Discussion on "A Differential Algebraic Estimator for Sensorless Permanent-Magnet Synchronous Machine Drive"

Mohamad Koteich, Abdelmalek Maloum, Gilles Duc, Guillaume Sandou

To cite this version:
Mohamad Koteich, Abdelmalek Maloum, Gilles Duc, Guillaume Sandou. Discussion on "A Differential Algebraic Estimator for Sensorless Permanent-Magnet Synchronous Machine Drive". IEEE Transactions on Energy Conversion, Institute of Electrical and Electronics Engineers, 2015, pp.1. 10.1109/TEC.2015.2459791. hal-01183901

HAL Id: hal-01183901
https://hal-centralesupelec.archives-ouvertes.fr/hal-01183901
Submitted on 12 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Discussion on “A Differential Algebraic Estimator for Sensorless Permanent-Magnet Synchronous Machine Drive”

Mohamad Koteich1,2, Abdelmalek Maloum1, Gilles Duc2 and Guillaume Sandou2

Diao et al. \cite{S. Diao, D. Diallo, Z. Makni, C. Marchand, and J. Bisson, “A differential algebraic estimator for sensorless permanent-magnet synchronous machine drive,” Energy Conversion, IEEE Transactions on, vol. 30, pp. 82–89, March 2015.} are to be commended for proposing a new approach for permanent magnet synchronous machine (PMSM) position estimation, using the differential algebraic theory. In the following comments, we would like to highlight some points concerning the machine observability under the applied approach.

In the paper by Diao et al. \cite{S. Diao, D. Diallo, Z. Makni, C. Marchand, and J. Bisson, “A differential algebraic estimator for sensorless permanent-magnet synchronous machine drive,” Energy Conversion, IEEE Transactions on, vol. 30, pp. 82–89, March 2015.}, it is claimed that the rotor position observability of the non-salient PMSM is ensured regardless the speed, based on the relationship (8) in \cite{S. Diao, D. Diallo, Z. Makni, C. Marchand, and J. Bisson, “A differential algebraic estimator for sensorless permanent-magnet synchronous machine drive,” Energy Conversion, IEEE Transactions on, vol. 30, pp. 82–89, March 2015.}. Indeed, (8) is another way to write the back-electromotive force (EMF)-based estimator equation for the non-salient PMSM:

\[
\frac{v_{s\alpha} - R_s i_{s\alpha} - L_d \frac{di_{s\alpha}}{dt}}{v_{s\beta} - R_s i_{s\beta} - L_d \frac{di_{s\beta}}{dt}} = -\omega \phi_m \sin \theta \quad (2)
\]

\[
\frac{v_{s\beta} - R_s i_{s\beta} - L_d \frac{di_{s\beta}}{dt}}{v_{s\beta} - R_s i_{s\beta} - L_d \frac{di_{s\beta}}{dt}} = \omega \phi_m \cos \theta \quad (3)
\]

The fact that the rotor position observability is not ensured at standstill is illustrated in the Fig. 4 of the paper \cite{S. Diao, D. Diallo, Z. Makni, C. Marchand, and J. Bisson, “A differential algebraic estimator for sensorless permanent-magnet synchronous machine drive,” Energy Conversion, IEEE Transactions on, vol. 30, pp. 82–89, March 2015.}, where an initial position estimation error is introduced; the position estimate is not corrected at standstill.

In this case, the rotor position can be identified at standstill if the first derivative of i_q is different from zero.

\begin{align}
\tan \theta &= \frac{-e_{\alpha}}{e_{\beta}} \\
\tan \theta &= -\frac{y_1 L_d + R_s y_1 + \omega(L_d - L_q) y_2 - u_1}{y_2 L_d + R_s y_2 - \omega(L_d - L_q) y_1 - u_2} \quad (5)
\end{align}

\begin{equation}
\begin{bmatrix}
e_{\alpha_{\text{ext}}} \\
e_{\beta_{\text{ext}}}
\end{bmatrix} = \begin{bmatrix}
(L_d - L_q)(\omega i_d - \frac{di_q}{dt} + \omega \phi_m) \\
-\sin \theta \\
\cos \theta
\end{bmatrix} \quad (4)
\end{equation}

\begin{thebibliography}{9}
\end{thebibliography}