against cascading is characterized by the
fraction of network efficiency lost in the cascagliiailure:

Vul(Q) = % 3)

where Vul(Q) € (0,1) and Q represents the residual network structure after th
cascading failureE(Q) measures the network efficiency based on the ruaie
shortest path distance between generators andistis:

1 1
EQ) = mZieVG Zjevpm 4)
whered (i, j) is the number of edges for an unweighted networthe sum of edge
weights for a weighted network in the shortest gadmi toj.

Complex network theory models, such as the ML thatuse within our
optimization framework in Section 3, have no dirgattysical relation to the
mechanisms of realistic power grids, but they héwe key advantage that by
utilizing techniques from graph theory they canapglied to analyze various large-
scale networks. For this reason, this modeling @ggr is seeing increasing
applications for modelling cascading failure inrastructure networks.

2.2. The OPA modd

The OPA model (Dobson et al., 2001) contains twiterént time scale
dynamics, i.e., fast power flow dynamics and slamwer grid growth dynamics, and
describes the complexity and criticality of powgstems. Our analyses focus on the
fast power flow dynamics, in order to ensure corapsity with the ML model
shortest path assumption.



The cascading failure model is based on the stdn@ power flow
equation,

F=AP (5)
whereF is a vector whose components are the power flovesith the linesP is a
vector whose components are the power injectioeasch node, and is a constant
matrix that depends on the network structure angedances (see Donbson et al.,
2001 for details about the computation®pf

The generator power dispatch is solved using stdnlil@ear programming
methods. Using the input power demand, the powesy @quation (5) is solved with
the condition of minimizing the following cost futan:

Cost = Yiev, Pi(t) + K X jev, Pi () (6)
where Vg and Vp are the sets of generators and distributors, ctispd. This
definition gives preference to generation shift lathassigning a high cost (sét=
100) to load shedding, and it is assumed thatealbgators operate at the same cost
and that all loads are served with equal priofitye minimization is done with the
following constraints:

(1) Generator power injections are generally positivel dimited by installed
capacity limits:0 < P, < P"**,i € V;;.

(2) Loads always have negative power injectid?f§.m <P <0,j€Vp.

(3) The absolute flow through links is limited by Iinhpacities|Fl-j| < Fnax-

(4) Total power generation and consumption remain leaid}.;cy .y, P = 0.

After solving the linear optimization, a link ismtsidered to be overloaded if
the power flow through it is within 1% of its limd@apacityF,,,,. Each overloaded
line may outage with probability;. If an overloaded line experiences an outage, its
power flow limitF,,,, is divided by a very large numbkey to ensure that practically
no power may flow through the line. Besides, toidva matrix singularity, the
impedances of failed lines are multiplied by a éargimbelk,, resulting in changes
of the network matriA.

Load shedding is utilized to quantify the damagéhefcascading failure. For
an individual node, load shedding is defined as theance between its power
injection and demand:

S;=Pi" — P (7)
Subsequently, total load shedding for the system is
S = Yievy Si (8)

Finally, system load shedding is normalized bytotsl demand and used

as a measure of cascading failure damage:
Lievp Si
S/p = W 9)

The fact that simulation results from OPA model @asistent with historical
blackout data for real power systems has justifiedeffectiveness (Carreras et al.,
2004). However, the applications of OPA have gdhelseen limited to networks
with a relatively small number of nodes comparedet power grids (Sun and Han,
2005), due to the computational efforts involved.

3OPTMIZATION MODEL



For a given network, cascading failure resiliencal@d be enhanced in many
ways. In this paper, we focus on choosing the cciiore patterns between generators
and distributors of a realistic power grid, so@®ptimize its resilience to cascading
failures. Given the goal of analyzing a realisimesnetwork, the ML cascading
failure model is used to evaluate the resilienceaofconnection pattern. By
associating a cost to each link posed in the nétwbe optimization also seeks to
minimize the total cost.

The network is modeled as a weighted graph, in lwithe edge weights are
given by their physical distances which we assuiretly related to the transmitting
cost of the link. We define the variables to beiraj#ed as the links of generation
nodes to the different distribution nodes:

_ (1,if i is connected with j directly
Xij = { 0, otherwise (10)
for alli € V; andj € V. Two constraints have to be met when rewiring geioes
and distributors: (1) each distributor node is regfito connect with at least one
generator node or other distributor node, to makeaessible to the power supplying
generators(2) each generator node has to connect at least with omelditor node.

We assume that the cost associated with each doomeatting and rewiring
is linearly proportional to the physical length tbie link, with factorg. The total
investment cost of a reconstructed pateéin the power transmission network can
be defined as

C = Yievgjevy 9Xij d(i,)) (11)
whered(i, j) is the physical distance betweaesnd;.

The cascading failure resilience of each reconwdugatternX can be
guantified by the vulnerability of the new netwogdiyen by equation (3). It should
be noted that the effect of the type of initial mveould significantly influence the
cascading failure result: the efficiency loss afascade triggered by the failure of a
critical component could be much more severe thandriginated by the failure of a
normal component. Therefore, we consider a worsg-caenario in this study by
choosing the failure of one of the top five mostded (largest betweenness) nodes as
initial failure in each cascade process simulatiad, then, the results are averaged
on the number of simulations.

