K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.42, issue.3, p.183, 2007.
DOI : 10.1038/nmat1849

J. Saito, A. Nakamura, and . Natori, Ballistic thermal conductance of a graphene sheet, Physical Review B, vol.76, issue.11, p.115409, 2007.
DOI : 10.1103/PhysRevB.76.115409

D. Subrina, A. A. Kotchetkov, and . Balandin, Heat Removal in Silicon-on-Insulator Integrated Circuits With Graphene Lateral Heat Spreaders, IEEE Electron Device Letters, vol.30, issue.12, p.1281, 2009.
DOI : 10.1109/LED.2009.2034116

Y. Gao, Y. Zhang, M. Fu, J. Yuen, and . Liu, Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots, Carbon, vol.61, p.342, 2013.
DOI : 10.1016/j.carbon.2013.05.014

K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, Heat Conduction across Monolayer and Few-Layer Graphenes, Nano Letters, vol.10, issue.11, p.4363, 2010.
DOI : 10.1021/nl101790k

D. L. Bozlar, J. B. He, Y. Bai, N. Chalopin, S. Mingo et al., Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites, Advanced Materials, vol.41, issue.14, p.1654, 2010.
DOI : 10.1002/adma.200901955

K. Gordiz, S. M. Vaez-allaei, and F. Kowsary, Thermal rectification in multi-walled carbon nanotubes: A molecular dynamics study, Applied Physics Letters, vol.99, issue.25, p.251901, 2011.
DOI : 10.1063/1.3670327

A. Rajabpour and S. Volz, Thermal boundary resistance from mode energy relaxation times: Case study of argon-like crystals by molecular dynamics, Journal of Applied Physics, vol.108, issue.9, p.94324, 2010.
DOI : 10.1063/1.3500526

Y. Ni, H. L. Khanh, Y. Chalopin, J. B. Bai, P. Lebarny et al., Highly efficient thermal glue for carbon nanotubes based on azide polymers, Applied Physics Letters, vol.100, issue.19, p.193118, 2012.
DOI : 10.1063/1.4711809

URL : https://hal.archives-ouvertes.fr/hal-01285856

J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, The Journal of Chemical Physics, vol.112, issue.14, p.6472, 2000.
DOI : 10.1063/1.481208

W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, vol.42, issue.15, p.9458, 1990.
DOI : 10.1103/PhysRevB.42.9458

A. Girifalco, M. Hodak, and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Physical Review B, vol.62, issue.19, p.13104, 2000.
DOI : 10.1103/PhysRevB.62.13104

Y. Wei, Z. H. Ni, K. D. Bi, M. H. Chen, and Y. F. Chen, Interfacial thermal resistance in multilayer graphene structures, Physics Letters A, vol.375, issue.8, p.1195, 2011.
DOI : 10.1016/j.physleta.2011.01.025

M. A. Sun, M. Stroscio, and . Dutta, Graphite C-axis thermal conductivity, Superlattices and Microstructures, vol.45, issue.2, p.60, 2009.
DOI : 10.1016/j.spmi.2008.11.018

W. Z. Ghosh, D. L. Bao, S. Nika, E. P. Subrina, C. N. Pokatilov et al., Dimensional crossover of thermal transport in few-layer graphene, Nature Materials, vol.9, issue.7, p.555, 2010.
DOI : 10.1038/nmat2753

S. M. Rajabpour and . Vaez-allaei, Tuning thermal conductivity of bilayer graphene by inter-layer sp3 bonding: A molecular dynamics study, Applied Physics Letters, vol.101, issue.5, p.53115, 2012.
DOI : 10.1063/1.4740259

T. Swartz and R. O. , Thermal boundary resistance, Reviews of Modern Physics, vol.61, issue.3, p.605, 1989.
DOI : 10.1103/RevModPhys.61.605

V. Keer, Principles of the Solid State, p.383, 1993.

K. Chalopin, A. Esfarjani, S. Henry, G. Volz, and . Chen, Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics, Physical Review B, vol.85, issue.19, p.195302, 2012.
DOI : 10.1103/PhysRevB.85.195302

URL : https://hal.archives-ouvertes.fr/hal-01285857

C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell et al., On the roughness of single- and bi-layer graphene membranes, Solid State Communications, vol.143, issue.1-2, p.101, 2007.
DOI : 10.1016/j.ssc.2007.02.047

F. M. Neek-amal and . Peeters, Lattice thermal properties of graphane: Thermal contraction, roughness, and heat capacity, Physical Review B, vol.83, issue.23, pp.235437-061906, 2011.
DOI : 10.1103/PhysRevB.83.235437