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Abstract. Sparse grids make possible the interpolation-based approximation of the output of 

computer experiments, even for a high number of independent input parameters. In this 

contribution, the sparse grid interpolation technique is shown to apply well to eddy-current non-

destructive testing and simulations thereof. Once such interpolation is obtained –being 

computationally cheap–, the use of simple optimisation schemes for the inversion becomes 

numerically efficient. A common pattern-search algorithm illustrates this concept. 

1  Introduction 

Many inversion schemes in eddy-current non-destructive testing (EC-NdT) aim at fitting the 

output of a simulation model to the measured data by tuning the model’s input parameters. This 

classical optimisation scheme usually means a huge computational cost due to the numerous 

forward simulations to perform. A novel approach of reducing the computational burden is to 

approximate the true simulator by a cheap-to-evaluate surrogate model (or metamodel). 

A rich family of surrogate models consists in data-fitting: an interpolation and/or regression is 

established based on a pre-calculated set of simulation results, i.e., samples. Once the sample set 

is obtained, the subsequent data-fitting is far less expensive that the true electromagnetic 

simulation. Among the contributions in the last years, let us cite [1], where the authors combine 

a radial basis function (RBF) interpolation on optimally scattered samples and particle swarm 

optimisation (PSO) to efficiently solve EC-NdT inverse problems. 

However, most of the approaches so far are limited to a small number of input parameters 

(i.e., defect parameters sought in the inverse problem which one is faced with) due to the “curse-

of-dimensionality”. In the present work, a novel scheme is proposed that enables to cope with 

the growth of dimensionality, consequently, a high number of defect parameters can be sought. 

   
Fig. 1 Left: top view of the plate with the two parameterized cracks and the scanning probe. Right: reconstruction 

results in a test case. Solid/dashed lines: real/found cracks. Depths are shown in percentage of the plate thickness. 



2 Sparse grid surrogate model and direct search inversion 

Let each defect parameter xi (i = 1,2,…,N) be scaled to the [0,1] interval and let them vary 

independently. The input space X=[0,1]N consists in all conceivable parameter vectors. To 

obtain a data-fit surrogate model, one has to sample X and compute the observable signal 

Z{x} corresponding to each input sample. Sparse grids provide an efficient way for this 

sampling even for large N. A piecewise multi-linear interpolation nẐ {x} can be established for 

Z{x} by the sparse tensor product of one-dimensional hierarchical bases, based on the n 

samples xk (k = 1,2,…,n) in the sparse grid. The sample number n does not depend 

exponentially on the dimension number N which was a limitation of classical grid-based 

algorithms. Details will be given in the full paper; as a reference on sparse grids, see, e.g., [2]. 

Given the set of measured impedance variations Zmeas, one aims at solving the regularised 

inverse problem x0 = argmin ||Zmeas- nẐ {x}||. Since nẐ is cheap-to-evaluate, even classical 

direct search optimisation methods are able to solve this problem, as shown in the examples. 

3 Numerical example 

A homogeneous, non-ferromagnetic, infinite metal plate (thickness: 1.25 mm, conductivity: 

1 MS/m) is corrupted by two parallel, rectangular, ideally thin cracks, opening at the bottom 

plate surface (OD-type). Lengths (a1, a2), depths (d1, d2) and positions (v, w) of the centre –

totally, 6 parameters– describe the defect, as shown in Fig. 1. The observed data consist in the 

impedance variation of an air-cored probe, driven with sinusoidal current (f = 150 kHz), 

recorded at 297 spatial locations in a flat rectangular domain (a surface scan) over the 

damaged zone. The impedance variation is calculated by a MoM-simulation [3]. 

A sparse grid database of n = 1457 samples is generated for this N = 6 dimensional 

problem based on the algorithms discussed in [4]. One evaluation of nẐ  takes approx. 5 s with 

a CPU i3@1.90GHz. The optimisation is performed by a Sequential Quadratic Programming 

method which needed 10…100 function calls in the cases studied. An example is presented in 

Fig. 1: the performance of the crack reconstruction is shown to be quite accurate. 

4 Conclusion 

An efficient inversion method is developed based on the sparse grid interpolation technique. The 

presented example exhibits the capabilities of the scheme for the reconstruction of 6 parameters. 

In the full version of the paper, further examples will be presented and the adaptive generation of 

the sparse grid to increase the interpolation accuracy will be considered also. 
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