1 – 20 GHz kΩ -range BiCMOS 55 nm Reflectometer

Abstract : Scanning m icrowave microscope (SMM) combines the high spatial resolution with the high-sensitivity electric measurement capabilities of a vector network analyzer (VNA). SMM has been pointed out as very well suited for nanodevices characterization. In recent publications, SMM has demonstrated high performance while measuring kΩ-range impedances at low microwave frequency range (1-20 GHz). In spite of exceptional results, interferometry-based systems are so far hardly feasible as an integrated circuit due to physical constraints. In this work, an innovative design of integrated reflectometer based on BiCMOS 55 nm technology from STMicroelectronics is proposed. Electrical simulation results have proved a linear tuner calibration from 0.9 to 1.4 fF with an 8-bits precision (i.e. 2.0 aF). Reflectometer performance has been considered under influence of temperature variation from -55 to 125 °C and process variability. Such results demonstrate a slight influence of temperature variation and process variability in the reflectometer calibration which is negligible for SMM applications.
Type de document :
Communication dans un congrès
IEEE International New Circuits and Systems Conference (NEWCAS), Jun 2014, Trois-Rivieres, QC, Canada. 〈10.1109/NEWCAS.2014.6934063〉
Liste complète des métadonnées

https://hal-centralesupelec.archives-ouvertes.fr/hal-01222113
Contributeur : Pietro Maris Ferreira <>
Soumis le : jeudi 29 octobre 2015 - 11:23:46
Dernière modification le : jeudi 22 mars 2018 - 23:26:05

Identifiants

Collections

Citation

Pietro Maris Ferreira, Cora Donche, Kamel Haddadi, Tuami Lasri, Thomas Quemerais, et al.. 1 – 20 GHz kΩ -range BiCMOS 55 nm Reflectometer. IEEE International New Circuits and Systems Conference (NEWCAS), Jun 2014, Trois-Rivieres, QC, Canada. 〈10.1109/NEWCAS.2014.6934063〉. 〈hal-01222113〉

Partager

Métriques

Consultations de la notice

218