M. V. Kreutzbruck, K. Allweins, T. Ruhl, M. Muck, C. Heiden et al., Defect detection and classification using a SQUID based multiple frequency eddy current NDE system, IEEE Transactions on Appiled Superconductivity, vol.11, issue.1, pp.1032-1037, 2001.
DOI : 10.1109/77.919525

D. Premel and A. Baussard, Eddy-current evaluation of three-dimensional flaws in flat conductive materials using a Bayesian approach, Inverse Problems, vol.18, issue.6, pp.1873-1889, 2002.
DOI : 10.1088/0266-5611/18/6/326

J. I. De-la-rosa, G. Fleury, S. E. Osuna, and M. E. Davoust, Markov Chain Monte Carlo Posterior Density Approximation for a Groove-Dimensioning Purpose, IEEE Transactions on Instrumentation and Measurement, vol.55, issue.1, pp.112-134, 2006.
DOI : 10.1109/TIM.2005.861495

URL : https://hal.archives-ouvertes.fr/hal-00260575

T. Khan and P. Ramuhalli, A Recursive Bayesian Estimation Method for Solving Electromagnetic Nondestructive Evaluation Inverse Problems, IEEE Transactions on Magnetics, vol.44, issue.7, pp.1845-55, 2008.
DOI : 10.1109/TMAG.2008.921842

N. Chopin and C. P. Robert, Properties of nested sampling, Biometrika, vol.97, issue.3, pp.741-755, 2010.
DOI : 10.1093/biomet/asq021

URL : https://hal.archives-ouvertes.fr/hal-00216003

J. Skilling, Nested sampling for general Bayesian computation, Bayesian Analysis, vol.1, issue.4, pp.833-680, 2006.
DOI : 10.1214/06-BA127

P. Mukherjee, D. Parkinson, and A. R. Liddle, A Nested Sampling Algorithm for Cosmological Model Selection, The Astrophysical Journal, vol.638, issue.2, pp.51-54, 2006.
DOI : 10.1086/501068

F. Feroz, M. P. Hobson, and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Monthly Notices of the Royal Astronomical Society, vol.398, issue.4, pp.1601-1614, 2009.
DOI : 10.1111/j.1365-2966.2009.14548.x

F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Monthly Notices of the Royal Astronomical Society, vol.398, issue.4, pp.1-28
DOI : 10.1111/j.1365-2966.2009.14548.x

S. Bilicz, M. Lambert, . Sz, and . Gyimthy, Kriging-based generation of optimal databases as forward and inverse surrogate models, Inverse Problems, vol.26, issue.7, pp.74012-74039, 2010.
DOI : 10.1088/0266-5611/26/7/074012

URL : https://hal.archives-ouvertes.fr/hal-00493205

A. Gelman and J. Hill, Bayesian model choice: asymptotics and exact calculations Reversible jump MCMC computation and Bayesian model determination, Journal of the Royal Statistical Society Biometrika, vol.56, issue.82, pp.501-515, 1994.

X. Meng and W. Wong, Simulating ratios of normalizing constants via a simple identity: a theoretical exploration, Statistica Sinica, vol.6, pp.831-60, 1996.

X. Meng and S. Schilling, Warp Bridge Sampling, Journal of Computational and Graphical Statistics, vol.11, issue.3, pp.552-66, 2002.
DOI : 10.1198/106186002457

R. Miorelli, C. Reboud, T. Theodoulidis, N. Poulakis, and D. Lesselier, Efficient Modeling of ECT Signals for Realistic Cracks in Layered Half-Space, IEEE Transactions on Magnetics, vol.49, issue.6, pp.2886-92, 2013.
DOI : 10.1109/TMAG.2012.2236102

URL : https://hal.archives-ouvertes.fr/hal-00767065

M. E. Muller, A note on a method for generating points uniformly on n-dimensional spheres, Communications of the ACM, vol.2, issue.4, pp.19-20, 1959.
DOI : 10.1145/377939.377946

D. E. Knuth, The Art of Computer Programming Seminumerical Algorithms, chapter 3, pp.1-136, 1981.

J. Poland, Three different algorithms for generating uniformly distributed random points on the n-sphere, 2000.