M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes, Theory and Application, NJ, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

J. Tourneret, M. Doisy, and M. Lavielle, Bayesian off-line detection of multiple change-points corrupted by multiplicative noise: application to SAR image edge detection, Signal Processing, vol.83, issue.9, pp.1871-1887, 2003.
DOI : 10.1016/S0165-1684(03)00106-3

N. Brunel and F. Barbaresco, Doppler and Polarimetric Statistical Segmentation for Radar Clutter map based on Pairwise Markov Chains, Proc. of IEEE RADAR, 2007.

A. Jann, Reconciling the sequential probability ratio test with calibration, Quarterly Journal of the Hungarian Meteorological Service, vol.113, issue.3, pp.233-243, 2009.

N. Nechval, K. Nechval, and E. Vasermanis, Detection of target signals in clutter using change point statistics, Proc. SPIE 4541, Image and Signal Processing for Remote Sensing VII, 2002.

S. B. Fotopoulos, S. K. Jandhyala, and E. Kapalova, Exact asymptotic distribution of change-point mle for change in the mean of Gaussian sequences, The Annals of Applied Statistics, vol.4, issue.2, pp.1081-1104, 2010.
DOI : 10.1214/09-AOAS294

Y. Wu, Bias of estimator of change point detected by a CUSUM procedure, Annals of the Institute of Statistical Mathematics, vol.51, issue.1, pp.127-142, 2004.
DOI : 10.1007/BF02530528

D. V. Hinkley, Inference about the change-point in a sequence of random variables, Biometrika, vol.57, issue.1, pp.1-18, 1970.
DOI : 10.1093/biomet/57.1.1

A. Bartov and H. Messer, Analysis of inherent limitations in localizing step-like singularities in a continuous signal, Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96), pp.21-24, 1996.
DOI : 10.1109/TFSA.1996.546676

A. M. Reza and M. Doroodchi, Cramer-Rao lower bound on locations of sudden changes in a steplike signal, IEEE Transactions on Signal Processing, vol.44, issue.10, pp.2551-2556, 1996.
DOI : 10.1109/78.539038

A. Ferrari and J. Tourneret, Barankin lower bound for change-points in independent sequences, IEEE Workshop on Statistical Signal Processing, 2003, pp.557-560, 2003.
DOI : 10.1109/SSP.2003.1289526

URL : https://hal.archives-ouvertes.fr/hal-00376422

P. S. Rosa, A. Renaux, A. Nehorai, and C. H. Muravchik, Barankin-Type Lower Bound on Multiple Change-Point Estimation, IEEE Transactions on Signal Processing, vol.58, issue.11, pp.5534-5549, 2010.
DOI : 10.1109/TSP.2010.2064771

URL : https://hal.archives-ouvertes.fr/inria-00532893

E. Weinstein and A. J. Weiss, A general class of lower bounds in parameter estimation, IEEE Transactions on Information Theory, vol.34, issue.2, pp.338-342, 1988.
DOI : 10.1109/18.2647

D. T. Vu, A. Renaux, R. Boyer, and S. Marcos, Some results on the Weiss???Weinstein bound for conditional and unconditional signal models in array processing, Signal Processing, vol.95, issue.2, pp.126-148, 2014.
DOI : 10.1016/j.sigpro.2013.08.020

URL : https://hal.archives-ouvertes.fr/hal-00947784

A. Bhattacharyya, On a measure of divergence between two statistical populations defined by their probability distributions, Bulletin Calcutta Mathematical Society, vol.35, pp.99-109, 1943.