Through the quantification of the connection patteost and cascading
failure vulnerability, the facility allocation prédim is formulated as a multi-objective
optimization problem:

min Vul (QXU) (12b)
Yieveuvp Xij > 0Vj €V (12¢)
S tAY ey, Xij > OVi €V, (12d)

The objective function (12a) is the sum of tineed rewiring costs; (12b) expresses
the resilience objective. The two constraints nwrdd above are enforced by
formulas (12c) and (12d), respectively. Observet tth@ least costly generator
allocation is simply that with no links among faods and consumers.



In our work, the multi-objective optimization preph (12a) — (12d) is
tackled by the Non-dominated Sorting Binary Diffeial Evolution (NSBDE)
algorithm. Readers could refer to Fang et al. (208 the details about this
optimization algorithm.

4 CASE STUDY AND RESULTSANALYSIS
4.1. Case study and parameter s setting

In this paper, the 400kV French power transmissietwork (FPTN400)
(RTE, 2011) is taken for exemplification of the posed approacht has 171
substations and 220 transmission lines (FiguréAfjong these substations, 26 are
generators and 145 are distributors. For reallonadf the power generating nodes to
the other nodes, the NSBDE algorithm is appliece matwork tolerance parameter
is set to 0.3 to simulate the normal operating @@ linkage cost parameter ¢ iS
set to 1.

At the beginning of the simulation, all 55 links ang generators and
distributors in the FPTN400 are cut off. The pogialais initialized by randomly
assigning 0 or 1 to each bit of each chromosontbearpopulation, forming a group
of potential solutions. For evaluating the cascgdwulnerability of a given
connectivity pattern, the ML cascading failure miadeun starting from failing one
of the top five most loaded nodes in repeated dasgasimulations at the end of
which the vulnerability values are averaged.

N

Figure 1. The 400kV French power transmission network

4.2. Topological optimization results

The Pareto front obtained by the NSBDE algorithneatvergence is shown
in Figure 2(a). The diamond point represents tlesqmt network with the existing
connectionwhich is also the least costly network; the square point is the most
resilient solution, whose cascading vulnerabilgy0i184. It is not unexpected that
the original network is the least costly one, sitfeeelectrical transmission lines and
substations are placed with geographical consgraantd connections between two
distant substations are avoided. Truly, cost-efficy is a major consideration in
building power transmission networks.



It is also noted from Figure 2(a) that the casogdesilience of the FPTN400
can beimproved significantly, though at a cost; the network vulnerability is
decreased from 0.728 to 0.184 (whenl.3) with an increased cost BB x 103.
Figure 2(b) reports the cascading vulnerability panson between the original
network and the most resilient one (Pareto solutiéid) with different tolerance
parameters. It shows that when the network tolerasovery low, i.e. & a < 0.1,
the optimized network loses most of its efficience., it is quite vulnerable to
intentional attacks possibly due to its intensivading condition. However, when
=0.3 (which is generally the normal operating candit(Baldick et al., 2008)), the
optimized network loses less than 20% of its efficly during a cascading failure
initiated by intentional attack.
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Figure 2. (a) Pareto front reached by a population of 25 chromosomes evolving
for 300 generations; (b) Comparison of the cascading vulner ability between the
original and the most resilient networks under different network tolerance
values

Albeit a substantial improvement of the cascadiadufe resilience of the
FPTN400 is possible by adding redundant links, aaldoff between the cost and
resilience improvement is necessary for rationaisien-making. Along the Pareto
frontier of the potential solutions, there are sqo@ts at which a small sacrifice of
cost gives a large gain of cascading resiliencereMyenerally, by taking a network
solution and its neighbor on the frontier (the legstly one), one can define a rate of
change of cascading resilience with respect to: ¢dBul/Acost|. This rate can be
utilized as a reference to choose the optimizedordt the larger the ratio, the more
preferred the network is.

Figure 3 reports the topology of the network cqroeling to the Pareto
solution #3 (310.6, 0.59) whosaVul/Acost| value is comparatively large. The
bold links denote the 10 added links with respedhe original real network: notice
that only 10 links are required to be rewired fug briginal network to gain a 19.2%
cascading resilience improvement (the cascadingevability is decreased from
0.73 to 0.59). Besides, it is noted from Figuren8t tthe newly added links tend to
connect distant generator and distributor pairdgjcating that the installation of
power lines between remote power substations cgmowe the resilience of the
system, although at larger costs.



Figure 3. Thetopology of the Pareto solution #3
4.3. Validation by the OPA model

In this section, the more realistic OPA model idtroed in Section 2.2 is
utilized to verify the optimization results based the abstract ML model. The
verification is not straightforward due to the di#nces of the two models in the way
of representing system capacity, in the iteratigprithms they rely on, and in the
way of measuring the damage. Accordingly, somermapions and adjustments to
the OPA model are necessary to ensure its apfiiyatm assess the optimization
solutions obtained based on the ML model.

4.3.1 OPA Adjustments

To facilitate comparability with the ML model, dlie generators are assumed
to have equal capacity, and all the loads are asdumhave equal constant demand
(we use 26, i.e. the number of generators in thrulsition). Furthermore, all edge
impedances are calculated using the typical reeetaalue 0.28 ohm/km at 50 Hz
(Zzhou and Bialek, 2005)This heterogeneous impedance setting aligns wigh th
weighted edge initialization in the ML model.

A simple initialization strategy (Cupac et al., 3Q1s utilized to set the link
capacity in the OPA model. In particular, the valeé the initial flowsﬁj(O) and of
the link capacitieg;;“* are determined as follows: demand for all distdbunodes
is fixed to a constant amount, as mention abovetatal generation capacity is set
to be equal to total demand, and equally dividedragnthe generators. Then, the
power flows along the lines are estimated by assgrthiat every distributor node
would obtain an equal amount of power from evergegator. The initial flows are
calculated by selecting a generator (one at a tirsejting all other generator
capacities to 0 and then computing power flowsachadistributor node. The sum of
the power flows over all the generators resultshim estimated initial flow along
each Iink,ﬁ-j(O). Analogous to the initialization process in the Miodel, the
maximum capacity for a link connecting nodesdj is given by

FiM = (1 + a)|F;;(0)] (13)



It is noted that the values of the initial flow_g(O) are only used to set the
link flow capacitiesF;*** in such a way that they are comparable to thect@sC
used by the ML model. The network tolerance paramistset td < a < 2 in our
approach, parallel to the ML model, representingees transmission capacity. Then,
the node transmission capacity is modelled as time of link flow capacities of
adjacent link9; jev; Fij ** whereV; is the set of nodes directly connected to riode

In the OPA implementation, the probability of anedweaded link is set to
p; = 1, where an overloaded node fails and is removerh ftbe network with
certainty. Besides, the cascade is initiated inséie manner in the ML model, as
stated in Section 3.

4.3.2 Evaluation Results

Three representative solutions (i.e., the leadtmeisvork FPTN400, the most
resilient network, namely, solution #17, and Passtiution #3 whos@AlVul/Acost|
value is comparatively large) along the Paretotfiare chosen as the basic network
topologies to be verified by the OPA model. Thecakdtion of the correlation
coefficients between capaciti€s andF;;*** under ML and OPA models shows that
node capacities in ML are highly correlated withdeocapacities in OPA (the
correlation coefficients are 0.904, 0.890 and 0.&tFPTN400, Pareto solution #3
and Pareto solution #17, respectively).
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Figure 4. Cascading vulnerability (normalized load shedding) evaluated by the
OPA mode for thethree chosen networks over arange of network tolerance
values a.

In Figure 4, we plot the curves of normalized loglteddingS/D versus
network tolerance. obtained by applying the OPA model to the thrgeesentative
networks selected from the Pareto front. Analogouthe ML model (Figure 2(b)),
the network damages decreases when network tokeraraeases for all the
networks. When network tolerance value is high ghoga > 1.2), any small
intentional disturbance on the network would temd¢duse quite low damage to the
functioning of the network< 1%). Most importantly, it is observed that in the OPA
simulation, the network corresponding to Paretoitsmh #3 (green triangle curve) is



more resilient, i.e., it presents less load sheagldian the original network (circle
curve) over a wide range of network toleramcg.e.,0 < a < 1.2); in addition,
Pareto solution #7 (which is the most resilientwwek according to the ML model)
presents the lowest load shedding among the the®eorks over the entire range of
a values considered. This ranking of cascading faihesilience is consistent with
the simulation results based on ML model, verifythgt the insights gained by the
topological optimization approach are valid.

Also important is to remember that the results poed by the simple ML
topological model are obtained at a much lower astaponal cost than those of the
OPA model: actually, the average time needed ty@art a single cascading failure
simulation is 3.9s and 20.8s for the ML and OPA eisdrespectively, on a double
2.4 GHz Intel CPU and 4 GB RAM computer.

5 CONCLUSION

In this paper, we have investigated the allocatibgenerators to distributor
nodes by rewiring links under the objectives of imaxzing the network cascading
failure resilience and minimizing the investmenstso The NSBDE algorithm is
applied within a Pareto optimality scheme of sedocihon-dominated solutions. To
simulate and quantify the cascading failure resdesof potential connection pattern
selected during the NSBDE search, a complex netwm#tel — the ML mode} has
been used, to exploit its rapidity of calculatidine results of the case study have
shown that the cascading resilience of a realsgiwer transmission network can be
improved at an acceptable cost.

To validate the physical significance of the togatal optimization results, a
more realistic power flow model the OPA model has been considered. The OPA
model has been applied to three solutions seldatetdthe Pareto front found by the
topological optimization. The ranking of the threslected networks with respect to
their vulnerability to targetedttacks is consistent with that of the ML model; in
addition, the computational time required by the Bfhproach is shown to be 5.5
times lower than that of the OPA approach. Thisifiesr (i) the physical
meaningfulness of the topological optimization sols and (i) the practical
usefulness of abstract cascading models in netojatiknization tasks.
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